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Abstract

Astroviruses (AstVs) are responsible for infection of a large diversity of mammalian and avian species, including bats,
aquatic birds, livestock and humans. We investigated AstVs circulation in bats in Mozambique and Mayotte, a small
island in the Comoros Archipelago located between east Africa and Madagascar. Biological material was collected
from 338 bats and tested for the presence of the AstV RNA-dependent RNA-polymerase gene with a pan-AstV
semi-nested polymerase chain reaction assay. None of the 79 samples obtained from Mayotte bats (Pteropus
seychellensis comorensis and Chaerephon pusillus) tested positive; however, 20.1% of bats sampled in Mozambique
shed AstVs at the time of sampling and significant interspecific variation in the proportion of positive bats was
detected. Many AstVs sequences obtained from a given bat species clustered in different phylogenetic lineages,
while others seem to reflect some level of host-virus association, but also with AstVs previously reported from
Malagasy bats. Our findings support active circulation of a large diversity of AstVs in bats in the western Indian
Ocean islands, including the southeastern African coast, and highlight the need for more detailed assessment of its
risk of zoonotic transmission to human populations.
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Astroviruses (AstVs) are small non-enveloped RNA vi-
ruses, transmitted via the fecal-oral route. They have been
detected from over 80 vertebrate host species [1], and rep-
resent a significant source of morbidity and economic
losses. Worldwide, AstVs account for 2 to 9% of all acute
non-bacterial gastroenteritis in children [2]; they are also
responsible for diseases in livestock, poultry and domestic
pets [3]. In wild animals, AstVs have been mostly detected
in bats [4] and in aquatic birds [5], although detection in
other host types have been reported, such as in marine
mammals [6] and non-human primates [7].
Current knowledge on the epidemiology of AstVs in

African bats is limited [8, 9]. In a previous study, we de-
tected high genetic diversity of AstVs in Malagasy bats
[10]. Detection of AstVs on other islands of the western
Indian Ocean has not been reported. The goal of this
study was to investigate AstV circulation in bats in
Mozambique and on Mayotte, a small island in the
Comoros archipelago located between east Africa and
Madagascar.

Biological material was collected on Mayotte at
several locations (Bandrele, Chiconi, Coconi, Kwale,
Mangajou, Passamainty, Sohoabe, Tsoundzou), in
November–December 2014, and in Mozambique
(Inhassoro district) in February and May 2015. Bats
were captured using mist nets and harp traps. On
Mayotte, rectal swabs were obtained with sterile
rayon-tipped applicators (Puritan, Guilford, ME, USA)
from 21 Pteropus seychellensis comorensis, and drop-
pings were collected from 58 Chaerephon pusillus.
Swabs and droppings were placed in 1.5 mL of Virus
Transport Media (VTM; [10]), and were immediately
frozen in liquid nitrogen. In Mozambique, one rectal
and one buccal swab were collected for each sampled
bat. The two swabs were then placed in the same tube,
containing 1.5 mL of VTM, and were immediately fro-
zen in liquid nitrogen. Sampled bat species and num-
ber of tested samples are presented in Table 1.
RNA extraction was performed with the QIAamp Viral

RNA Mini Kit (QIAGEN, Valencia, CA, USA). Reverse
transcription was performed on 10 μL of RNA using the
ProtoScript II Reverse Transcriptase and Random
Primer 6 (New England BioLabs, Ipswich, MA, USA)
using a previously published protocol [10]. cDNAs were
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tested for the presence of the AstV RNA-dependent
RNA-polymerase (RdRp) gene using a pan-AstV
semi-nested polymerase chain reaction (PCR) assay
[10, 11]. PCRs were performed with the GoTaq G2 Hot
Start Green Master Mix (Promega, Madison, WI, USA)
in an Applied Biosystems 2720 Thermal Cycler
(Thermo Fisher Scientific, Waltham, MA, USA). Elec-
trophoresis were performed on 1.5% agarose gels
stained with 2% GelRed (Biotium, Hayward, CA, USA).
Chi square tests were conducted to investigate the ef-
fect of the host species, sampling period (month), and
sex, on the probability of successful detection of AstV
RdRp genes. Statistical analyses were conducted with
R, version 3.2.3 [12].
PCR products of the expected size were submitted for

direct Sanger sequencing (Genoscreen, Lille, France).
The 31 sequences obtained in this study were aligned
with 112 reference AstV RdRp partial nucleotide se-
quences, with CLC Sequence Viewer version 7.7.1 (CLC
Bio, Aarhus, Denmark). A maximum-likelihood analysis
was performed Phylogenetic trees were constructed by
maximum likelihood with the software PhyML 3.1 [13].
The evolutionary model was selected by Model Gener-
ator 0.85 (GTR + I + Г, I = 0.10, α = 0.71; [14]), and nodal
supports were assessed with 1000 bootstrap replicates. A
Bayesian Markov Chain Monte Carlo coalescent analysis
was also performed, with the program BEAST, version
1.8.4 [15], and the Shapiro-Rambaut-Drummond-2006
(SRD06) nucleotide substitution model [16]. A strict mo-
lecular clock and a constant population size were se-
lected. The analysis was performed with a chain length
of 60 million generations sampled every 1000 iterations,
with first 10% trees discarded as burn-in. The maximum
clade credibility tree was visualized with FigTree, version
1.4.3 (http://tree.bio.ed.ac.uk/software/figtree).
None of the 79 samples collected on Mayotte tested

positive for the presence of AstV. Although this negative
result may be affected by the relatively small sample size
and differences in sampling protocols (swabs vs

droppings), it may also suggest temporal variation in
AstVs shedding and circulation in bat populations, as
previously documented [17]. Additional studies are thus
needed before concluding that AstVs do not circulate in
Mayotte bats.
In Mozambique, 52 of the 259 bats tested positive

for the presence of AstV RdRp (mean detection rate
± 95% confidence interval: 20.1% ± 4.9%). This
detection rate was similar to other studies using the
same PCR assay, including the one we reported on
Malagasy bats (22.5% ± 6.1%; [10]). For the
Mozambique samples, five of the ten bat species tested
positive (Table 1 and Additional file 1 for details), with sig-
nificant variation between species (χ2 = 104, P < 0.001). A
high detection rate was found in Triaenops afer (68.6% ±
12.7%), as compared to other species (Table 1). Significant
variation was also found between the two sampling
sessions (χ2 = 9, P < 0.005) with a higher detection rate in
May (25.3% ± 6.5%) than in February (10.1% ± 6.3%), in
particular for T. afer (χ2 = 13, P < 0.001; 20% ± 24.7% in
February, and 80.5% ± 12.1% in May). This variation may be
associated with factors related with bat population dynamics
facilitating or limiting virus transmission (e.g. population
size, density, age structure, body condition [18, 19]). No sig-
nificant difference was found in AstV detection rate be-
tween males and females (χ2 = 0.4, P < 0.5).
High genetic diversity was detected among AstVs se-

quences obtained from Mozambican bats (pairwise dis-
tance up to 45%), without strong support for host family
or species restriction (Fig. 1 and Additional file 2 for de-
tails), as commonly described for bat AstVs [8, 10, 11,
20, 21]. Most of the detected viruses clustered in large
phylogenetic lineages, in particular for Triaenops afer
and Hipposideros caffer, although statistical support was
limited. Sequences of AstVs detected in Nycteris the-
baica and Mops condylurus were mostly highly divergent
and not included in larger genetic lineages comprising
viruses of same bat family or the same geographic area
(Fig. 1).

Table 1 Family, species day roosts, and number of bats sampled and tested for the presence of Astroviruses, in Mozambique

Family Species Day roosts N tested N positive

Hipposideridae Hipposideros caffer Caves 57 10

Miniopteridae Miniopterus mossambicus Caves 21 2

Molossidae Mops condylurus Houses 52 1

Nycteridae Nycteris thebaica Caves 14 4

Rhinolophidae Rhinolophus lobatus Caves 9 0

Rhinolophus mossambicus Caves 20 0

Rhinolophus rhodesiae Caves 31 0

Rhinonycteridae Triaenops afer Caves 51 35

Vespertilionidae Neoromicia nana Rolled-up banana leaves 2 0

Scotophilus viridis Free-flying 2 0
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Fig. 1 (See legend on next page.)

Hoarau et al. Virology Journal  (2018) 15:104 Page 3 of 5



The limited genetic information available for AstVs in
public databases [1], as well as the high saturation of
their genome [22], considerably affects the resolution of
phylogenetic trees. Current understanding of the
long-time evolutionary history of Astroviridae therefore
remains limited. In addition, ecological factors involved
in AstV infection in bats need to be better assessed.
High temporal dynamics of viral infection has been doc-
umented before [17], and the risk of spillover to other
hosts, including humans, has also been demonstrated to
coincide with changes in bat behavior and population
structure [23]. The high propensity of AstVs for host
shifts highlight the need for a better assessment of zoo-
notic transmission risk to human populations, particu-
larly in relationship to some unique aspects of bat
immunology and ecology.

Additional files

Additional file 1: Detailed results of Astrovirus detection in samples
from Mozambique. (ODS 30 kb)

Additional file 2: List of the bat families and species included in the
phylogenetic tree. (PDF 44 kb)
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