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Abstract

these relate to vaccine strains.

profiles were compared at HN amino acid sequences.

in the country.

Background: Uganda poultry production is still faced with frequent outbreaks of Newcastle disease (ND) in the
backyard free-range systems despite the accessibility of cross protective vaccines. Live bird markets and waterfowl
has long been reported as a major source of disease spread as well as potential sources of avirulent strains that
may mutate to virulent strains. ND-virus has been reported enzootic in Ugandan poultry but limited studies have
been conducted to ascertain thermostability phenotypes of the Ugandan ND-virus strains and to understand how

Methods: This study evaluated thermostability of 168 ND-virus field isolates recovered from live bird markets and
waterfowls in Uganda compared to two live commercial vaccine strains (I, and LaSota) by standard thermostability
procedures and Hemagglutinin-Neuraminidase (HN) gene domains. The known pathotypes with thermostability

Results: Field isolates displayed disparate heat stability and HN gene domains. Thermolabile isolates were inactivated
within 15 min, while the most thermostable isolates were inactivated in 120 min. Four thermostable isolates had more
than 2 log, heamaglutinin (HA) titers during heat treatment and the infectivity of 9.8 geometric mean of log;q EIDsq o, in
embryonated eggs. One isolate from this study exhibited a comparable thermostability and stable infectivity titers after
serial passages, to that of reference commercial vaccine was recommended for immunogenicity and protection studies.

Conclusion: The occurrence of ND-virus strains in waterfowl and live bird markets with disparate thermostability
and varying HN gene domains indicate circulation of different thermostable and thermolabile ND-virus pathotypes

Keywords: Thermostability, Infectivity, Thermostable isolate, Hemagglutionation assay, HN gene

Background

Newcastle disease (ND) is a contagious poultry infec-
tion that usually invokes trade barriers and exerting
great economic threats [1]. Newcastle disease virus
(ND-virus) genome contains 6 genes encoding for
structural proteins positioned from 3" to 5: Nucleo-
protein (NP), Phosphoprotein (P), Matrix (M), Fusion
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(F) Hemagglutinin-Neuraminidase (HN) and polymer-
ase (L) [23]. The physico-chemical properties of these
proteins have been extensively used to categorize
strains. According to World Organization for Animal
Health [27], for a ND-virus to be notified as patho-
genic, it has to meet the criteria of Intracerebral
pathogenicity Index (ICPI) of beyond 0.7. Today, field
strains are categorized by virulence into five patho-
types [3, 5, 6], confirmed by multiple basic amino
acid sequences in the fusion (F) protein cleavage site
(FPCS) [12, 26].
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Great importance is attached to the thermostability of
live vaccinates because of their retained potency in areas
with poor transport, storage facilities, human error and
power shortages. Studies in search of new thermostable
isolates assess virulence of pathotypes by determining the
amino acid sequences at the F protein cleavage site
(FPCS), mean death time (MDT) and Intracerebral patho-
genicity indices (ICPI). In areas where there is frequent
use of vaccines, selective pressure leading to new strains
or failed vaccination has been recorded due to the use of
phylogenetically divergent vaccine strains from the circu-
lating local ND-viruses [24, 28]. Besides, ND-virus isolates
with amino acids at FPCS typical of low-virulent type and
ICPI values typical of highly virulent strains have been
reported [37]. Such places are experiencing continual
outbreaks of velogenic ND in backyard and vaccinated
flocks [1, 4].

HN gene is known to play crucial multifunctions in
infectivity [14, 42]. It has also been confirmed through re-
verse genetics using cDNA clones (ICS) as a crucial deter-
minant of NDV thermostability with conferred complete
protection of birds [43]. Thermostability characterization
of heat-stable ND-viruses relating to HN gene will im-
prove understanding of the molecular basis of ND-virus
thermostability. This will augment rational design of NDV
vaccines to solve managerial problems in scavenging rural
chicken [18] or further evaluate performance of estab-
lished vaccine strains.

Recovery of virulent ND strains in birds vaccinated with
avirulent vaccines strains or in ND-virus endemic coun-
tries raises concerns whether these strains are derived
from indigenous or vaccine strains [2]. In Uganda, avail-
able ND vaccines used are namely: LaSota strain and I,
strain with well-defined genotypes. However, the recent
ND-virus isolates from Ugandan live bird markets indicate
a high pathogenicity and low evolution [8] with no ther-
mostability phenotypes. Several studies have recovered
low-virulent, thermostable ND-virus in several species of
birds [5, 33]. Such strains have been evaluated as vaccine
candidates to protect village birds in the tropics where
temperatures are high and local farmers either lack or are
unable to pay for the cold-chain needed to sustain live
thermolabile ND-virus vaccine usage [35].

Thermostability of hemagglutinins of ND-virus is
retained through many serial passages in embryonating
eggs and can distinguish one culture from another [13].
The basis of thermostability testing of ND-virus is that all
strains have hemagglutinin surface proteins, which agglu-
tinates chicken RBCs in vitro, and Neuraminidase enzyme
that promotes virus release from infected cells. The activ-
ity of these surface glyco-proteins is used to detect hemag-
glutinating viruses in the family [27], and to follow their
stability when the virus is exposed at different tempera-
tures [1]. Since the development of a thermostable
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Australian V4 ND vaccine strain, several thermostability
testing methods have been used to evaluate live ND-virus
isolates and vaccine candidates for ability to survive under
different temperatures [19, 21, 22, 36].

The aim of the current study was to determine the
thermostability of ND-virus isolates recovered from live
bird markets (LBM) and waterfowls and relate this
phenotype to HN gene sequence.

Materials and methods

ND-virus isolates

A total of 168 ND-virus isolates were used in the current
study. These field ND-viruses were isolated in Uganda
during 2011 from LBM comprised of local chickens, tur-
keys and ducks. The isolates from waterfowl were recov-
ered from freshly voided fecal droppings of migratory and
resident waterfowls in selected landing sites. Sixty seven
percent (112/168) of the viruses of LBM were isolated
from cloacal (C) and/oro-pharyngeal (P) swabs, while
thirty three percent (56/168) of isolates from waterfowls
were recovered from fresh fecal (F) matter. Initially, vi-
ruses were passaged twice in 10-day-old embryonated
chicken eggs (ECE) obtained from ND-free flocks and
clean isolates obtained in chicken embryonated fibroblasts
(CEF). The allantoic fluid was aseptically harvested, virus
presence confirmed by HI test according to standard pro-
cedures and analyzed further or stored at —-20 °C as virus
stocks. Biological characterization for chicken ND isolates
were described elsewhere [8]. Two live commercial vac-
cines (I, and LaSota) were used as controls throughout
the study.

The presence of the ND-virus was confirmed by PCR
and serologically with positive sera in HI test [8, 27];
using 0.5 % (v/v) washed ND-virus—free chicken RBCs
according to standard procedures. Serum was generated
in in-house rabbits immunized with ND-virus - LaSota
vaccine strain (Laborotorios Hipra, S.A, Spain).

Assessment of thermostability

HA and infectivity titers for all the stock viruses were deter-
mined by standard microtiter plate hemagglutionation
assay [27] and the viability of selected isolates by end point
infectivity assay [30]. Nine paired sealed vials containing
0.5 mL aliquots of each ND-virus isolate were thawed once.
One pair was left on ice while the other eight were incu-
bated on a water bath (Polypro Bath® CA, USA) kept at a
constant temperature (56 +0.5 °C). At regular interval of
15, 30, 45, 60, 75, 90, 105 and 120 min, a pair of vials was
removed and chilled quickly on ice to stop heat inactiva-
tion. All the aliquots were assayed for HA activity by stand-
ard methods [27, 30]. The isolates that showed HA titers at
56 °C after 2 h were further analyzed for regression analysis
of HA activity using rate constants (k) and among these,
avirulent isolates were passaged five times without heating
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intervals. Additionally, to determine the effect of heat on
the viability or multiplication of the selected viruses, the
vials incubated at 56 °C for 0, 30, and 60 min were assayed
for virus viability and compared to the thermostable I,
strain. Briefly, 0.3 mL of the virus aliquot from each men-
tioned treatment was injected into three sets of eggs and in-
cubated for 4 days before allantoic fluid was harvested,
checked for the mean log, HA titer and assayed for
infectivity.

Stability of infectivity

The infectivity stability of the selected avirulent viruses
was evaluated and compared to vaccine strains (I, and
LaSota) in 10-day-old embryonated eggs. The infectivity
evaluation of the isolates involved five passages. Briefly,
tenfold serial dilutions were made in normal saline solu-
tion (Phosphate Buffered Saline, PBS) and five dilutions
were selected. One hundred microliters (0.1 mL) of each
of these dilutions: 107, 10, 107, 10°® and 10™ was inocu-
lated in duplicate into five eggs, incubated for 4 days, and
harvested for HA and median embryo infectivity dose at
fifty percent (log;oEIDsp) assays. This was carried out for
five passages where both HA and infectivity assays were
carried out for each passage. Additionally, the heamagglu-
tionation units were measured following passages, to
evaluate the replication competence of the isolates.

Viral RNA extraction, RT-PCR and DNA sequencing

Viral RNA was extracted from all the HI positive allan-
toic fluid samples by using the QIAamp Viral RNA mini
kit (Qiagen, USA) according to the manufacturer’s in-
structions and sequenced to obtain full HN sequences as
described in [8].

Page 3 of 13

HN gene sequence analysis

To predict the HN relationship between the field ND-
virus isolates and vaccine strains, multiple sequence
alignment of HN gene of representative thermostable
ND-virus isolates was done. Using the following acces-
sion numbers previously deposited in the Gene Bank for
isolates; NDV/UG/MU/007- HG937536, NDV/UG/
MU/010-HG937538, NDV/UG/MU/022- HG937542,
NDV/UG/MU/039- HG937548, NDV/UG/MU/059-
HG937553, NDV/UG/MU/098- HG937564 and NDV/
UG/MU/111- HG937566. Together with other repre-
sentative thermostable vaccines: TS09C- JX110635, I,
— AY935499, I, progenitor — AY935500, NDV4-C -
JX443519 and thermolabile: Lasota —JF950510,
LaSota C5 — KC844235, and D58 strain- EU305607
and others were blast searched from NCBI GeneBank
using the Bio-Edit software (North Carolina State
University, USA) to generate sequence analysis data.
The parameters used for the sequences analysis were mul-
tiple alignment (Clustal W), sequence identity plotter and
sequence matrix at both amino acid and nucleotide levels.
The B- cell epitope of HN gene was predicted in a com-
puter algorithm using web server based on software
www.bioinfo.tsinghua.edu.cn/epitope/EPMLR. The trans-
membrane domains were predicted using Dense Alignment
Surface (DAS) transmembrane domain prediction server—
http:www.sbc.su.se/-miklos/DAS/maindashtml [11].

Statistical analyzes

Thermostability was analyzed by calculating the slope
of the regression curve of HA activity. When appro-
priate, the data of exponential decline in activity of
HA were presented as rate constants (k, expressed as
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Fig. 1 Distribution of ND-virus isolates by region and species of birds. The numbers above bars indicate isolates in different regions and
bird species
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Table 1 Thermostability profiles with numbers of NDV isolates
by HA activity determined at 56 °C incubation

Thermostability/inactivation time in

min. at 56 °C

REGIONS  District Site 15 30 45 60 75 90 105 120 Al
Central KALUNGU c -1 -1 - - - - 2
P - 1 - 2 1 - - - 4

KIBOGA c -1 - - - - - - "

p- 1 - - - - - - 1

LWENGO C 2 - - - - - - - 2

P - 2 - - - - - - 2

MASAKA c -1 - - - - - 1 2

P 11 - - - - - - 2

MUKONO P 1 - - - - - - - 1

WAKISO C 2 - - - = - - - 2

East BUGIRI c - 111 - - - - - 2
p | e 2

IGANGA c - 11 - - - - - 2

P - - - - -1 - - 1

T -2 - -1 - - - 3

MAYUGE P -1 - - - - - - 1

MBALE c 1 - - - - - - 1 2

P - 1 - - - - - - 1

North APAC C 1 - - - = — - - 1
ARUA C 21 - - - - - - 3

p3 -1 - - - - - 4

KOBOKO cC - 2 - - - - - - 2

P - - 2 1 1 - - - 4

KOLE P 1 - - - - - - - 1

LIRA cC 1 - - - - - - - "

N

MARACH c 1 - - - -1 - 3

P - -2 - 1 1 - - 4

OTUKE C - - 1 - = = - - 7

OYAM c 51 - - - 1 - 2 9

p 71 2 - 1 - - 2 13

YUMBE C 1 - - - - - - -

P2 - - - - - - 1 3

ZOMBO c 31 -1 -1 - - 6

p- -1 - - - - - 1

North- ABIM c -1 -2 - - - 1 4
East P 1 - _ o _ 5
KOTIDO cC - 1 - - - - - - 1

P 2 - - - - - = — )

KUMI C - - - - - - - " 1

P - - 1 1 2 - - - 4

NAMUTUMBA C - 1 - 1 1 - - - 3
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Table 1 Thermostability profiles with numbers of NDV isolates
by HA activity determined at 56 °C incubation (Continued)

SERERE P- 1 - - - - - -
Western  BUNDIBUJO C - - 1 - - - - 1 2
KABALE p -1 - - - - - - 1
KABAROLE c 1 - - - - - - - 1
KASESE F 1 - - -1 - 1 2 5
P - -1 - - - = - 1
KYENJOJO [ e
MBARARA P -1 - - - - - - 1
Waterfowl JINJA F 2 1 - - - - 2 6
RAKAI F1001 1 - - - - 3 15
WAKISO F g8 5 3 1 - 21 5 25
Number of Isolates 60 38 18 10 9 6 4 23 168

mins™'), defined by first-order inactivation equation
below as described [41].

2.303 log10 (V/Vo) = —kt

Isolates whose late time points, i.e., 105 or 120 min
did not contain HA were excluded from analysis. The
survival analysis for the isolates were titrated by standard
median EIDsq o according to standard protocols [27]. All
statistical analyzes were performed in GraphPad Prism,
version 5.

Results

Thermostability of field ND-virus isolates at 56 °C

The 168 field isolates showed HA titers greater than 16
log, in embryonated eggs during the initial culture and
were confirmed as ND-viruses by HI test and PCR. Re-
garding the source of poultry isolates, Northern region
had the highest number of isolates compared to other
regions. ND-viruses occurring in different species of
poultry existing in the four regions of Uganda (Fig. 1).
All the isolates used showed disparate thermostability at
56 °C ranging from 15 to 120 min (Table 1). Of these
study isolates, 13.7 % (23/168) retained more than 2 log,
of their initial HA titers after 120 min and were regarded
as thermostable while 86.3 % (145/168) without residual
HA titer after the above time were considered thermo-
labile isolates. Of the 23 thermostable isolates, 13 were
from LBM while 10 were from waterfowls (Table 1).
Based on the heat inactivation rate constant (k) of HA
activity, the thermostable strains were included in
Table 2. When compared by rate constant of HA
activity, 26.1 % (6/23) of the 23 thermostable ND-virus
isolates were inactivated at a lower rate (higher heamag-
glutinin activity) than the reference I, vaccine strain.
Also all these isolates were from waterfowls.
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Table 2 Hemagglutination titers and heat inactivation rate
constant (k) of thermostable ND-viruses incubated at 56 °C

Arithmetic mean HA titer (log2) at Rate constant
various time intervals of heat (k)
inactivation (minutes)

15 30 45 60 75 90 105 120 (10° K/min™")

NDVOO7/UG/MU/ 5 5 5 5 5 5 4 4 4 223
201

NDVO15/UG/MU/ 6 6 6 6 5 5 4 4 4 42
20M

NDVO22/UG/MU/ 8 8 8 8 8 8 8 8 3 436
201

NDVO23/UG/MU/ 7 7 6 5 5 4 4 3 1
20m

NDVO39/UG/MU/ 8 8 8 8 7 7 6 5 4 544
201

NDVOs9/UG/MU/ 8 8 7 7 6 6 5 4 3 759
20M

Virus Isolates 0

1262

NDVO73/UG/MU/ 5 5 5 5 4 4 3 2 1 11.59
20M
NDVO89/UG/MU/ 3 3 3 3 3 3 2 1 1 945
201
NDVO92/UG/MU/ 5 5 4 3 2 2 2 1 1 14.51
201

NDVO97/UG/MU/ 8 4 4 4 4 4 4 4 4 308
201

NDVO98/UG/MU/ 5 4 4 3 2 2 2 2 2 838
201

NDVO99/UG/MU/ 5 5 4 4 4 3 3 3 1 9.82
20mM

NDVITI/UG/MU/ 6 5 4 4 3 2 2 2 2
20M

NDVI15/UG/MU/ 6 6 6 6 6 6 6 6 4 1.80
201

NDviguG/Myy 777 77 7 77 7
20M

NDVI19/UG/MU/ 5 5 5 5 4 4 4 3 2 652
20m

10.25

0.00°

NDVI33/UG/MU/ 6 6 6 6 6 6 6 6 6 000°
201

NDVIS2UG/MU/ 6 6 6 6 6 6 6 6 6 000°
201

NDV158/UG/MU/ 4 3 3 3 3 3 3 2 1 751
201

NDVI73/UG/MU/ 6 6 6 6 6 6 6 6 5 081°

20M

NDV177/UG/MU/ 6 6 6 6 6 6 6 5 5 1.22°
20M

NDV178/UG/MU/ 6 6 6 6 6 6 6 6 4
20m

NDV18O/UG/MU/ 6 6 6 5 5 4 4 3 3 654
201

081°

1010 10 10 10 9 9 124
21 - - - - - - - 4597

1> vaccine 11 10

LaSota vaccine 8

?Reference vaccines
PMost thermostable ND-virus, below I, reference thermostable strain
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By plotting the logarithmically transformed (log;o) HA
of the selected avirulent isolates against time, the inactiva-
tion rates were further compared (Fig. 2). Except for
NDV133/UG/MU/2011 and LaSota that yielded a mono-
phasic curve (Fig. 2a and d), other selected thermostable
isolates produced biphasic curves (Fig. 2b-d). For biphasic
curves, from zero to 90 time points, a plateau that was ob-
served was followed by a linear decline. Overall, isolate
NDV133/UG/MU/2011 had better survival rate compared
to NDV173/UG/MU/2011, NDV177/UG/MU/2011 and
NDV178/UG/MU/2011 as avirulent thermostable isolates.

Stability of infectivity upon passage

Four clean thermostable isolates were passaged five times
and their infectivity shown in Fig. 3. Infectivity of the iso-
lates decreased along the five serial passages. At the end of
3 passage, the infectivity of isolate NDV177/UG/MU/
2011 rapidly declined to a geometric median log;o EIDsg o/
mL titer of 1.25, while that of NDV178/UG/MU/2011 was
at 4.55 at the same passage. The infectivity titers of
NDV133/UG/MU/2011 and NDV173/UG/MU/2011 iso-
lates remained fairly close to that of I, vaccine strain at geo-
metric median log;y EIDsg o of 7.4. A greater change in
infectivity of the isolates was at the fourth and fifth pas-
sages. Comparatively, one isolate NDV133/UG/MU/2011
retained more than 6.5 log;oEIDsq o/mL of its infectivity
titer compared to I, and LaSota of 8.05 log;oEID5y o/mL
and 7.5 log;oEIDg, o/mL respectively at the 5™ passage.
The infectivity titers of isolates following a less than one
hour time heat exposure were compared in Table 3. The
ND-virus isolates NDV133/UG/MU/2011, NDV173/UG/
MU/2011 and ND178/UG/MU/2011 retained more than
50 % of their log;oEIDs o, infectivity within one hour of ex-
posure at 56 °C_LaSota (thermolabile) vaccine strain had
no detectable infectivity after 30 min of heat exposure while
I, (thermostable) strain retained its infectivity.

HN gene sequences

The HN gene of Ugandan isolates contains coding se-
quence (cds) comprising of 1713 nucleotides coding for
571 amino acids with the stalk and globular head major
areas comprising of 1-143 amino acids and 125-571 amino
acids respectively. The transmembrane domains of the se-
lected thermostable were variable with three to five predict-
able domains at positions 24-47, 25-45, 96-97, 101-107
and 557-563. 13 cysteine (C) residues were conserved for
all our isolates at position 123, 172, 186, 196, 238, 247, 251,
344, 455, 461, 465, 531 and 542. Six glycosylation sites were
also conserved across all isolates at positions G;-119, G,-
341, G3-433, G4-481, G5-508 and Gg-538. The details is
provided in Table 4. The sequence identity matrix for HN
gene of the selected thermostable isolates and other strains
of ND-virus are provided in Table 5 and the predicted B-
cell epitopes for HN genes are given in Table 6
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Discussions

Thermostability and infectivity of isolates

Several thermostable strains like I, HR-V4 and V4 have
been isolated and characterized [7, 16, 34]. This specific
study profiled the thermostability of the Ugandan ND-
virus isolates and compared them at HN protein to dif-
ferentiate local strains from existing vaccines strains.
While thermostability is considered to be a natural

property of ND-virus isolates used to rapidly
characterize field ND-virus isolates in epizootiological
studies in the absence of any other marker [13], Ugan-
dan field ND-virus isolates showed disparate thermosta-
bility profiles which is not related to the virulence of
isolates, site of isolation in the bird species or geograph-
ical locality of isolation. This confirms the findings from
other studies [20, 33]. Although poultry samples were
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EID50%(log10/ml)

Passages

Fig. 3 Stability of infectivity of indicated ND-virus strains by geometric mean log;oEIDsq, following serial passages. A greater change in the titers
of field strains occurred at 4™ and 5™ passages compared to I, reference vaccine. LaSota, a thermolabile vaccine was unheated initially but included to
compare its viability with that of thermostable isolates. Values indicated are means of three independent tests (Mean + SD, n = 3)

—— NDV133/UG/MU/2011
—— NDV173/UG/MU/2011
—— NDV177/UG/MU/2011

—o— NDV178/UG/MU/2011
=w. 1, thermostable

=+ - LaSota(thermolabile, unheated)

collected from places of different climatic conditions of
their natural sources, thermostability profiles of isolates
did not reflect these conditions. The average thermosta-
bility of isolates from climatically hotter North and
North-East regions of Uganda was 45 min, while that
from cooler central and western regions was 60 min.
This observation is in agreement with other studies sup-
porting the fact that heat resistance in ND-virus is not a
climatically determined trait [15].

The natural spread of clonal derivatives of vaccines
strains in a locality following massive vaccination has

Table 3 HA and infectivity titers of avirulent, thermostable
ND-viruses at 56 °C for 0, 30, 60 min

Virus Parameter Heat treatment time (minutes.)
at 56 °C
0 30 60
NDV133/UG/MU/2011  °HA titer (log2) 2° 2° 2°
Pinfectivity titer 105 10%%° 1089
NDV173/UG/MU/2011  °HA titer (log2) 2° 2 2
BInfectivity titer 1054 1082 1077
NDV177/UG/MU/2011  2HA titer (log2) 2° 2 2
PInfectivity titer 1073 1063 10%%
NDV178/UG/MU/2011  °HA titer (log2) 2° 2° 2°
PInfectivity titer 1072 1004 1062
I, thermostable strain ~ °HA titer (log2) 2"’ 210 210
BInfectivity titer  10%% 10%° 10%3
LaSota thermolabile ~ ®HA titer (log2) 2° 2° 2°

PInfectivity titer 10%° - -

“Hemagglutination assay (HA) titer presented as arithmetic mean HA log, titer;
and infectivity as logo
P50 % embryonated egg infectious dose (EIDso/ml)

been observed [3]. In the present study, thermostable
isolates were recovered from unvaccinated flocks. This
suggests some degree of natural area spread which ex-
plains disparate thermostability profiles of both water-
fowl and live bird market bird isolates. This is further
confirmed by presence of new genotypes our previous
study of genotypic characterization of LBM isolates [8].
Taken together, there is a spread of field viruses with
varied pathogenicity, thermostability and antigenicity in
tropical developing countries, which require a carefully
designed control measures.

A prolonged exposure of ND-virus isolates to a high
temperature of 56 °C has been preferred to short time ex-
posure at lower temperature during heat selection [17, 41].
This is to ensure selection of a more thermostable ND-
virus from a heterogenous population containing a mixture
of heat-stable and heat labile strains [19, 22]. We recovered
13.7 % (23/168) of field isolates (LBM and waterfowl) with
residual HA titers after 2 h exposure at 56 °C. Of the 23
isolates, 26.2 % (6 out of 23 isolates) had greater heamag-
glutinin titers greater than reference I, strain. These results
are in conformity with other studies especially [19], who re-
ported 38 % of the field ND-virus isolates with a greater
heamagglutinin than reference thermostable strains. By re-
gression analysis, we noted thermostable and thermolabile
phenotypes of strains that was not influenced by site of iso-
lation. Isolates from oro-pharyngeal (P) and cloaca (C) of
the same bird had varied thermostability profiles. This con-
firms the idea that thermostability is not truly a genotypic
character but just a trait that can readily be increased by se-
lection involving heat shock [35].

Like in the Australian experience of enhancing
thermostability of V4 vaccine strain from a subpopula-
tion of known heat-stable virus also adopted by [16], we
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Table 4 Predicted transmembrane amino acid sequences
analysis for HN gene of thermostable ND-viruses and vaccine
strains

Potential Transmembrane Domains of thermostable field strains and
vaccine strains

NDV strain

Start End Cutoff Length Predicted amino acid
sequence

NDV/UG/MU/ 24 47 17 24 VFRIAVLSLIMILVISVSILVYS
o7 25 46 220 22

NDV/UG/MU/ FRIAVLSLIMILVISVSTUV Y]

010 % 97 17 2 LL
NDV/UG/MU/

0 101 105 17 5 STIMN
gng\//UG/MU/ 557 563 17 7 RIVPLLV
NDV/UG/MU/

059

NDV/UG/MU/

111

NDV/UG/MU/ 24 47 17 24 VFRIAVLSLIMILVISVSILVYS

0%8 25 46 22° 22 FRIAVLSLIMILVISVSILY
% 97 17 2 LL
101 104 17 4 SVIM
557 563 17 7 RIVPLLY
LaSota B 47 17 25 IFRIAILFLTWTLAISVASLLYS
ZS;rr:“Olab”e 25 45 227 21 FRIAILFLTWWTLAISVASLL
209 210 17 2 GV
557 563 17 7 TTIMN
2 23 44 17 22 VFRALFLTWILAVSAAALAYS
Igaem‘oswb'e 2% 42 22° 18 FRIAILFLTWTLAVSAAALA
04 429 17 6 ALLYPM
557 563 17 7 RIVPLLY
NDV4-C 24 4 17 2 VFRIAILLSTWTLAISAAAL
Thermostable 5 45 522 g FRIAILLSTWTLAISAA
210 210 17 1 L
04 430 17 7 ALLYMI
557 563 17 7 RIVPLLY
NDVTS09-C 24 44 17 21 VFRIAILLSTWTLAISAAAL
thermostable 5 45 52* 18 FRIALLSTWILAISAA

210 211 17 2 VL

424 430 1.7 7 ALLYPMI
557 563 1.7 7 RIVPLLV

NDV B1 strain 24 47 1.7 24 VFRIAILLSTWTLAISAAALAYS
25 45 220 21 FRIAILLSTWTLAISAAALA
557 563 1.7 7 RIVPLLV

Sequences in boxes show variation in consensus with avirulent strains. The
transmembrane domains marked with (%) were significant and considered to
different isolates and vaccinates

subjected clean ND-virus isolates to the same
temperature (56 °C), followed HA titers until 2 h and se-
lected four most thermostable isolates. Previous studies
have attempted to isolate avirulent, thermostable ND-
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viruses from the feces of wild migratory birds for vaccine
candidates [32, 33, 40]. Here, the present study identified
thermostable ND-viruses from waterfowls and this could
provide a promising line of research in thermostable
vaccine development in Uganda and providing a base to
develop an affordable thermostable ND vaccine.

DNA sequence analysis of the HN gene

HN is a type II homotetrameric glycoprotein with a mono-
mer length of 577 amino acids for most NDV strains [25].
The heamagglutinin, Neuraminidase and thermostability
are one of the multifunctional functions of HN protein that
plays key roles in the steps of the NDV life cycle [14]. Mu-
tations within the HN gene has been reported to contribute
to thermostability phenotype and immunogenicity of ND-
virus [39, 43]. Deletions of amino acid, R 403 were thought
to influence thermostability but attempts by several studies
to find alterations at such a position was futile in thermo-
stable strains. However, evaluation of chimeric ND-viruses
confirmed that thermostability phenotype of ND-virus was
dependent upon the origin of HN segment and not any
other ND-virus genome [43]. Still no study has offered a
clear mechanism or sequence based analysis of HN gene
for thermostability. By analyzing the sequences of field
thermostable and thermolabile viruses, we noted no dele-
tions at the suggested site but observed increased propor-
tion of charged amino acid residues at the expense of
uncharged polar amino acid among the thermostable iso-
lates. This could confer rigidity and stability by minimizing
deamination and backbone cleavage.

The change to a higher proportion of isoleucine (I), leu-
cine (L), valine (V) and arginine (R) at the stalk and globu-
lar regions of NDV HN ectodomain of thermostable
isolates offers an explanation to the thermostability since
these aliphatic amino acid residues contribute to hydropho-
bic interaction, a force that maintains the conformational
internal protein integrity. Besides, it has been observed that
substitution of amino acids at the conserved stalk spike es-
pecially the leucine zipper motif affect the Neuraminidase
activity of the globular domain where HN molecule inter-
acts with sialic acid binding and F protein to initiate fusion.
Protein stabilities have been predicted by sequence feature-
based predictions upon amino acid substitutions using
models [38]. Our observed amino acids substitutions at
V241, 143S, V45L, T48A, R62A, T73L, V266A, R269S,
G293K, S310D, S315P 1404V, 1477V and N440S in our
thermostable isolates all decreased protein stability with
prediction confidence of >80 % which in our case partly ex-
plains thermostability phenotype shown in Fig. 4.

Several amino acid residues have been reported as
functional amino acid residues, F220, $222, 1224, E401,
R416, and Y526 in HN protein. 13 cysteine amino acid
residues at position 123, 172, 186, 196, 238, 247, 251,
344, 455, 461, 465, 531 and 542. Six potential



Table 5 Sequence identity matrix for CDS of HN gene of thermostable ND-viruses and vaccine strains

SEQUENCE LASOTACS TZ D58  MUOOT  MUOO7  MUOTO  MU022 MUO039 MUO59 MU098 MUT1T  LASOTA |2 BEAUDC C/P/01 |-2PRO  TS09-C  NDV4C CLONE30
LA SOTA C5 ID 83.2 934 81.1 81.2 81.2 81.2 80.9 81.2 80.9 81.1 99.5 913 9.6 0.8 0.8 0.8 0.9 60.7
12060107 76.2 ID 88.0 90.8 90.7 90.5 90.7 90.5 91.0 90.8 90.8 82.8 83.2 94 1.5 0.7 0.7 0.8 53.0
D58 935 813 ID 85.9 86.1 86.1 86.1 85.7 86.1 85.7 85.9 93.8 87.1 10.0 0.6 0.8 0.8 0.8 60.2
NDV/MUOO1 764 858 814 ID 98.5 98.4 99.1 99.2 98.9 98.7 99.2 80.9 80.7 8.2 1.5 0.7 0.7 0.8 51.5
NDV/MU007 76.7 858 817 984 ID 99.4 99.1 98.9 98.9 98.7 98.9 81.1 80.7 8.2 1.4 0.7 0.7 0.8 51.5
NDV/MUO10 76.7 858 817 983 99.8 ID 98.9 98.4 98.4 98.5 98.7 81.1 80.7 8.2 1.4 0.7 0.7 0.8 51.5
NDV/MU022 764 858 814 992 98.8 98.7 ID 929.1 99.1 98.9 929.4 81.1 80.7 84 14 0.7 0.7 0.8 51.5
NDV/MUO039 764 857 814 993 984 983 9.1 ID 99.2 98.7 99.2 80.7 804 8.2 1.5 0.7 0.7 0.8 51.3
NDV/MUO059 76.6 859 816 990 98.5 984 99.3 99.0 ID 98.7 99.2 81.1 804 8.2 1.4 0.7 0.7 0.8 51.3
NDV/MU098 764 858 814 990 98.6 984 99.3 98.9 99.0 ID 929.1 80.7 80.7 8.2 14 0.7 0.7 0.8 51.5
NDV/MU111 76.6 860 816 991 98.6 98.5 994 99.1 99.2 99.2 ID 80.9 80.6 8.2 1.4 0.7 0.7 0.8 51.5
LASOTA 99.7 762 936 763 76.6 76.6 76.3 763 76.5 76.3 76.5 ID 209 94 0.6 0.8 0.8 0.9 60.5
-2 87.9 786 827 772 773 773 773 77.1 77.2 774 773 87.7 ID 10.4 1.3 0.8 0.8 0.8 56.9
BEAUDETTE C 93 93 9.9 9.2 9.3 9.3 93 9.2 9.2 9.3 9.2 9.3 102 ID 1.5 <.001 <.001 <.001 95
C/P/0103/01 52 57 55 55 55 55 54 55 55 54 55 5.1 5.2 129 ID 0.2 0.12 0.2 0.8
[-2PROGENITOR 3.0 28 28 28 2.8 28 28 2.8 28 2.8 28 30 30 0.2 0.6 ID 89.0 89.2 0.8
T509-C 31 28 29 29 29 29 28 28 29 28 29 31 30 03 0.5 954 ID 99.5 0.7
NDV4-C 3.1 28 29 29 29 29 29 29 29 29 29 3.1 30 0.3 0.5 95.5 99.8 ID 0.8
CLONE 30 68.5 550 668 551 552 552 550 55.1 55.1 552 552 68.5 614 90 50 32 3.1 31 D

Amino acid differences are indicated in bold and nucleotide differences are in normal font. The difference with commonly used vaccine strains are high lightened

€0L:€1L (9107) [puinor Abojouip ‘[p 32 AuowQ

€1 Jo 6 abed
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Table 6 B-cell epitopes of HN gene of representative thermostable field ND-viruses
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HN GENE B-CELL EPITOPES

Thermostable field isolates NDVUG/MU/059
NO Start End Peptide Peptide
1 13 18 EEREAK EEREAK
2 48 58 TGASTPSDLAS GASTPSDLAS
3 63 69 ISKAEDR ISKTEDR
4 79 79 E D
5 115 135 NGAANTSGCGAPVHDPDYIGG NGAANTSGCGAPVHDPDYIGG
6 146 147 SD SD
7 150 156 SFYPSAY SFYPSAY
8 164 174 PAPTTGSGCTR PAPTTGSGCTR
9 179 180 DM DM
10 198 201 DHSH DHSH
1 229 240 LDDTQNRKSCSV LDDTQNRKSCSV
12 242 244 ATP ATP
13 255 267 TETEEEDYRSVAP TETEEEDYRSVAP
14 279 284 GQYHEK GQYHEK
15 297 307 ANYPGVGGGSL ANYPGVGGGSL
16 319 331 GLKPNSPSDAAQE GLKPNSPSDAAQE
17 341 351 NNTCPDEQDYQ NNTCPDEQDYQARMAKSSYKPGRFGGK
18 357 367 SSYKPGRFGGK
19 381 395 SLGEDPELTVPPNTV SLGEDPELTVPPNTV
20 418 420 SSY SSY
21 436 439 ATLH ATLH
22 447 461 FTRPGSVPCQASARC FTRPGSVPCQASARC
23 469 473 VYTDP VYTDP
24 494 494 N N
25 496 499 QARL QARL
26 517 527 VSSSSTKAAYT VSSSSTKAAYT

A Alanine, R Arginine, N Asparagine, T Threonine, V Valine, C Cysteine, Q Glutamine, E Glutamate, D Aspartate, G Glycine, H Histidine, / Isoleucine, L Leucine, K

Lysine, M Methionine, F Phenylalaine, P Proline, S Serine, W Tryptophan, Y Tyrosine

glycosylation sites at G;-119 G3341, G3-433, G4-481,
G5508 and Gg-538, together with the different length of
HN cds [29, 31]. The salient features of HN protein of
our strains include: 571 amino acid size; conserved
amino acids: R 174, I 175, R 197, D 198, K 236, R 416, R
498, Y 526 and E 547; potential glycosylation sites being
G1-119, G»-341, G3-433, G4-481, G5-508 and Ge-538,
which is similar to genotype II vaccine strains Beaudette
C, B1 and Ulster. Replacement of glycosylation site Gs-
508 in other ND-virus by tryptophan and not serine
(G5-N508Y) has been used to pathotype ND-virus as
avirulent [29]. All our selected thermostable isolates had
this glycosylation site confirming their high pathogen-
icity reported earlier [8]. Further, a conserved amino acid
E347 present in all thermostable and thermolabile iso-
lates, a feature common to all vaccine strains of geno-
type II ND- viruses was observed. The percent similarity

in relation to amino acids between isolates and thermo-
stable I, and TS09C is 80.6 % and that of thermolabile
LaSota is 80.5 % suggesting our isolates share some attri-
butes of these vaccine strains shown in Table 5. It could
not be establish why isolates obtained from unvaccinated
birds share this similarity more so with I, vaccine that
has not been widely used in the country at the time of
isolation.

The most variable portion of NDV HN protein is
present in the N-terminal 78 amino acids that included
the transmembrane domain at position 24-47, 25-45,
557-563 using online bioinformatics webserver DAS-
transmembrane prediction server [11]. The significant cut
off value for the transmembrane domain considered was
2.2 at 25-45 length common to all isolates and vaccinates.
However, the variable predicted number of transmem-
brane domains for thermostable isolates were similar to
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-
10 20 30 40 50 60 70 80 90 100
D I L T I I I B T I P I O T I O I I I |
NDV TS09-C 1 MDRAVSQVALENDEREAKNTWRLVFRIAILLSTVVTLAISAAALAYSMEASTPSDLVGIPTAISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTE 100
La Sota C5 1
NDV I-2 1
NDV4-C 1
I-2progenitor 1 . B .
NDV D58 HN gene 1 L. LG e T 100
NDV/MU007 1 VTGl S....K..DRV..L. 100
NDV/MU010 1 . NVOTGL e AS.S....K..DRV..L. 100
NDV/MU022 1 .C V.oAG. ... AS.S....K..DRV..L. 100
NDV/MU039 1 NVOAG. ... SS.S....KT.DRV..L. 100
NDV/MU0S59 1 NVOAG. ... AS.S....KT.DRV..L. 100
NDV/MU098 1 VAR AS.S ..KT.DRV..L. .S. 100
NDV/MU111 1 NVOAG. ... AS.S....KT.DRV..L.S..... I,V S.. 100
150 160 170 180 190 200
F T e T e O O T O T R S R e R |

NDV TS09-C 101 STIMNAITSLSYQISGAASSSGCGAPIHDPDYIGGIGKELIVDDASDVTSYYPSAFQEHLNFIPAPTTGSGCTRMPSFDMSATHYCYTHNVILSGCRDHS 200
La Sota C5 200
NDV I-2 200
NDV4-C 200

I-2progenitor

NDV D58 HN gene 200
NDV/MU007 200
NDV/MU010 200
NDV/MU022 200
NDV/MU039 200
NDV/MU059 200
NDV/MU098 200
NDV/MU111 200
e T T L T I Y I I I I N I T R
NDV TS09-C 201 HSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSVSATPLGCDMLCSKVTETEEEDYNSAIPTSMVHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300
La Sota C5 201 300
NDV I-2 201 300
NDV4-C 201 300
I-2progenitor 201 300
NDV D58 HN gene 201 300
NDV/MU007 201 300
NDV/MU010 201 300
NDV/MU022 201 300
NDV/MU039 201 300
NDV/MU059 201 300
NDV/MU098 201 300
NDV/MU111 201 300
D S e e e o I I I |

NDV TS09-C 301 GVGGGSFIDNRVWFPVYGGLKPNSPSDTAQEGKYVIYKRYNDTCPDEQDYQIQMAKSSYKPGRFGGKRVQQAVLSIKVSTSLGEDPVLTVPPNTVTLMGA 400
La Sota C5 301

NDV I-2 301

NDV4-C 301

I-2progenitor 301

NDV D58 HN gene 301

NDV/MU007 301

NDV/MU010 301

NDV/MU022 301

NDV/MU039 301

NDV/MU059 301

NDV/MU098 301

NDV/MU111 301

NDV TS09-C 401

La Sota C5 401

NDV I-2 401

NDV4-C 401

I-2progenitor 401

NDV D58 HN gene 401

NDV/MU007 401 ..Ho.

NDV/MU010 401 LWHLL

NDV/MU022 401 LLHLL

NDV/MU039 401 L.H..

NDV/MU059 401 JHL

NDV/MU098 401 LLHLL

NDV/MU111 401 JH.L

5

NDV TS09-C 501 PVSAVFDSISRSRITRVSSSSTKAAYTTSTCFKVVKTNKTYCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSSRLSQLREGWKDDIVSPIFCDAKN 600
La Sota C5 501 600
NDV I-2 501 600
NDV4-C 501 600
I-2progenitor 501 600
NDV D58 HN gene 501 578
NDV/MU007 501 572
NDV/MU010 501 572
NDV/MU022 501 572
NDV/MU039 501 572
NDV/MU059 501 572
NDV/MU098 501 572
NDV/MU111 501 572

Fig. 4 Multiple amino acid sequence alignment of HN proteins. Alignment was performed by dividing amino acids into stabilizing and
destabilizing groups. Black bold fonts marked by asterik (¥) denote point variation in identity between thermostable and thermolabile viruses
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other thermostable vaccine isolates I, V4 more than those
of thermolabile ones. The sialic acid binding sites were all
conserved across isolates irrespective of their thermosta-
bility phenotypes. This finding is predictable since this site
plays a key attachment role of the virus to cells. The pres-
ence of cysteine amino acid residue at position 123 has
been reported to be essential for intramolecular disulphide
bonds that stabilize the oligomeric HN structure gene
[10]. Our indicated isolates had conserved cysteine amino
acid at position 123 implying absence of chymotrypsin
cleavage site and these could form disulphide-linked di-
mers increasing the hydrophobic properties of the entire
HN molecule responsible for thermostability after expos-
ure to 56 °C. The R416 essential for receptor binding, and
Neuraminidase (NA) and haemagglutination (HA) activity
was likewise conserved even after exposure to 56° C, as
were the receptor binding site involving E401, R416 and
Y526 [9]. The predicted amino acids present in the trans-
membrane domain of our isolates *’FRIAVLSLIIMIL-
VISVSILVY* which is different from less virulent
thermostable I, or TS09C (Table 6). This variation could
be due the virulence difference of these two categories.

The B-cell epitopes of thermostable isolates were 26
except for one isolate NDV/UG/MU/059 having 25 epi-
topes with four and 24 epitopes in the stalk and globular
regions respectively (Table 6). This finding is consistent
with earlier finding of the immunodorminant epitope
concentrated in the globular region [10]. Earlier studies
have confirmed that immune system responds to HN
protein rather than the F gene and confirmed by use of
neutralizing monoclonal antibodies with overlapping site
at the HN gene. This variations of our isolates by HN
gene suggests the existence of thermostable strains dif-
ferent from vaccine strains as already confirmed by our
earlier findings using the HN phylogenetic tree analysis
constructed by neighbor joining (NJ) algorithm with
bootsrap along with distance.

Conclusion

From the current study, it can be concluded that field
ND-virus (virulent or avirulent) circulating in LBM
and waterfowl in Uganda display disparate thermosta-
bility profiles. Waterfowl provides a better source of
avirulent, thermostable isolates with more than 4 loga-
rithmic orders of HA within one hour of incubation at
56 °C and without loss of two logarithmic orders of
infectivity titer within 30 min at serial passages.
Chimeric NDV molecules has yielded new knowledge
towards the understanding of NDV thermostability
these require obtaining metastable HN molecules and
performing mechanistic studies on how thermostabil-
ity phenotype can be predicted by analysis of HN gene
and such changes in amino acids of HN gene might
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contribute to the stability of the ND-virus strain at
high temperature.

Accession numbers

The complete HN gene sequences of isolates analyzed in
this study are deposited in GenBank with accession
numbers; Isolates [HG937536, HG937538, HG937542,
HG937548, HG937553, HG937564 and HG937566],
vaccinates [JX110635, AY935499, AY935500, JX443519,
JF950510, KC844235 and EU305607].
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EIDsg o, Median Embryo Infectivity Dose; HA: Hemagglutination test,; ND-
virus: Newcastle disease virus; PBS: Phosphate buffered saline; RBCs: Red
blood cells.
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