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enhances cell death specifically in EBV-positive cells.

setting.

Background: Epstein-Barr Virus (EBV) is associated with hematopoietic malignancies, such as Burkitt's lymphoma,
post-transplantation lymphoproliferative disorder, and diffuse large B-cell lymphoma. The current approach for EBV-
associated lymphoma involves chemotherapy to eradicate cancer cells, however, normal cells may be injured and
organ dysfunction may occur with currently employed regimens. This research is focused on employing arsenic
trioxide (ATO) as EBV-specific cancer therapy takes advantage of the fact the EBV resides within the malignant cells.

Methods and results: Our research reveals that low ATO inhibits EBV gene expression and genome replication.
EBV spontaneous reactivation starts as early as 6 h after re-suspending EBV-positive Mutu cells in RPMI media in the
absence of ATO, however this does not occur in Mutu cells cultured with ATO. ATO's inhibition of EBV spontaneous
reactivation is dose dependent. The expression of the EBV immediate early gene Zta and early gene BMRF1 is
blocked with low concentrations of ATO (0.5 nM - 2 nM) in EBV latency type | cells and EBV-infected PBMC cells.
The combination of ATO and ganciclovir further diminishes EBV gene expression. ATO-mediated reduction of EBV
gene expression can be rescued by co-treatment with the proteasome inhibitor MG132, indicating that ATO
promotes ubiquitin conjugation and proteasomal degradation of EBV genes. Co-immunoprecipitation assays with
antibodies against Zta pulls down more ubiquitin in ATO treated cell lysates. Furthermore, MG132 reverses the
inhibitory effect of ATO on anti-lgM-, PMA- and TGF-f3-mediated EBV reactivation. Thus, mechanistically ATO's
inhibition of EBV gene expression occurs via the ubiquitin pathway. Moreover, ATO treatment results in increased
cell death in EBV-positive cells compared to EBV-negative cells, as demonstrated by both MTT and trypan blue
assays. ATO-induced cell death in EBV-positive cells is dose dependent. ATO and ganciclovir in combination further

Conclusion: ATO-mediated inhibition of EBV Iytic gene expression results in cell death selectively in EBV-positive
lymphocytes, suggesting that ATO may potentially serve as a drug to treat EBV-related lymphomas in the clinical
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Background

Epstein-Barr virus (EBV) is a ubiquitous DNA virus that
is implicated in the pathogenesis of hematopoietic ma-
lignancies including Burkitt’s lymphoma, Hodgkin
lymphoma, post-transplant lymphoma, AIDS-associated
lymphomas, age-associated B-cell lymphoma, primary cen-
tral nervous system lymphomas, NK/T-cell lymphoma and
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diffuse large B-cells lymphoma, along with non-
hematopoietic tumors. EBV can establish a latent stage
marked by expression of EBV latent genes (e.g. EBNAL,
EBNA2, EBNA-LP, EBNA3A/3B/3C, LMP1, LMP2A/2B),
and a lytic stage that expresses a set of EBV lytic genes and
production of infectious virions. The switch from latent to
lytic stage is driven by EBV immediate-early genes, such as
BZLF1 (Zta) in vivo or by various commercial reagents in
vitro, for example phorbol 12-myristate 13-acetate [1, 2],
anti-IgG and anti-IgM [3-6], Ca* ionophore [7], bone
morphogenetic proteins (BMPs) [8], and transforming
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growth factor beta 1 (TGF-B1) [9-11]. Recently, we discov-
ered that arsenic trioxide (ATO) activates the EBV lIytic
cycle in nasopharyngeal carcinoma cells [12]. In general,
the EBV latent cycle is associated with tumorigenesis
because latent genes such as LMP1 are oncogenic, whereas
the EBV lytic cycle is often considered detrimental to cell
survival. However, there is evidence that the EBV lytic
cycle may play a role in supporting lymphoid malignancies
[13-15], in as much as patients with a higher titer of EBV
Iytic antigens in plasma have higher tumor recurrence
rates after therapy and a poorer prognosis [16-20].
Whereas patients with lower plasma EBV DNA levels re-
spond more favorably to current treatment regimens [21].

The mechanism by which EBV lytic genes induce malig-
nancies has been studied but still requires clarification.
The accumulated reports indicate that EBV lytic genes are
directly responsible for causing malignancies and cell
growth via regulation of cellular signals. Zta degrades the
tumor suppressor p53 and inhibits its transcriptional
function [22-26]; EBV lytic genes also inhibit antiviral
cytokines such as TNF-alpha, and stimulate synthesis of
cellular cytokines, such as interleukin—-10, -8, and -13,
which serve as growth factors to promote cell cycling and
thereby tumor cell proliferation [27-29]. Moreover, induc-
tion of matrix metalloproteinases by Zta could potentially
enhance metastasis of EBV-positive tumors cells via
matrix degradation [30, 31]. Taken together, EBV alters
cellular processes via genetic and epigenetic mechanisms,
and consequently EBV-positive cell growth is dependent
upon retention of the EBV genome [32-34]. Consequently,
forced loss of the EBV genome in EBV-positive cells
disrupts this balance and induces cell death. Studies using
EBV-positive lymphoma cells have demonstrated that loss
of the EBV genome in Akata cells results in cell death
[35-37]. These manuscripts imply that inhibition of
EBV lytic reactivation may reduce the occurrence of
cancer and suggest that antiviral therapy may be use-
ful for treating EBV-related malignancies [38].

EBV genome replication is driven by oriP during the la-
tent phase, and by oriLyt during the lytic phase. OriLyt is
located within divergent promoter regions of BHLF1 and
BHRFI1 and consists of two essential core elements, namely
the BHLF1 promoter containing Zta response elements
(ZREs) and the TD element for Sp1 binding [39]. EBV lytic
DNA replication is facilitated by six core early lytic viral
replication factors including: the DNA polymerase proces-
sivity factor (BMRF1 or EA-D), the primase BSLF2, the
helicase BBLF4, the helicase-primase complex BBLF2/3, the
single-stranded DNA-binding protein BALF2 and the DNA
polymerase BALF5 [40-43]. Importantly, BZLF1 is a
central regulator for lytic replication, binding directly to
ZRE sites on the upstream domain of oriLyt and interacting
with other viral core replication proteins, such as BMRFI,
BALF?2 and BBLF4 [44—46].
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ATO is a highly effective in treating acute promyelocytic
leukemia [47] via degradation of promyelocytic leukemia
(PML) nuclear bodies through a ubiquitin-mediated
pathway [48-51]. ATO treatment results in degradation of
all 7 major PML isoforms, in which PMLV is the most
highly degraded isoform and PMLIV is the least degraded
isoform [52]. ATO binds to PML-RARa protein directly
and induces its SUMO modification by recruiting a ring-
domain-containing ubiquitin E3 ligase (RNF4), along with
ubiquitin and the proteasome, to PML nuclear bodies,
resulting in the degradation of PML-RAR«a [53, 54]. EBV
latent proteins (LMP2A, LMP1 and EBNA1) interact with
the cellular proteasome/ubiquitin pathway to control the
EBV latency. However, EBV lytic proteins, such as Zta,
Rta and BMRF], can also be regulated by sumoylation and
ubiquitination. Zta is a bZIP protein that can be SUMO1
modified on Lys 12 and Lysl5 [55, 56]. Rta can be
sumoylated on Lys-19, Lys-213, and Lys-517 [57]. SUMO-
targeted RNF4 interacts with Rta and enhances Rta and
BMRF1 ubiquitination [58]. Overexpression of Zta in EBV
latently infected cells results in dispersion of PML nuclear
bodies and induces loss of SUMO1-modified isoforms of
PML protein [59, 60]. Knockdown of PML reduces the
production of viral particles and EBV genome in EBV-
positive P3HR1 cells, supporting the concept that PML
nuclear bodies play a role in EBV capsid assembly and
viral lytic DNA replication [61].

We previously demonstrated that ATO activates the
EBV lytic cycle in EBV-positive epithelial cells and inhibits
tumor growth in a xenograft model [12]. In contrast, in
this manuscript we did not find that arsenic induced EBV
reactivation in Burkitt’s lymphoma cells. In the work pre-
sented here we show that arsenic inhibits the expression
of EBV lytic genes Zta, Rta and BMRFI, and promotes cell
death in EBV-positive lymphoma cells. Herein, we also re-
port that ATO regulates EBV reactivation via ubiquitin/
proteasome-dependent proteolysis. Current therapies for
anti-EBV-positive lymphomas are not vastly different in
comparison to EBV-negative lymphomas. We submit that
arsenic may be a potential antiviral chemotherapy for
treatment of EBV-associated lymphomas.

Methods

Cell culture and treatment

EBV-positive latency type I Burkitt’s lymphoma cell lines
(Mutu, Akata, BX-1, Rael and SAV5), an EBV latency
type II B lymphocyte cell line (ClI13), and EBV latency
type III lymphoblastoid cells (JY), have been maintained
in our laboratory for more than 20 years through freeze-
thaw cycles. The Farage EBV-positive diffuse large B-cell
lymphoma cell line was purchased from ATCC. PBMC
cells were a gift from Dr. Frédéric Ganapamo. Cell cul-
ture conditions were as described previously [62].
Briefly, all cell lines were cultured in RPMI 1640 media



Yin et al. Virology Journal (2017) 14:121

supplemented with 10% heat-inactivated fetal bovine
serum (Gibco) in a humidified incubator with 5% CO, at
37 °C. The cells were split 1:1 1 day before treatment.
On the day of treatment, cells were enumerated and via-
bility assessed using trypan blue exclusion staining. Cells
were re-suspended with fresh media at the confluence of 1
x 10° cells per ml, and ATO was added at the indicated
concentrations. For proteinase or sumoylation inhibitor
experiments, MG132 or Ginkgolic Acid respectively were
added 4 h or 16 h prior to harvest. ATO (Sigma # A1010)
was dissolved in 1 M NaOH and stored at -20 °C as a
250 mM stock solution. The 1 pM working solution was
prepared by dilution in sterile PBS (arsenic is adherent to
commercial cell culture filters, so such filters were not
employed). Ganciclovir was dissolved in 0.1 N HCl at a
concentration of 10 mg/ml and stored at —20 °C.

Western blotting and immunoprecipitation

Cells were lysed with RIPA buffer (Cell Signaling) supple-
mented with 0.1 M phenylmethyl sulfonyl fluoride (PMSE),
protease inhibitor mixture, and phosphatase inhibitors 2 &
3 (Sigma)). Protein concentrations for western blotting and
immunoprecipitation were determined using the Bio-Rad
protein assay reagent and a Beckman Coulter spectropho-
tometer.  Immunoprecipitation  experiments  were
conducted as described previously [63]. Briefly, 500 pg of
protein was used for each immunoprecipitation and
precleared with 50 ul protein A/G sepharose beads (Santa
Cruz) for 6 h. Antibody (2 pg) was incubated with 20 pl
protein A/G sepharose beads for 6 h to overnight. The
immune-complexes were washed 3 times with RIPA buffer
before being resolved using 2x SDS-PAGE loading buffer
(sigma) and separated on a 4—20% Tris-HCI gradient SDS-
PAGE gel (BioRad). The signal was detected using the
Odyssey Infrared Imaging System (Li-Cor Biosciences). The
following antibodies were used: Actin (sc-1616), Zta
(Argene 11-007), Rta (Argene 11-008), BMRF1 (EBV-018-
48,180), BGLF4 (Argent AP8057b), VCA (Argene 11-019),
LMP1 (BD 559898) and GAPDH (Cell Signaling 2118 L).

RNA extraction and quantitative reverse transcription
(RT)-PCR

Total cellular RNA was isolated using the RNeasy Plus
mini kit (Qiagen #74136) and was reverse transcribed
using the iScript ¢cDNA Synthesis Kit (BioRad, Cat#
170-8890). The expression level of EBV genes, Zta and
LMP1 were determined by SYBR green dye chemistry
and calculated using the 27**“" method. Primers used for
RT-PCR: LMP1 forward: 5-CTACTGATGATCACCCTCCT-
3" and reverse: 5'-ATACCGAAGACAAGTAAGCA-3'; Zta
forward: 5" GGGGGATAATGGAGTCAACA 3’ and reverse:
5" GGAAACCACAACAGCCAGAA 3'; 36B4 forward: 5'-
CGAGGTGGAAGTCCAAGT-3" and reverse: 5'-ATGTGGT
GCATCTGGTTG-3".
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Cellular and viral DNA extraction and quantitative
real-time PCR

Total cellular DNA was isolated with DNAzol (Invitrogen
#10503-027) and was quantified using the nanodrop
method. Four ng of DNA was used for real-time PCR in a
20 pl volume. Viral DNA was isolated from media as de-
scribed previously [63]. Briefly, cell culture media was fil-
trated through a 0.45 um SFCA filter and incubated with
proteinase K (Invitrogen) at 37 °C for 1 h to overnight,
followed by incubation at 95 °C for 15 min prior to extrac-
tion using phenol/chloroform. 100x diluted media extrac-
tion was used for real-time PCR with primers spanning
the BamHI Z region and Q promoter (Qp) regions of the
EBV genome and housekeeping gene GAPDH. The quan-
titative level was calculated using the 27““T method.
Primers used for PCR were: BamHI Z forward: 5-TTGA
CACCAGCTTATTTTAGACACTTCT-3 and reverse: 5'-
TTACCTGTCTAACATCTCCCCTTTAAA-3"; Qp forward:
5'-AAATTGGGTGACCACTGAGG-3' and reverse: 5'-C
ATACACCGTGCGAAAAGAA-3'; GAPDH Forward: 5-A
AGGTGAAGGTCGGAGTCAAC-3" and reverse 5-GGG
GTCATTGATGGCAACAATA-3".

MTT assay and cell viability

The MTT assay was performed following the manufac-
turer’s instructions (Sigma #M-8910). Briefly, cells were
cultured in phenol free medium and an equal volume of
reconstituted MTT was added onto the cells. The MTT
solubilization solution was added and mitochondrial de-
hydrogenases activity was measured using a microplate
auto reader (Bio-tek Instruments) after 2—4 h of incuba-
tion. Cell viability was measured by enumeration using a
trypan blue (Invitrogen) method.

Statistical analysis
Statistical significance of each variable was assessed
using one-way ANOVA.

Results

ATO inhibits EBV lytic gene expression and genome
replication

ATO inhibits EBV lytic gene expression

EBV-positive latency type I cell Mutu cells displayed spon-
taneous reactivation after being re-suspended in fresh
media for 6 h, and reached maximal lytic cycle by day 1
(Fig. 1a left). The EBV lytic gene BMRFI1 and immediate
early gene Zta were induced as early as 6 h after resuspen-
sion in fresh media. In contrast, BMRF1 was not induced
when the media contained ATO, and the expression of
Zta and Rta were lower compared with no treatment
(NT) at day 1, 2 and 3 (Fig. 1a right). ATO-mediated EBV
inhibition was dose-dependent (Fig. 1b). ATO inhibited
expression of the EBV lytic genes BMRF1 and Zta in EBV
latency type I cells, Mutu (Fig. 1b left) and Rael (Fig. 1b



Yin et al. Virology Journal (2017) 14:121

Page 4 of 12

GAPDH e e s s

BGLF4

VCA
GAPDH

£

treatment with 1

ATO ATO
o E =
o - N o = o~

BMRF1 | s b :
Ztawwer o oo Zta = -

BNIRF1 ﬂnnﬂgu-ﬂ
GAPDH ---—--—
ATO
B £ 3 - £
PMLE : ! PMLi» ’
BMRF1“‘4E“F’;
Zta ===

GAPDH remr s s e

3 o 3
C |_ E 0 U E g 2 8
PML - j ey oy
BMRF1 - -. =1 ii
Zta — —— —— BMRF1 u“' "E
ACin —— —— c——— GAPDH s sy s s 1
1.5
D - ‘_L L 2 v 3 Zta LMP1
Z 8 -~ o 2 €« < O 1.25
BMRF1 g moy s . oo s = 2 1
z 0.75
Zta ==y sy vy e G————

S Y aew B s %
— — — — — — — —

m’p—a—d-q——-.—..—-—-—-———-
3~

Fig. 1 ATO inhibited EBV reactivation at low concentrations in EBV-positive lymphoma cells. a ATO inhibited EBV spontaneous reactivation in
Mutu cells. Western blotting detected EBV spontaneous reactivation within 6 h after re-suspending cells, but not in cells cultured in the presence
of 1 nM of ATO. b ATO inhibited EBV lytic gene expression in a dose-dependent manner. EBV latency type | cells (from left to right: Mutu, Rael
and PBMC) were treated with various concentrations of ATO (0.5 nM — 2 nM) for 3 days and harvested for western blotting. ¢ Co-treatment with
ATO and GCV (AG) inhibits EBV Iytic gene expression. Western blotting assessment of EBV lytic gene expression in Rael (left) and SAV5 (right) after
nM ATO and/or 45 uM GCV for 3 days. AG indicates treatment with ATO plus GCV. d ATO inhibited EBV gene expression at both
the RNA and protein levels. Mutu cells were treated with ATO at the indicated concentration for 3 days or with 0.5 nM ATO with/without 45 pM
GCV and harvested for western blotting and real-time RT-PCR. N p < 0.05 vs no treatment (NT)
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middle), when treated with ATO for 3 days at the indi-
cated concentrations. PML protein levels were reduced by
ATO as expected. In addition, ATO inhibited EBV gene
and PML expression in peripheral blood mononuclear
cells (PBMC) infected with EBV in vitro (Fig. 1b right).

Co-treatment of ATO with ganciclovir (GCV), a virus
DNA replication inhibitor, decreased PML protein ex-
pression as well as that of the EBV BMRF1 in EBV-
positive latency type I cells, Rael (Fig. 1c left) and SAV5
(Fig. 1c right). PMA was used as a positive control to in-
duce the expression of the EBV Iytic genes BMRF1 and
Zta in Rael cells.

Mutu cells treated with various concentrations of ATO
(0.1- 2 nM) for 3 days were harvested for western blotting

and RT-PCR. ATO (0.1 nM) inhibited the expression of
the EBV immediate early gene Zta, along with other lytic
genes including BMRF1, BGLF1 and VCA (Fig. 1d left).
ATO treatment did not affect the mRNA level of the EBV
latent gene LMP1. Zta mRNA expression was inhibited by
ATO at 0.5 nM and 1 nM (Fig. 1d right). In contrast, the
combination of ATO and ganciclovir blocked the expres-
sion of LMP1 mRNA.

ATO inhibits EBV genome replication

Downregulation of EBV lytic gene expression by ATO
prompted investigation into the effects of ATO on EBV
replication. To quantify EBV viral load, viral DNA was ex-
tracted from the media, in which the cells were cultured.
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Real-time PCR was performed to assess genomic DNA
levels through detection of a region encompassing the EBV
BamHI Z fragment. The viral genome level was low in
ATO-treated cell media compared to untreated cell media,
and co-treatment of ATO with GCV blocked the genome
level even more dramatically (Fig. 2a). GCV alone also
inhibited EBV genome levels. We also extracted total cellu-
lar DNA and viral DNA from ATO-treated EBV-positive
Mutu (M), JY (J), BX-1(B) and Akata (A) cells (Fig. 2b) and
quantified the viral genomic DNA (BamHI Z fragment and
a region surrounding the EBNA1 Qp promoter). ATO
inhibited viral DNA genome accumulation, indicating that
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Fig. 2 ATO inhibits EBV genomic DNA replication. a Mutu cells were
treated with 1 nM of ATO for 3 days and cell media was harvested for
viral genome extraction. PCR was performed using primers spanning
the BamHI Z fragment of the EBV genome, " p < 0.05 vs. NT. b EBV-
positive cells, Mutu (M), JY (J), BX-1(B), and Akata (A) cells were treated
with 1 nM of ATO for 5 days and cellular total DNA was extracted for
PCR using primers spanning the BamHI Z region and the Qp region of
EBV genome, * p < 0.05 vs. NT. The relative expression of BamHI Z and
Qp was calculated using the comparative Ct method (2722
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ATO blocked EBV genome replication or decreased the
EBV genomic DNA levels.

ATO promotes greater cell death in EBV-positive cells
than in EBV-negative cells

ATO-induced cell death is dose- and time-dependent

To test the influence of ATO on cell viability, EBV-
positive latency type I Akata, latency type II Cl13, and
latency type III JY cells were treated with ATO at the in-
dicated concentrations (0.5 nM — 10 nM). Cell viability
was measured daily via the trypan blue method. ATO
decreased cell viability in a dosed-dependent manner
(Fig. 3a). ATO induced cell death at 1 nM in Akata and
2 nM in Cl13 cells and 5 nM in JY cells on day 3. Fur-
thermore, the decrease in cell viability was dependent on
the duration of ATO exposure. As shown in Fig. 3b, cell
viability decreases by 15-30% at day 2, but by day 4 via-
bility was almost entirely lost.

To determine the viability of diffuse large B-cell
lymphoma cells in response to ATO, diffuse large B-cell
lymphoma cells (Farage) were treated with ATO at the
indicated concentrations and cell viability was deter-
mined using trypan blue (Fig. 3c). Farage cell viability
was decreased by approximately 50% after 2 days of
treatment with 1 nM of ATO, and was diminished fur-
ther at a higher concentration (10 nM) and longer treat-
ment duration (4 days).

We did not observe any difference in cell viability in
response to ganciclovir alone, indicating that ganciclovir
cannot induce cell death in EBV-positive PBMC cells,
diffuse large B-cell lymphoma cells (Farage), or other
lymphoma cell lines (Mutu and Cl13) (Fig. 3d). Never-
theless, the combination of ganciclovir with ATO signifi-
cantly decreased cell viability and induced much greater
cell death compared the effect of ATO alone. ATO treat-
ment resulted in a 50-70% loss of cell viability compared
to no treatment in CL13 and Mutu cells respectively and
this effect was even more pronounced, specifically a 90%
loss in cell viability, when ATO and ganciclovir were
employed together for 3 days. PBMC and Farage cells
also demonstrated enhanced sensitivity to the combin-
ation of ATO and ganciclovir. Viability was minimal in
PBMC and Farage cells after 3 days of treatment with
10 nM of ATO, alone or with ganciclovir.

ATO specifically decreases EBV-positive cell viability and cell
growth

In this set of experiments, we assessed whether loss of
cell viability with ATO or ATO/GCYV is specific to EBV-
positive lymphoma cells. EBV-positive Mutu (Mutu+)/
Akata (Akata+) and EBV-negative Mutu (Mutu-) / Akata
(Akata-) cells were treated with ATO at the indicated
concentrations for 3 days and cell viability was mea-
sured. As shown in Fig. 4a, cell viability decreased from
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90% viable cells to 53% viable cells in Akata + cells and
from 92% viable cells to 65% viable cells in Mutu + cells
at a 1 nM concentration of ATO. Higher concentrations
of ATO (5 nM) decreased viability to 35 and 41% in
Akata + and Mutu + respectively. Time course experi-
ments employing an MTT assay demonstrated that ATO
(I nM) decreased EBV-positive cell proliferation at day
1, which was also evident on day 3 (Fig. 4b). Compared
to untreated cells, EBV-positive Akata cell growth was
decreased by 16—42%, and Mutu cell growth decreased
by 20-38%. In contrast, EBV-negative cell growth
showed no significant change compared to untreated
cells (Fig. 4b).

ATO inhibits EBV reactivation through ubiquitination and
sumoylation pathways

We sought the mechanism through which ATO inhibits
EBV gene expression. It is established that ATO de-
grades PML through SUMO-mediated ubiquitination
[53, 54, 64]. To determine whether ATO inhibits EBV
reactivation via the ubiquitin-mediated pathway,
SUMOL1 expression was assessed in response to ATO
treatment in EBV-positive lymphoma cells. SUMO1 was
increased at early time points, specifically 30 min and

2 h after ATO treatment, indicating that ATO may pro-
mote EBV protein degradation through the SUMOI1-
induced ubiquitin pathway (Fig. 5a). To further investi-
gate this, the EBV gene Zta was immunoprecipitated
from these samples and was observed to co-precipitate
of ubiquitin. As shown in Fig. 5b, ubiquitin protein
levels were higher in ATO-treated samples, indicating
that ATO induced Zta-bound ubiquitin, and that Zta is
ubiquitinated, which fosters its degradation. Taken to-
gether, these data suggest that ATO inhibits EBV protein
expression via ubiquitin-mediated protein degradation.
To further test this hypothesis, inhibition experiments
to block protein ubiquitination and sumoylation were
performed by treating cells with the proteasome inhibi-
tor MG132 and the protein sumoylation inhibitor Gink-
golic acid (GA). MG132 rescued ATO-mediated PML
degradation as well as ATO-induced EBV protein deg-
radation (Fig. 5c and d). PML protein expression was
inhibited by ATO (1 nM) and MG132 rescued PML ex-
pression (0.1 uM for 16 h (Fig. 5¢) or 20 uM for 4 h
(Fig. 5d)). Interestingly, MG132 also recovered ATO-
mediated inhibition of EBV protein expression, specific-
ally Zta, Rta and BMRF1 (Fig. 5¢ and d). MG132 alone
did not affect EBV gene expression at 0.5 uM for 16 h,
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implying that MG132 mediates EBV recovery from ATO
through inhibiting EBV protein ubiquitination. Thus,
ATO’s effect on EBV protein expression is mediated
through the proteasome ubiquitin pathway. To assess
whether ATO-induced sumoylation is involved in EBV
protein ubiquitination, cells were treated with ATO
along with the protein sumoylation inhibitor Ginkgolic
acid (Fig. 5d). EBV genes Zta, Rta and BMRF1, and the
cellular protein PML, was inhibited by ATO, and notably
inactivation of sumoylation using 10 uM Ginkgolic acid
for 4 h completely blocked their degradation. These ob-
servations provide supportive evidence that both sumoy-
lation and ubiquitination contribute to ATO-induced
EBV protein degradation.

To better understand the ATO-induced EBV lytic protein
degradation pathway, a series of combination treatments
were performed in EBV-positive latency type I cells. EBV re-
activation by BCR signaling (anti-IgM), protein kinase C ac-
tivation [1] and TGEF-p signaling provide unique models to
investigate ATO-mediated EBV protein degradation. First, a
combination of ATO with each of these signaling reagents
was applied to cells, and the proteasome inhibitor MG132
was added prior to harvest. As shown in Fig. 5e, ATO inhib-
ited anti-IgM-, PMA- and TGF-B-mediated EBV reactiva-
tion. The expression of Zta, Rta and BMRF1 were activated
by anti-IgM, PMA or TGF-f, and inhibited after co-
treatment with ATO. Importantly, MG132 rescued the

ATO-mediated inhibition of EBV reactivation induced by
anti-IgM, PMA or TGF-B (Fig. 5e). Therefore, ATO
disrupts the EBV infection cycle and inhibits EBV gene ex-
pression through activation of global cellular protein ubiqui-
tination. These results indicate that ATO induces the rapid
sumoylation of Zta, Rta and BMRF1, resulting in their ubi-
quitination and proteasome-dependent degradation. Thus,
ATO-mediated EBV protein degradation is dependent on
SUMO-regulated protein ubiquitination and proteasome-
mediated degradation.

Discussion

We have shown that ATO inhibits EBV reactivation
through ubiquitin-mediated degradation. The conse-
quences of this were inhibition of EBV replication and in-
duction of cell death in EBV-positive cells. This result is
consistent with a previous report that loss of the EBV gen-
ome and lytic gene expression leads to the loss of the ma-
lignant phenotype and cell viability in EBV-positive
Burkitt’s lymphoma cells [65-67]. EBV lytic genes are
expressed in 29% of lymphoma patients according to Dr.
Liu’s report [67]. In EBV-positive cells, the lytic viral pro-
teins regulate diverse homeostatic cellular functions in-
cluding inflammation and angiogenesis. Thus, the small
portion of cells in the lytic cycle may support tumor cell
growth and survival by providing cell growth factors and
other signals. Diminishing lytic gene expression in cells
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Fig. 5 EBV lytic proteins were ubiquitined and sumoylated in response to ATO treatment and this effect was rescued using proteasome and SUMO
inhibitors in EBV latency type | Mutu cells. a 1 nM of ATO induced SUMOT1 expression. b Co-IP with antibodies against Zta and western blotting using
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exposed to ATO eradicates EBV genome replication and
results EBV-dependent cell death.

Spontaneous EBV reactivation provides us a cell system
to evaluate the anti-tumor effect of ATO on lymphoma
cells. The expression of EBV lytic genes is decreased signifi-
cantly in response to ATO treatment, suggesting that ATO
promotes EBV lytic protein degradation (Fig. 1). Further,
the growth rate in cell populations with spontaneous EBV
reactivation is faster than in cells treated with ATO. More
importantly, inhibiting EBV lytic gene expression in cells
exposed to ATO impedes the proliferation of these cells
(Figs. 3 & 4), but this was not observed in EBV-negative
cells. In EBV-associated lymphomas and other tumors,
spontaneous reactivation is thought to play an important
oncogenic role [67, 68], and using reagents to inhibit EBV
lytic gene expression reduces EBV-positive cell viability
[67]. The above evidence adds support to the idea that

ATO could serve a therapeutic agent for EBV-positive
lymphomas.

On the other hand, lytic induction by reagents in vitro
eventually leads to a more persistent latent stage, which
induces other oncogenes that may foster the develop-
ment of malignancies. Thus, the major concern is that
lytic induction by chemotherapy is also followed by
stages of latency. Treatment of Akata and Mutu cells
with anti-IgG or anti IgM induces latent gene expression
[69]. Moreover, Akata cells remain viable much longer
after treatment. Also, co-expression of lytic replication
and latency proteins has been detected in vivo [70, 71].
Though lytic induction therapy looks promising, its tox-
icity and side effects cannot be avoided, and it may lead
to more persistent latent infection. Thus, the combin-
ation of ATO with lytic inducers is a possible alternative
strategy for anti-EBV associated lymphomas.
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The presence of EBV lytic cycle replication in these cells
promotes the expression of BGLF4 (Fig. 1d), which is a
viral-encoded protein kinase that phosphorylates ganciclo-
vir to its active form (monophosphorylated) [72]. The
phosphorylated ganciclovir incorporates with viral and cel-
lular DNA and kills the cells via disrupting replication [73],
providing a plausible explanation for the diminished EBV
gene expression in response to ganciclovir. However, due to
the low level of BGLF4 necessary for converting the ganci-
clovir into its active form, it cannot independently induce
significant cell death.

The circular EBV chromosome replicates once with each
cell division and depends on cellular replication machinery
during the latent stage [74], whereas EBV-encoded lytic
genes drive EBV lytic replication and yields numerous cop-
ies of viral genomes within each cell. As a lytic transactiva-
tor, Zta binds to the lytic replication origins (oriLyt) and
activates the other EBV lytic genes to initiate EBV lytic rep-
lication. Zta recruits the EBV core replication machinery
and other cellular proteins into the oriLyt region to initiates
EBV lytic replication after Zta binds to EBV oriLyt. Thus,
inhibition of Zta or other related EBV lytic replication fac-
tors would eradicate the EBV episomal genome. Moreover,
as a transcription activator, Zta is required for the transcrip-
tional activation of its own promoter BZLF1 [75], as well as
the promoters of other lytic genes such as BRLF1, BMRF1
and BALF2 (the major DNA-binding proteins) [3, 76-78].
Thus, reduction of Zta expression would be expected to re-
duce Rta, BMRF1 and BALF2 expression, and further di-
minish Zta expression. Hence, inhibition of Zta expression
or Zta transcriptional activity decreases not only EBV lytic
gene expression but also the production of the EBV epi-
somal genome. This explains why EBV gene expression and
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the EBV genome are decreased after ATO treatment as
shown in Figs. 1 & 2.

Arsenic activates EBV reactivation in epithelial cells
(NPC-KT) [12], but inhibits EBV lytic genes expression in
lymphoma cells. This may be due to differences between
anchored epithelia cells in comparison to lymphoma cells
in suspension. Cell signaling is different between these two
cell types. For example, the oncoprotein c-Myc is over-
expressed and translocated in most lymphomas. C-Myc not
only regulates cell biological function but is also involved
with sumoylation regulators, such as SUMO2/3 and E1/2/3
ligases [79], which are in turn regulated by arsenic and con-
tribute to degradation of EBV lytic gene expression in
lymphoma cells. In contrast, NPC-KT cells are EBV latency
type II cells that express the EBV latent genes LMP2A and
LMP1, which can interact with the ubiquitin/proteasome
system to regulate gene expression [80, 81]. These interac-
tions could interfere with arsenic’s modulation of the ubi-
quitin pathway and curb arsenic’s effects on EBV lytic gene
expression.

Our results show that ATO not only blocks EBV spon-
taneous reactivation but also reagent-induced reactivation
(Fig. 5e), implying that ATO-inhibited EBV lytic gene ex-
pression occurs through a broadly utilized pathway. Prote-
asome or sumoylation inhibitors rescue the ATO-mediated
reduction of EBV reactivation in a dose dependent manner.
Furthermore, the co-immunoprecipitation experiment re-
veals that ATO leads to greater ubiquitinization of the Zta
protein. Thus, these results indicate that ATO induces EBV
lytic protein ubiquitination and proteasome-mediated deg-
radation, and that sumoylation may facilitate the degrad-
ation process. On the basis of our observations, we propose
the molecular mechanistic model for arsenic-mediated

Fig. 6 A depiction of how ATO regulates the EBV lytic cycle and cell fate in EBV-positive lymphoma cells. Exposure to ATO induces EBV lytic
protein degradation through sumoylation and ubiquitination. Consequent to their degradation, EBV lytic genes cannot activate EBV lytic
replication, which in turn diminishes signaling required for cell growth. Ultimately ATO leads to cell death in EBV-positive cells
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degradation of EBV lytic genes and cell death in EBV-posi-
tive lymphoma cells illustrated in Fig. 6. Lytic gene
expression will lead to cellular protein expression that
provides signals for cell growth and tumorigenesis. In the
presence of ATO, spontaneous and reagent-induced EBV
reactivation is abolished, and involves decreased expression
of EBV lytic genes by degradation of Zta, Rta and BMRF1
via sumoylation and ubiquitination. As a result, EBV cannot
provide sufficient cell survival factors and results to cell
death.

Conclusions

Most antiviral drugs have limited efficacy for treating
EBV-related malignancies. ATO has received prior
recognition as a cancer therapy due to its effectiveness
in treating acute promyelocytic leukemia [47]. Several
studies have shown that ATO may be useful for the
treatment of other cancers such as ovarian, brain, breast,
lung, gastric and cervical cancers [82-87]. However, its
potential for the treatment of lymphoma has not been
previously advanced. Our data suggests that ATO may
be an effective therapeutic drug for EBV-specific lymph-
omas. We believe the mechanism by which ATO
induces EBV gene ubiquitination and degradation
requires further investigation, and in vivo murine tumor
xenograft experiments will be prudent prior to clinic
trials in humans.
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