Ao et al. Virology Journal (2016) 13:177
DOI 10.1186/512985-016-0637-9

Virology Journal

RESEARCH Open Access

Activation of HIV-1 expression in latently

@ CrossMark

infected CD4+ T cells by the small

molecule PKC412

Zhujun Ao, Rong Zhu?", Xiaoli Tan', Lisa Liu', Liyu Chen', Shuiping Liu' and XiaoJian Yao®

Abstract

and/or virus-mediated cell lysis.

ACH2 cells and infected resting CD4+ T cells.

as a latency-reactivator to eradicate HIV-1 infection.

Background: HIV-1 latency is a major obstacle for HIV-1 eradication. Extensive efforts are being directed toward the
reactivation of latent HIV reservoirs with the aim of eliminating latently infected cells via the host immune system

Results: We screened over 1,500 small molecules and kinase inhibitors and found that a small molecule, PKC412
(midostaurin, a broad-spectrum kinase inhibitor), can stimulate viral transcription and expression from the HIV-1
latently infected ACH2 cell line and primary resting CD4+ T cells. PKC412 reactivated HIV-1 expression in ACH2 cells
in a dose- and time-dependent manner. Our results also suggest that the nuclear factor kB (NF-kB) signaling could
be one of cellular pathways activated during PKC412-mediated activation of latent HIV-1 expression. Additionally,
combining PKC412 with the HDAC inhibitor vorinostat (VOR) had an additive effect on HIV-1 reactivation in both

Conclusions: These studies provide evidence that PKC412 is a new compound with the potential for optimization

Keywords: HIV latency, PKC412, NF-kB signaling, ACH2 cells, Resting CD4+ T cells

Background

HIV latency has been defined as a reversibly nonproduc-
tive state of infection of individual cells that retain the
capacity to produce infectious virus particles but allow the
virus to evade the host immune response [1]. Several
mechanisms can silence HIV gene expression and replica-
tion in HIV-1 latently infected resting CD4 + T cells, espe-
cially transcriptional interference and the chromatin
environment. Other transcription factors in addition to
Tat that are required for viral expression, such as nuclear
factor kB (NF-«B), positive transcription elongation factor
b (P-TEFD), nuclear factor of activated T cells (NFAT) and
activator protein 1 (AP-1), are either insufficiently
expressed or sequestered in an inactive form in resting
cells [2—4]. The chromatin environment also influences
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the establishment and maintenance of proviral quiescence
[5-9]. Chromatin remodeling enzymes such as histone
deacetylases (HDACs) maintain a hypoacetylated state of
local histones, which diminishes the accessibility of the
nucleosomal DNA to transcription factors. In contrast,
transcriptional activators such as NF-kB and NFAT, re-
cruit histone acetyltransferases (HATSs) and this results in
an open or accessible DNA conformation that is more
amenable to the binding of additional transcriptional acti-
vators, initiation factors, and RNA polymerase II, and
leads to an active transcription [10]. In addition to HDAC
activity, DNA methylation is another latency mechanism
that inhibits HIV transcription [11-14].

HIV latency is the major barrier to an HIV-1 cure. Al-
though combination antiretroviral therapy (cART) has
efficiently decreased the viral load in patients, the pro-
viral latency established within the host genome remains
largely unaffected by cART and can replenish systemic
infection following interruption of therapy [15, 16].
Therefore, extensive research efforts have been focused
on finding ways to reactivate HIV-1 latent reservoirs and
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force them to be exposed to the antiretroviral therapy
and the host immune system. Therapies that interfere
with HDAC1 or DNA methylation are promising candi-
dates to reactivate the suppressed virus and purge the la-
tent HIV-1 reservoir. HDAC inhibitors (HDACIs) have
received the most attention as potential latency-
reversing agents. A panel of HDACIs, including trichos-
tatin A (TSA), valproic acid (VPA), vorinostat (VOR, or
suberoylanilide hydroxamic acid (SAHA)), can reactivate
HIV-1 expression in latently infected cell lines, latently
infected primary T cells and resting CD4+ T cells iso-
lated from HIV-1 infected patients [17-20]. VOR has
entered clinical trials to evaluate whether it can induce
virus production in HIV-1-infected patients on cART
[18-20]. In a 2012 pilot study, 11 of 16 patients treated
with cART showed potential susceptibility to VOR [21].
Eight of these patients were administered one dose of
VOR and they showed a marked increase in their HIV
RNA expression levels compared with baseline. How-
ever, another study did not observe the induction of
HIV production, in response to HDACIs including VOR,
from latent viral reservoirs in aviremic individuals [22].
Recently, two new HDACIs (romidepsin and panobi-
nostat) were shown to increase HIV-1 transcription
and plasma RNA levels in ART-suppressed partici-
pants [23, 24]. However, although romidepsin and
panobinostat effectively disrupted HIV latency in vivo,
they did not affect the number of latently infected
cells, suggesting that HDACIs might need to be com-
bined with other approaches to reduce the latent HIV
reservoir.

Agents associated with T cell activation through signal
transduction pathways can also usually reactivate HIV
latency in cell models. The protein kinase C (PKC) sig-
naling pathway plays an important role in NFAT, NF-«B,
and AP-1 activation; these steps are essential for T cell
activation. PKC agonists such as phorbol esters, prostra-
tin, bryostatin-1, and ingenol are effective at inducing
viral expression from both latently infected cell lines and
primary cells [25-30]. Disulfiram is a latency-reversing
agent (LRA) that can reactivate latent HIV-1 in primary
CD4+ T cell models without inducing global T cell acti-
vation. Disulfiram reactivates latent expression through
NF-«B pathway activation [31, 32]. However, a pilot
study showed that disulfiram administration to patients
receiving ART did not significantly reduce the size of
the latent reservoir [33, 34].

PKC412 is a derivative of the naturally occurring alkal-
oid staurosporine and has been shown to inhibit the
conventional PKC isoforms (a, By, P, and y). PKC412
targets a wide range of cell signaling pathways, including
the FMS-like tyrosine kinase (FLT3) receptor, PKC, vas-
cular endothelial growth factor receptor (VEGFR2), and
c-kit (stem cell factor) receptor pathways [35, 36].
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Because of its potent anti-proliferative activity, PKC412
has successfully passed a phase II clinical trial for the
treatment of acute myeloid leukemia (AML) and myelo-
dysplastic syndrome (MDS) [37-39]. Sharkey et al.
found that PKC412 activity was associated with ROS
generation, up-regulation of phosphorylated c-JUN, in-
creased AP-1, and NF-«B transcription activity [40].

The present study demonstrates that PKC412 po-
tently activates HIV-1 latency from the HIV-1 latently
infected ACH2 cell line and primary resting CD4+ T
cells by activating the NF-kB pathway. This study pro-
vides new insights into activators of HIV latency and
it also provides compelling evidence for a novel HIV
eradication strategy.

Methods

Reagents, antibodies, cells, and viruses

Approximately 1,500 synthesized small molecules from
ChemBridge, Inc. (San Diego, USA), as described previ-
ously [41] and a Screen-well Kinase inhibitor library
(Cat No. BML-2832-0100, total 80 inhibitors), obtained
from Enzo Life Sciences (Farmingdale, New York,
USA), were used to screen the potential HIV-1 latency
reactivator. PKC412 was supplied by LC Laboratories
(Woburn, USA). VOR was obtained through the NIH
AIDS Reagent Program, Division of AIDS. PMA, butyrate,
TNEF-«, 5-aza-2'deoxycytidine (5-azac) and aphidicolin were
purchased from Sigma-Aldrich, Stemcell Technologies,
Abcam and Fisher Scientific, respectively. Anti-HIV-1
gp120 was obtained through NIH AIDS Reagent Program,
Division of AIDS. Anti-HIV-1 p24 and was described previ-
ously [42]. Anti-B-tubulin, anti-acetyl-histone H3 and anti-
histone H4, anti-NF-kB p65 (C-20) and anti-P-NF-kB
p65(Ser®'!) antibodies were purchased from Santa Cruz
Biotechnology (Dallas, USA). Horseradish peroxidase-
conjugated donkey anti-rabbit IgG or sheep anti-mouse
IgG (Amersham Biosciences, Piscataway, USA) was used as
the secondary antibody.

Human embryonic kidney 293 T cells, A3.01 cells and
HIV-infected ACH2 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) or RPMI 1640 medium
supplemented with 1 % or 10 % fetal bovine serum (EBS).
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from the blood of healthy adult volunteers by sedi-
mentation in Ficoll-Hypaque (Sigma-Aldrich, St. Louis,
USA). CD4+ T lymphocytes were isolated from PBMCs
by negative selection with the EasySep Human CD4 +
CD25+ T Cell Isolation Kit (Stemcell Technologies,
Vancouver, Canada).

The HIV-1 pNL4.3 virus stock was generated by trans-
fecting 293 T cells with the corresponding HIV-1 pro-
viral DNA, as previously described [42]. Forty-eight
hours post-transfection, the supernatants were collected
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and subjected to ultracentrifugation (35,000 rpm for
1.5 h at 4 °C) to concentrate the viral particles.

Stimulation of latently infected cell lines or primary
infected resting CD4+ T cells

Screening agents that can reactivate HIV-1 latency

The synthesized small molecules and kinase inhibitors
were individually dissolved in DMSO at a concentration
of 5 mg/ml and stored at —-20 °C until they were used.
To screen the latency-reversing activity of these small
molecules, each compound was added to a single well of
a 96-well plate at a final concentration of 2 pM. Then,
1x10* ACH2 cells cultured in RPMI medium supple-
mented with 1 % FBS for 2 days were immediately added
to the 96-well plates containing the synthesized mole-
cules. Two days later, the supernatants were collected
and the HIV-associated Gag p24 levels were measured
by anti-HIV p24 ELISA. DMSO-treated ACH2 cells were
included as the negative control and PMA-treated
ACH?2 cells were included as a positive control.

The stimulatory effect of PKC412

ACH2 cells were cultured in RPMI medium containing
1 % FBS for 2 days and then treated with different con-
centrations of PKC412, VOR, or other agents for differ-
ent time points. PMA (2 ng/ml) and TNF-a (10 ng/ml)
were used as the positive controls and DMSO was used
as the negative control. After 48 h, the cell culture su-
pernatants were collected and HIV p24 production was
measured. To examine HIV-1 expression after pulse
treatment with PKC412, ACH2 cells were treated with
PKC412 (1 uM) for 8, 12, 16, and 24 h and then washed.
After 48 h, the cell culture supernatants were collected
and HIV p24 production were measured. The cells were
subjected to the immunofluorescence or Western blot-
ting assay.

HIV-1-infected primary CD4+ T cell model

Unstimulated primary CD4+ T lymphocytes isolated
from PBMCs were cultured in RPMI medium supple-
mented with 10 % FBS and IL-2 (10 U/ml) for 2 days.
Cells (1 x 10°) were infected with 10 ng (P24 Gag) of
HIV-1 pNL-4.3 via spinoculation at 1400 rpm for 2 h at
room temperature. After spinoculation, the cells were
washed and cultured in RPMI medium containing IL-2
for 4 days. Then, the cells were incubated with PKC412
and/or VOR at the indicated concentration for 48 h.
Virus production was measured in the supernatant by
detecting the levels of HIV-1 Gag p24-.

NF-kB and AP-1 activity luciferase reporter assay

VSV-G pseudotyped lentiviral particles (Cignal Lenti
vector) expressing the reporter firefly luciferase gene
under the control of a minimal (m)CMV promoter and
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tandem repeats of the AP-1 or NF-«B transcriptional re-
sponse element (TRE) (QIAGEN, Hilden, Germany)
were used to monitor NF-kB and AP-1 signaling activity
upon treatment of the different cell lines with the com-
pounds. Briefly, target cells were transduced with the
Cignal Lenti vector. Following transduction, the cells
were cultured under puromycin selection to generate a
homogenous population of transduced cells. Then, the
cultures were treated with PKC412 or TNF-a for 12 to
24 h and subjected to the luciferase assay [43].

Western blotting and immunofluorescence assays

To detect various viral and cellular protein expressions,
ACH2 cells were treated with PKC412 for 12—48 h, and
cells were lysed with RIPA buffer and run on a 12 % SDS-
PAGE gel, followed by immunoblotting with various
antibodies, including anti-HIV-1 gp120, anti-HIV-1 p24,
anti-tubulin, anti-acetyl-histone H3, anti-histone H3, anti-
NE-kB p65, or anti-P-NF-kB p65 (Ser*'!). The protein
bands were visualized using an enhanced chemilumines-
cence kit (Perkin Elmer Life Science, Boston, USA).

For subcellular protein fractionation and detection, a
Thermo Scientific Subcellular Protein Fractionation Kit
(Thermo Scientific, Waltham, USA) was used to prepare
cytoplasmic, nuclear fractions from ACH2 cells, accord-
ing to manufacturer’s recommended procedures. Then,
each subcellular fraction was subjected to Western Blot-
ting to detect NF-kB p65, Histone-4, -tubulin by using
specific antibodies.

For the indirect immunofluorescence assay, ACH2
cells were treated with PKC412 and then plated on a
slide, fixed and permeabilized with methanol/acetone
(1:1 ratio) for 30 min at room temperature. The cells
were incubated with the mouse anti-p24 antibody
(1:100) for 2 h at 37 °C, followed by incubation with an
anti-mouse 1gG-488 antibody (1:500) for 1 h. The slide
was mounted with Mowiol 4-88 and the cells were visu-
alized under an Axiovert 200 microscope (Carl Zeiss,
Oberkochen, Germany).

Cytotoxicity assay and cell cycle profiles

The trypan blue and WST-1 cell proliferation assay
(Roche, Basel, switzerland) were used to determine the
effect PKC412 on the cell viability and cytotoxicity, as
previously described [41]. Briefly, ACH2 cells or primary
CD4+ T cells were cultured at a density of 4 x 10° cells/
well in a 96-well format and maintained at 37 °C in the
presence of various concentrations of PKC412. On day
2, cell viability was assessed using a TC20 Automated
Cell Counter (Bio-Rad) or WST-1 method. The concen-
tration of PKC412 that resulted in a 50 % decrease in
cell proliferation was defined as the cell culture inhib-
ition concentration (CCIDs() of the compound.
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The ACH2 cells were treated with PKC412 and/or
aphidicolin for 24 h. The cell cycle profiles were mea-
sured by staining with propidium iodide (PI) and ana-
lyzed by flow cytometry.

Chromatin immunoprecipitation (ChIP) assay

Acetylation of Histone H3 at the HIV-1 LTR promoter

ChIP assays were performed as previously described
[44]. Briefly, 5 x 10 ACH2 cells were mock treated or
treated with PKC412, VOR or butyrate for 48 h, and
crossed-linked with 1.42 % formaldehyde. The reaction
was stopped with 125 mM glycine. Cells were lysed and
the cross-linked chromatin was sonicated to fragment
500-1000 base pairs using a Bioruptor standard sonicator.
Immunoprecipitation reaction was performed with 5 pg of
anti-acetyl-histone H3 (Ac-H3 catalogue #17-615,
Millipore, Darmstadt, Germany) or rabbit pre-immune im-
munoglobulin G (negative control). PCR of immunoprecip-
itates was performed using primers targeting the Nucl
region of HIV-1LTR. The primer sequences spanning +96
to +301 nucleotides within HIV-1 LTR were the following:
forward 5-AGTAGTGTGTGCCCGTCTGT-3" and reverse
5-TTGGCGTACTCACCAGTCGC-3". The copy of HIV-1
promoter DNA was determined by comparing the cycle
threshold values of each reaction to a standard curve gener-
ated from HIV-1 provirus DNA and is reported as fold
change relative to negative control.

The methylated DNA at HIV-1 LTR promoter and H19
imprinted control region (H19ICR) was detected using an
EpiMark methylated DNA Enrichment kit (New England
BioLabs, Ipswich, USA), according to manufacturer’s proto-
col. Briefly, 1x10° ACH2 cells were mock treated or
treated with PKC412, 5-aza-2'deoxycytidine (5-azac) for
48 h. The DNA in the cells were fragmented and they
bound to the methyl-CpG binding domain of human
MBD2 protein fused to the Fc tail of human IgG1 (MBD2-
Fc), which is coupled to protein A magnetic beads. Follow-
ing the magnetic capture, the enriched DNA samples were
eluted and the precipitated DNA was analyzed by PCR with
primers for HIV-1 LTR U3 (-300 to + -92; forward, 5'-
GTTAGAGTGGAGGTTTGACAG-3" and reverse, 5 -AG
ACCCAGTACAGGCAAAAAG-3") and H19ICR (forward,
5'-ATCCCCAGCCTTTTACTGAACT-3" and reverse, 5'-
CAAACCTGCATTGAATGAG-3"). For each reaction,
10 % of the recovered DNA was used as an import control.
The ChIP-qPCR results were reported as the relative fold
of enrichment when comparing the ChIP fraction Ct values
of input- and background- normalized experimental sam-
ples with that of the control sample.

Measurement of intracellular HIV-1 RNA transcripts

ACH?2 cells were treated with PKC412 or/and VOR for 24
to 48 h and intracellular RNA was extracted using High
Pure RNA isolation (Roche) and subjected to reverse
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transcription with MLV reverse transcriptase (Promega,
Madison, USA). HIV transcription was measured by real
time PCR using primers corresponding to the HIV 5'LTR
and gag (R-gag) (forward, 5-ATCAAGCAGCCATG
CAAATG-3', and reverse, 5'-CTGAAGGGTACTAGTA
GTTCC-3") and normalized to the GAPDH gene
levels using following primers: 5-TGGGTGTGAACC
ATGAGAAG-3; 5-ATGGACTGTGGTCATGAGTC-3.

Statistical analysis
Statistical analysis was performed using GraphPad Prism
version 5.0 (GraphPad Software, La Jolla, USA).

Results

PKC412 reactivates HIV-1 expression in latently infected
ACH2 cells

The HIV-1 infected ACH2 cell line, which is a subclone
of a chronically infected A3.01 T lymphocyte cell line
that expresses the integrated HIV-1 genome at a very
low level [45, 46], was used in this study to screen reacti-
vating agents. To isolate the potential HIV-1 latency
reactivator, a 1500-synthesized small molecule library
that was previously described [41], and a kinase inhibitor
library were screened at a final concentration of 2 pM.
The HIV-1 expression stimulated by each molecule was
measured with an HIV p24 ELISA. To induce a relative
quiescent state in the in vitro cellular model, proliferat-
ing ACH2 cells were cultured in serum starvation
medium containing only 1 % FBS starting 48 h before
treatment [47]. As shown in Fig. 1a, among the screened
compounds, PKC412 (also named as RHE-12) induced
significant HIV-1 production in the ACH2 cells.
PKC412, 4'-N-Benzoyl-staurosporine (Fig. 1b), is an or-
ally available staurosporine derivative that inhibits pro-
tein kinase C. This effect of PKC412 on the activation of
HIV-1 production was further evaluated by treating
ACH2 cells with different concentrations of compound
(ranging from 1 to 0.03 uM) (Fig. 1c). The DMSO (with-
out PKC412)-treated cells were included as control. Re-
sult showed that PKC412 upregulated virus production
in a dose-dependent manner. The effect of PKC412 on
the activation of HIV-1 production in the serum starved
ACH?2 cells was more obvious than the effect in medium
supplemented with 10 % FBS. Consistent with previous
studies showing that PKC412 exhibited broad anti-
proliferative activity against various tumor and normal
cell lines [48, 49], a proliferation inhibition effect of
PKC412 was observed in proliferating ACH2 cells with a
CCIDsy of 0.4 pM (Fig. 1d and data not shown). How-
ever, the cytotoxicity of PKC412 was relatively low in the
serum-starved ACH2 cells and human resting CD4+ T
cells (Fig. 1d). Therefore, the highest concentrations of
PKC412 used in our study were 0.5 pM in the ACH2
cells and 1 pM in the human resting CD+ T cells.
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Fig. 1 PKC412 stimulates HIV-1 expression in latently infected ACH2 cells. a A over 1,500 small molecules and kinase inhibitors were tested in HIV
latently infected ACH2 cells in 96-well plates at a final concentration of 2 uM. After two days, the HIV-1 p24 level in each well was measured by
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We then examined whether PKC412-induced HIV-1
virus production occurred as a result of increased HIV-1
expression. A time course response experiment was per-
formed in ACH2 cells treated with PKC412. Intracellular
expression of the HIV-1 viral proteins was evaluated
with anti-HIV p24 immunofluorescence and we found
that the numbers of HIV Gag p24-positive cells in-
creased in a time-dependent manner upon PKC412
treatment (Fig. 2a). The enhanced expression of HIV
Gag p24, gpl20, and gpl60 in the ACH2 cells after
PKC412 treatment was confirmed by Western blotting
analysis (Fig. 2b). As expected, the increased viral pro-
tein expression levels in the cells treated with PKC412
corresponded with the augmented HIV-1 production de-
tected in the culture supernatants (Fig. 2c), indicating
that PKC412 stimulated viral protein expression.

We analyzed whether PKC412 induced HIV-1 expres-
sion at the transcription level. Briefly, the quantitative
PCR technique was used to monitor the HIV-1 mRNA
levels in ACH2 cells treated with or without PKC412 by

measuring HIV-1 gag mRNA expression using primers
corresponding to the HIV 5'LTR and gag (R-gag). As
shown in Fig. 2d, PKC412 increased the gag mRNA
levels by 1- to 6-fold at different concentrations, suggest-
ing that PKC412 acted by inducing HIV transcription.
Further evidence to support the effect of PKC412 on
HIV-1 transcription was that PKC412 treatment in-
creased HIV LTR-driven luciferase expression in the
TZMb-1 cell line, which harbors an integrated HIV-1
LTR-driven luciferase gene (data not shown). No HIV
proteins are expressed in TZMb-1 cells, suggesting that
PKC412-mediated HIV LTR activation does not require
the presence of viral proteins such as Tat.

PKC412-induced cell cycle G2 arrest is not responsible for
its HIV reactivation activity

PKC412 inhibits multi-target tyrosine kinases and causes
apoptosis and cell cycle arrest at the G1 or G2 phase
[49-51]. Previous studies have shown that HIV-1 Vpr
also is able to induce a cell cycle G2 arrest that provide
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48 h. PMA (2 ng/ml) or DMSO-treated cells were used as the positive and negative controls, respectively. a After 24 h, the cells were fixed and
labeled with an anti-HIV-1 p24 antibody/anti-mouse IgG-FITC antibody and visualized under the fluorescence microscope (10x magnification).

b After 48 h, the cells were lysed and analyzed by SDS-PAGE followed by Western blotting with anti-HIV-1 gp120, anti-HIV-1 p24, and anti-tubulin
antibodies. ¢ The HIV p24 levels in supernatants were quantified using an HIV-1 p24 ELISA kit after 48 h. d ACH2 cells were incubated with RPMI
medium (1 % FBS) containing different PKC412 concentrations. After 48 h, total RNA was extracted from the PKC412-treated or untreated ACH2
cells and HIV transcription was measured by real-time PCR using primers corresponding to the HIV 5'LTR and gag (R-gag). Transcription activity
was calculated as the relative HIV-1 mRNA level by setting the HIV-1 mRNA level in the control ACH2 cells (without PKC412 treatment) to 1 arbitrary unit.
Error bars represent variations between triplicate samples and the data are representative of results obtained in three independent experiments. The
degree of significance for PKC412 treatment was relative to DMSO treatment. * p < 005, ** p < 001

a favorable environment for stimulated HIV-1 LTR-
driven transcription [52-54]. Therefore, we addressed
whether G1 or G2 cell cycle arrest could contribute to
the effect of PKC412 on the stimulation of HIV

expression in ACH2 cells. As expected, PKC412 treat-
ment caused G2 cell cycle arrest in the ACH2 cells
(Fig. 3a). A significant enlargement in the cell size and
cell death were observed 24 to 48 h post-PKC412
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treatment (Fig. 3b). To elucidate the functional relation-
ship between PKC412-mediated HIV reactivation and its
G2 cell cycle arrest activity, we treated the ACH2 cells
with aphidicolin for 12 h to arrest the cells at the G;/S
border [55], and PKC412 was then added for another
24 h. Cell cycle profile analysis showed that aphidicolin
treatment arrested the ACH2 cells in the G1/S phase
(Fig. 3c) and modestly decreased viral production
(Fig. 3d, bar 1). However, PKC412 treatment with

aphidicolin still increased HIV-1 p24 expression after the
cells were in G1/S phase (Fig. 3d, bar 4). It should be no-
ticed that the HIV-1 p24 level increased in the presence of
both aphidicolin and PKC412 was less than that of PKC412
treated alone (Fig. 3d, bar 4 vs. bar 2). This may be partially
because of a negative effect of aphidicolin on viral expres-
sion (Fig. 3d, bar 3 vs. bar 1). Nevertheless, the results indi-
cated that the ability of PKC412 to reactivate HIV was not
dependent on the cell cycle G2 arrest.
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DNA modifications are not associated with PKC412’s HIV
reactivation activity

Previous studies showed that treatment of latently HIV-
1-infected cell lines with HDACIs induced viral tran-
scription [18-20, 56]. To test the possibility that
PKC412 reactivated HIV by affecting histone acetylation,
we examined the histone acetylation of ACH2 cells fol-
lowing PKC412 treatment by Western blotting using
anti-acetyl-histone H3 and anti-histone H3 antibodies.
The HDACIs VOR and butyrate were used as the posi-
tive controls. The results revealed that PKC412 did not
have an effect on histone H3 acetylation (Fig. 4a line 2),
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whereas butyrate and VOR significantly increased the
level of acetylated histone H3 (Fig. 4a, Lines 3 and 4).
This result was confirmed using ChIP with anti-acetyl-
histone H3 followed by real-time PCR with primers lo-
cated within the nucleosome-1 (nuc-1) of the HIV-1
LTR promoter (Fig. 4b).

Because DNA methylation has been proposed as a
vital transcription restriction factor that contributes to
the maintenance of HIV latency and the promoter re-
gion in the 5'LTR of HIV-1 is epigenetically regulated by
DNA methylation [12, 14, 57], we investigated the level
of CpG methylation in the HIV-1 5LTR after PKC412
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treatment using the ChIP method using anti-methylated
cytosine followed by real-time PCR with primers located
in the imprinting control region (ICR) of the H19 gene
and U3 of the HIV-1 5LTR. Cells treated with the
methylation inhibitor 5-azac were used as the positive
control. The results showed that although 5-azac de-
creased the DNA methylation of H19 ICR and the HIV-
1 LTR by approximately 50-60 %, PKC412 only reduced
DNA methylation by approximately 10 % (Fig. 4c),
which was inconsistent with the level of p24 production
detected in the culture supernatant (Fig. 4d). Taken to-
gether, these observations indicate that DNA acetylation
and methylation events are not responsible for the HIV
LTR activating effect of PKC412.

PKC412 induces the HIV-1 LTR and promotes gene
transcription by increasing NF-kB activity in ACH2 cells
PKC412 was previously reported to upregulate c-JUN
phosphorylation and NF-kB and AP-1 transcription ac-
tivity in human multiple myeloma cells [40]. Thus, we
tested whether PKC412 could activate the NF-kB or AP-
1 signaling pathways by using NF-kB- or AP-1-Cignal
Lenti luciferase report assay. After transducing 293 T
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cells) with NF-kB-Cignal Lenti particles, the effect of the
various treatments on the activity of the NF-kB or AP-1
signaling pathways can be easily detected by measuring
the luc activity in transduced cells, as described in the
Materials and Methods. The TNF-a treated cells were
included as positive control. The results revealed that
PKC412 treatment significantly activated the NF-«kB ac-
tivity in a dose-dependent manner in both the 293 T and
A3.01 cells (Fig. 5a and b), whereas both VOR and 5-
azac only showed a modest stimulating effect on the
NF-«kB pathway (Fig. 5a and data not shown). In con-
trast, PKC412 treatment did not show any stimulating
effect the AP-1 signal pathway in, A3.01 cells, the paren-
tal cell lines of ACH2 (data not shown). We further
tested the NF-kB-Cignal Lenti luciferase report assay in
human resting CD4 + T cells, and the results showed
that PKC412 induced approximately 2—3-fold higher luc
activity than the mock transduced cells, whereas TNF—«a
treatment induced 10-fold higher luc activity (Fig. 5c).
These data suggest that NF-kB signing may be involved
in the HIV reactivating activity of PKC412.

To further assess how PKC-412 is able to activate
NF-kB signaling, we first investigated the NK-xB
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Fig. 5 PKC-412 activates the NF-kappa B signaling pathway. The 293 T cells (a), A3.01 cells (b), and resting PBMCs (d) were transduced by
Cignal Lenti particles encoding a luciferase (luc) gene under the control of a minimal (m)CMV promoter (Promo) and tandem repeats of the
NF-kB transcriptional response element (TRE). After being transduced, cells were treated with different concentrations of PKC412 and TNF-a
for 12 h and activation of NF-kB signaling was detected by measuring the luc activity. d ACH2 cells were treated with various concentrations
of PKC412 and TNF-a for 12 h, and then cells were fractionated into nuclear and cytoplasmic fractions. The nucleus- and cytoplasm-associated p65,
histone-4 and -tubulin were detected by WB with corresponding antibodies. e ACH2 cells were treated with various concentrations of PKC412 and TNF-a
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between triplicate samples and the data are representative of results obtained in three independent experiments. The degree of significance for the
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for 12 h. Then the cells were lysed, and Ser®"!




Ao et al. Virology Journal (2016) 13:177

cytoplasm-associated p65 levels after ACH2 cells be-
ing treated by PKC-412. PKC-412 treatment only re-
sulted in a modest increase of nucleus-associated NF-
KB p65, compared to no treatment (Fig. 5d, lanes 3—4
to lane 1). Since it is known that NF-xB phosphoryl-
ation at position of Ser311 plays an important role in
enhancing NF-kB-mediated gene transcription [58,
59], we also assessed the NF-kB Ser311 phosphoryl-
ation level at PKC-412 treated ACH2 cells. Interest-
ingly, there was a significant increase in Ser311
phosphorylation of NF-kB p65 in ACH2 cells follow-
ing PKC-412 treatment (Fig. 5e, compare lanes 3-5 to
lane 1), indicating that PKC-412 treatment facilitates
Ser311 phosphorylation of NF-kB, which may contrib-
ute to its increased transcription signaling in ACH2
cells.

Additive effect of PKC412 and the HDACI VOR on the
activation of HIV-1 expression in ACH2 cells and primary
resting HIV-infected CD4+ T cells

Multiple mechanisms contribute to the maintenance of
proviral latency. Therefore, the use of combination la-
tency reversal strategies might optimize the reactivation
of silenced proviral DNA. The results described above
indicate that PKC412 induced NF-«B signaling but not
DNA modifications, whereas VOR primarily affected the
level of acetylated histones. Therefore, we tested whether
PKC412 acted synergistically with VOR on HIV expres-
sion. As expected, we observed a dose-dependent pro-
viral response following increased exposure of up to
0.5 pM VOR or PKC412 in the ACH2 cells. Higher
levels of virus production were observed when PKC412
and VOR were simultaneously added to the cell cultures
(Fig. 6a). The HIV-1 transcript levels in the PKC412-
and VOR-treated ACH2 cells were consistently in-
creased, with the PKC412/VOR co-treated cells showing
the highest level of HIV-1 transcription (Fig. 6b). Over-
all, the above results indicate that the combined use of
PKC412 and VOR additively activates HIV-1 production
in the ACH2 cells.

To investigate whether PKC412 can activate virus ex-
pression from naturally HIV-1-infected resting CD4+ T
cells, we established an HIV-1-infected primary resting
CD4+ T cell model, as shown in Fig. 6¢c. The resting
CD4+ T cells from the blood of 6 healthy donors was in-
fected with HIV-1 for 4 days and then exposed to
PKC412 (1 uM), VOR (1 uM), or PKC412 (1 pM) + VOR
(I uM) for 48 h. The supernatants were collected to
measure the HIV p24 levels. The results showed that
both VOR and PKC412 alone resulted in higher levels of
viral expression than non-treated HIV-1-infected resting
primary cell (p<0.01; (Fig. 6d). PKC412 plus VOR
treatment induced the highest levels (3.6-fold) of HIV
p24 antigen production compared to the non-treated
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cells (p <0.0001; Fig. 6d). These results indicate that
PKC412 is able to stimulate HIV expression in HIV-1-
infected resting CD4+ T cells. Additionally, the
PKC412 + VOR combined treatment can additively ac-
tivate virus expression compared with PKC412 or
VOR treatment alone (p <0.01).

Discussion

Recently, many studies have focused on the development
of molecules that can reactivate HIV-1 latent reservoirs
to render them susceptible to antiretroviral therapy, viral
cytopathic effects, and host immune responses. To date,
the candidate molecules under evaluation include
HDAC inhibitors (HDACIs), PKC agonists, agents that
induce the JNK or Akt pathway, and DNA methylation
inhibitors [18, 28, 31, 32, 56, 60—64]. Because multiple
mechanisms contribute to the maintenance of proviral
latency, a combined therapy targeting multiple pathways
would be the most effective for the activation of HIV la-
tency. Thus, it is important to identify new agents that
can activate HIV latency through different pathways. In
this report, we found that the PKC412, a broad-
spectrum kinase inhibitor with multiple known and
unknown cellular targets, was able to reactivate viral
transcription from an HIV-1 latently infected ACH2 cell
line and HIV-infected primary resting CD4+ T cells. Our
data also suggested that PKC412 mediated the activation
of HIV-1 through its effect on the NF-«B Ser311 phos-
phorylation and signaling. Moreover, an additive effect
on HIV-1 reactivation was observed when PKC412 was
combined with the HDAC inhibitor VOR in both the
ACH?2 cells and primary resting CD4+ T cells.

Previous studies indicated that some transcription
factors, including NF-kB, P-TEFb, NFAT, and AP-1,
were either insufficiently expressed or sequestered in
an inactive form in HIV-1-infected resting CD4 + T cells
[2—4]. It is conceivable that activation of the NF-kB or
AP-1 signaling pathway could lead to activation of
HIV expression even when the cells are in a quiescent
non-dividing state. Because PKC412 was previously re-
ported to up-regulate phosphorylation of c-JUN, in-
creased AP-1 and NF-«xB transcription activities in
human multiple myeloma cells [40], we tested the pos-
sibility that PKC412 stimulates HIV transcription in
HIV latent infected cells through activating NF-«xB or
AP-1 signal pathways. Our analysis showed that
PKC412 was able to up-regulate NF-«B signaling, but
not AP-1, and activated HIV-1 production in latently
infected ACH2 cells and human primary resting CD4+
T cells. It is known that NF-kB plays a major role in
HIV-1 transcription by binding to «B sites within the
HIV-1 long terminal repeat (LTR) enhancer region
[65]. Generally, NF-kB is found in the cytoplasm in
resting human CD4+ T cells associated with its inhibitor
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(IxkBa), which masks the NF-«B nuclear localization signal.
Some cellular stimuli trigger the phosphorylation of spe-
cific serine residues of the IkBa protein and result in the
degradation of IkBa and the release of NF-«B to translo-
cate into the nucleus and induce the transcription of many
genes by binding to specific consensus sequences in their
promoter regions. In addition, it is known that release

from IxB may not be insufficient to allow full activation of
NE-«B. Several posttranslational modifications, including
phosphorylation of Ser®", in NF-«B after IkB degradation
appear to regulate DNA binding and transcriptional trans-
activation [66, 67]. Our data reveals that PKC412 can sig-
nificantly increase Ser®'! phosphorylation level of NF-«B
(Fig. 5e). Several studies have indicated that Ser®!!
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phosphorylation can enhance NF-kB-mediated gene tran-
scription without affecting nuclear localization [58]. Previ-
ous studies showed that an amino acid Lys310 in NEF-
KB could either be acetylated or methylated, which in
turn up- or down-regulates NF-kB’s transactivation ac-
tivity [68, 69]. Because Lys310 is in close proximity to
Ser311, it has been speculated that the Ser®!' phos-
phorylation may play a regulatory role for either
acetylation or methylation of Lys310, which in turn
optimizes or suppresses NF-kB transactivation activity
[59]. PKC412-induced increased Ser®'! phosphoryl-
ation may be one of the mechanisms that activates this
effect on HIV transcription. In addition, a previous re-
port also showed that PKC412 treatment leads to a
significant elevation of HSP90 [40], which has been
shown to play an important role in controlling HIV-1
reactivation from latency [70, 71]. More detailed studies
will be required to elucidate the functional association of
PKC-412-mediated NF-kB Ser®*'phosphorylation and in-
creased HSP90 expression and their roles in HIV
activation.

In the ACH2 cell line, both VOR and PKC412 could
increase the p24 level by approximately 4.5-fold,
(Fig. 6a). However, in human resting CD4+ T cells, the
capacity of PKC412 to induce viral gene expression was
a little lower than that of VOR (Fig. 6d). VOR is an ex-
tensively studied HDAC inhibitor that induces HIV
transcription in latently infected cell lines and resting
CD4+ T cells from HIV-infected patients on suppres-
sive cART [18, 21]. However, a recent study found that
the levels of HIV production stimulated from resting
CD4+ T cells from aviremic donors by VOR were not
significantly different from those of control treated cells
[22]. A previous study demonstrated a strong synergis-
tic activation of HIV-1 production by clinically used
HDACIs including VOR combined with the non-
tumor-promoting NF-«xB inducer prostratin in latently
infected cell lines and resting CD4+ T cells isolated
from cART-treated patients [72]. Therefore, we tested
the effect of combining VOR and PKC412 on viral tran-
scription and expression and detected an additive effect in
ACH?2 cells (Fig. 6a and b). We also extended our studies
to resting CD4+ T cells, which are the primary reservoir of
HIV-1, and documented that PKC412 or VOR enhanced
HIV p24 production by 1.8-2.2-fold, whereas the PKC412
+ VOR combined treatment resulted in an approximate
increase of p24 production of 3.6-fold. Our study did not
observe a stimulating effect of PKC412 on HIV produc-
tion in proliferating CD4+ T cells (data not shown), sug-
gesting a possible specific effect on HIV expression
activation in resting T cells. More studies are needed to in-
vestigate PKC412’s latent-reactivating effects alone or in
combination with VOR or other latent reactive agents in
resting CD4+ T cells isolated from HIV-1 infected

Page 12 of 14

individuals on ART and to evaluate the feasibility of devel-
oping this agent for HIV eradication.

Conclusions

In this study, we demonstrated that the small molecule
PKC412 (a broad-spectrum kinase inhibitor), induced
viral transcription from latently HIV-1-infected ACH2
cells and primary resting CD4+ T cells by increasing NF-
KB signaling. The combination of PKC412 with the
HDAC inhibitor VOR had an additive effect on HIV-1
reactivation, suggesting that PKC412 has the potential
for optimization as a latency-reactivator for the eradica-
tion of HIV-1 infection.
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