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Abstract

Background: Human cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and
long-term neurological and sensory sequelae following congenital infection.
Several Authors sustain a key role of HCMV envelope glycoproteins, such as gB, gN and gO - mainly involved in cell
targeting, viral penetration and spread - as putative virulence factors. The genes coding for these glycoproteins
possess hypervariable regions, resulting in a number of genetic variants in circulating clinical strains. Considering
that the genetic polymorphisms underlying the specific differences between gB, gN and gO genotypes can
influence the ability of HCMV to preferentially target specific host cells, it is very likely that they play an important
role in defining HCMV infection outcome.
In the present study, we analysed HCMV gB, gN and gO gene polymorphisms in viral strains isolated from
paediatric patients with congenital or post-natal infection, to investigate whether specific genetic variants may be
associated with congenital infection.

Methods: The restriction fragment polymorphisms of genes coding for HCMV gB (UL55), gN (UL73) and gO (UL74)
were investigated by analysing viral DNA extracted from 40 urine samples of as many paediatric patients with
congenital or post-natal HCMV infection. Randomly selected samples were subjected to DNA sequencing and
phylogenetic analysis. Statistical analysis was performed using Fisher’s exact test to assess the significance of single
and combined glycoprotein genotypes frequency distribution. Statistical significance was considered at a P <0.05.

Results: While gB genomic variants were quite homogeneously represented in both paediatric groups, the gN4
genotype significantly prevailed in congenitally infected children (89.5 %) vs post-natally infected children (47.6 %),
with a predominance of the gN4c variant (47.4 %). A similar trend was observed for gO3 (52.6 % vs 19 %).
Concerning genotypes association, a statistically significant (P = 0.037) gN4-gO3 combination was found specifically
in the congenitally infected group.

Conclusions: The results indicate that the gN4 (mostly the gN4c variant) and gO3 combined genotypes could
provide useful markers of congenital infection and represent suitable candidate molecules for prophylactic vaccine
preparations.
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Table 1 Amplicon sizes and restriction endonuclease patterns
of gB genomic variants

gB genotype and PCR product size (bp) (*) Fragment sizes (bp)

Rsa HinfI

1 (320) 239, 66 202, 67

2 (320) 239, 63 202, 100

3 (320) 195, 62 202, 97

4 (320) 195, 66 202, 67

(*) For each of the glycoprotein gene amplification products, the restriction
pattern was obtained upon digestion with the endonuclease combinations
indicated in the related panels
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Background
Human cytomegalovirus (HCMV), the representative
member of the beta-herpesvirus, is a widespread viral
agent that infects the majority of the world’s popula-
tion and then establishes lifelong latency. Although
infection of healthy individuals is usually asymptom-
atic, HCMV can be responsible for serious diseases
with multi-organ involvement and frequent fatal con-
sequences in ‘at-risk’ categories of individuals, such as
those with a deficient immune system due to natural,
iatrogenic (e.g. bone marrow or organ transplant pa-
tients) or acquired (e.g. HIV-infected subjects) causes
[1–3]. In addition, HCMV is still considered to be the
main viral cause of birth defects and long-term
neurological and sensory sequelae following congenital
infection [4–7].
The consequences of HCMV congenital disease have

been reportedly considered as exceeding that caused by
other childhood diseases [8] so that the virus has been
assigned the highest priority for vaccine development [9]
even though, to date, there is no licensed vaccine. On
that basis, many studies are still addressing the
characterization of HCMV strains and the mechanisms
being responsible for infection in utero, with the goal of
finding reliable markers to distinguish congenital from
post-natal infections.
Many gaps remain in our knowledge about the mecha-

nisms that determine infection outcome and the dur-
ation and severity of clinical manifestations, which may
involve immunological factors of the host as well as
purely viral determinants [10]. Although little data is
available about the impact of HCMV virulence factors
on infection outcome, several Authors sustain a key
role of the HCMV envelope glycoproteins, such as gB
[11–13]. Indeed, in addition to being a target of neu-
tralising antibodies and crucial for the virus inter-
action with cell receptors, gB is encoded by the UL55
gene presenting a number of polymorphic regions
which account for its genotypic and phenotypic vari-
ability, giving rise to four principal subtypes (gB1-
gB4) of HCMV circulating strains [14, 15].
More recently, other envelope glycoproteins have been

indicated as putative HCMV virulence factors, such as
the glycoproteins N (gN) and O (gO) [16–18]. Similarly
to gB, the genes (UL73 and UL74) coding for these gly-
coproteins possess hypervariable regions, resulting in a
number of gN and gO subtypes. The gN variants are as
follows: gN1, gN2, gN3a, gN3b, gN4a, gN4b, gN4c; in
relation to gO, four main clades have been described,
gO1-gO4, which can be further divided into seven gen-
etic variants (gO1a, gO1b, gO1c, gO2a, gO2b, gO3,
gO4) [19]. Glycoprotein N is involved in virus attach-
ment to the host cell and viral spread, while gO partici-
pates in the fusion of the viral envelope to the host cell
membrane, promoting HCMV penetration, envelope ac-
quisition and release [16, 17, 20–22].
Considering that the genetic polymorphisms under-

lying the specific differences between gB, gN and gO
subtypes can influence the ability of HCMV to preferen-
tially target specific host cells, it is very likely that they
play an important role in defining HCMV infection out-
come [12, 16, 23]. It is also of note that genes encoding
the above-mentioned glycoproteins generally act in a co-
ordinated and synergistic way [17, 19, 24]. Thus, in the
quest to identify predictive biomarkers of infection out-
come, studies addressing the combined polymorphic
patterns of HCMV genes encoding envelope glycopro-
teins are much more representative than those focussed
on single polymorphisms.
Based on the aforementioned notions, the present

study focussed on HCMV gB, gN and gO gene polymor-
phisms in viral strains present in urine samples of paedi-
atric patients with congenital or post-natal HCMV
infection, to investigate whether the prevalence of com-
bined genetic variants may be associated with congenital
infection.
Results
Restriction Fragment Length Polymorphism (RFLP)
patterns of polymorphic HCMV genes encoding gB, gN
and gO glycoproteins in the studied population
Genetic polymorphisms of HCMV envelope glycopro-
teins B, N and O in the paediatric cohort considered in
this study were analysed by RFLP. The patterns of the
expected fragments obtained upon endonuclease diges-
tion (Tables 1, 2 and 3) are shown in Fig. 1 for gB (panel
a), gN (panel b) and gO (panel c) genotypes. As ob-
served, all the expected genotypes are present for gB and
gO; concerning gN, only the gN2 genotype was absent
in the studied population.
HCMV DNA sequencing and phylogenetic analysis
DNA sequencing and phylogenetic analysis of randomly
selected HCMV gB, gN and gO genotypes from the



Table 2 Amplicon sizes and restriction endonuclease patterns
of gN genomic variants

gN genotype and PCR
product size (bp)

(*) Fragment sizes (bp)

SacI ScaI SalI

1 (420) 297, 123 420 420

2 (417) 229, 123, 65 417 296, 121

3a (420) 420 420 420

3b (420) 420 221, 172, 27 420

4a (414) 291, 123 221, 166, 27 341, 73

4b (414) 414 387, 27 341, 73

4c (414) 411 239, 172 338, 73

Pignatelli et al. [22]
(*) For each of the glycoprotein gene amplification products, the restriction
pattern was obtained upon digestion with the endonuclease combinations
indicated in the related panels
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studied population were performed to confirm the RFLP
assignments. The phylogenetic analysis of the nucleotide
sequences of the three glycoproteins (Fig. 2) was in
agreement with the results obtained by the RFLP
method. HCMV gB, gN and gO genotypes identified by
RFLP segregated highly correlated with the correspond-
ing reference strains (Fig. 2a: gB; b: gN; c: gO), with a
nucleotide identity range from 97 to 99 % for gB, 99 to
100 % for gN, 99 to 100 % for gO.
Furthermore, while endonucleases are only available

for the four main clades of the gO genotype (gO1 to
gO4), phylogenetic clustering allowed us to detect three
additional genetic variants (gO1a, gO1c and gO2b).
Analysis of HCMV gB, gN, gO single genotypes
distribution in the studied population
The overall distribution of the considered glycoprotein
genotypes and their specific partitioning between the
congenitally and post-natally infected groups are shown
in Fig. 3. With regard to gB (Fig. 3a), our data confirm
the presence of all gB genotypes in the whole paediatric
population (pie chart). The genomic variants gB1, gB2
Table 3 Amplicon sizes and restriction endonuclease patterns
of gO genomic variants

gO genotype and PCR product size (bp) (*) Fragment sizes (bp)

HpaII

1 (372) 372

2 (372) 203, 141

3 (372) 229, 141

4 (372) 203, 115

(*) For each of the glycoprotein gene amplification products, the restriction
pattern was obtained upon digestion with the endonuclease indicated in the
related panel
and gB3 were quite homogeneously represented (35,
32.5 and 27.5 %, respectively), while gB4 was poorly
present (5 %). A similar trend was maintained in both
groups (congenitally and post-natally infected patients),
except for the gB4 genotype which was absent in the
congenitally infected group.
Concerning gN (Fig. 3b), a clear prevalence of the gN4

genotype (67.5 %) was found in the whole paediatric
population (pie chart). Interestingly, the analysis of the gN
distribution between the two paediatric groups shows a
significant predominance of the gN4 genotype in the con-
genitally infected children (89.5 %, not shown as a whole),
with a prevalence of the gN4c variant (47.4 %), compared
with post-natally infected children (gN4: 47.6 %, not
shown as a whole; gN4c: 14.3 %). The gN1, gN2 and gN3b
genotypes were not observed in the first group, while only
gN2 was absent in the second group.
Finally, concerning gO (Fig. 3c), the overall distribu-

tion revealed a dominance of the gO1 (30 %) and gO3
(35 %) genotypes over gO2 and gO4 (12.5 and 22.5 %,
respectively) (pie chart). However, the trends were dis-
tinct for the congenitally and post-natally infected paedi-
atric groups: a significant predominance of gO3 (52.6 %)
was only observed in the congenitally infected newborns,
compared with just 19 % in the post-natally infected
children. A slight prevalence of the gO1 genotype
(38.1 %) was present in the latter group.
Statistical analysis of the frequency distribution of

HCMV gB, gN and gO genotypes in the congenitally vs
post-natally infected children showed a significant asso-
ciation of gN4 (P = 0.006), mostly the gN4c variant (P =
0.037), with congenital infections; a similar trend was
found for the gO3 genotype (P = 0.045).

Combined polymorphic patterns of genes encoding
HCMV gN and gO glycoproteins in congenitally and post-
natally infected children
This study also looked at the combinations of glycopro-
tein genotypes present in the considered population
(Fig. 4). Only the combinations of gN and gO glycopro-
tein gene polymorphisms were investigated, since these
showed the most relevant and distinct patterns between
the two paediatric groups when analysed singularly. The
most significant difference between the groups was
found in the prevalence of the gN4-gO3 combination in
the congenitally infected group, constituting 47.4 % of
cases compared to 14.3 % in the post-natally infected
children. The observed differences in the occurrence of
the gN4-gO3 combined genotypic pattern in congenital
vs post-natal infections were statistically significant (P =
0.037).
In the post-natally infected group, the most frequently

observed HCMV mixed genotypes were gN1-gO1 and
gN4b-gO4 (being equally prevalent, at 19 % each).



Fig. 1 Representative RFLP patterns of HCMV gB, gN and gO glycoproteins in the studied population. RFLP analysis was performed on the PCR-
amplified gB (a), gN (b) and gO (c) sequences obtained from the patient-derived HCMV strains. Each sample was digested with restriction enzyme
combinations as detailed in Tables 1, 2 and 3. In the upper side of panels a (gB) and b (gN), the numbers “1, 2” (panel a), and “1, 2, 3” (panel b)
indicate the restriction enzymes used (gB: 1 = RsaI; 2 = HinfI; gN: 1 = SacI; 2 = ScaI; 3 = SalI). A single digestion with HpaII was used to characterise the
gO gene products (panel c). The genotypes corresponding to each digest are displayed at the top of the lanes. Lanes MW molecular weight markers
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Discussion
HCMV congenital infection is one of the major causes
of birth defects and late neurological and sensory seque-
lae in children. Around 0.2–2 % of newborns acquire
HCMV infection in utero [25, 26], but only 10–15 % of
children with congenital infection show relevant clinical
signs at birth [5, 27–29].
HCMV envelope glycoproteins showing genetic poly-

morphisms among circulating strains have been consid-
ered as potential virulence markers, and may be



Fig. 2 Phylogenetic analysis of HCMV gB, gN and gO sequences from congenitally and post-natally infected children. Phylogenetic analysis was
based on partial UL55 (496 nucleotides) (panel a), UL73 (313 nucleotides) (panel b) and UL74 (275 nucleotides) (panel c). Bootstrap values >60 %
are indicated. Scale bars indicate the number of nucleotide substitutions per site. HCMV gB, gN and gO genotypes are indicated on the right side
of the dendrograms. Italian strain sequences and reference sequences are indicated with a circle and a triangle, respectively
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responsible for differential HCMV tropism to specific
cell types and differential ability to disseminate and
interfere with normal tissue development [13, 16, 21,
23]. A number of studies have focussed on these viral
components, although most of them have only addressed
singular glycoprotein subtypes. In particular, UL55 (cod-
ing for gB), the less polymorphic gene among those cod-
ing the main envelope glycoproteins, has been analysed



Fig. 3 Glycoprotein B, N and O genotype distributions in congenitally
and post-natally infected children. The overall distributions of gB, gN
and gO genotypes are shown in the pie charts of panels a, b and c,
respectively; the subdivision of gB, gN and gO variants among
congenitally and post-natally infected children is displayed in the
adjacent bar charts. The number of subjects infected with the specific
genotypes and the related percentages are indicated at the top of
each bar
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in different categories of subjects at risk of developing
diseases upon HCMV infection [30–32]. Some Authors
found that all the four dominant gB genotypes can be
transmitted to the foetus in the case of congenital infec-
tions [33–35], while others found gB1 to be the preva-
lent genotype in congenital infections [11, 36]; a
prevalence of certain genotypes in patient cohorts char-
acterised by distinct geographical or ethnic contexts has
been also reported [37, 38]. Collectively, these data do
not favour the hypothesis that specific gB genotypes
alone could provide reliable markers of congenital infec-
tion, partially due to the low genetic variability of the
locus (9.5 %) and also because most of the gB subtypes
demonstrate a similar probability of being associated
with congenital infection [33]. Conversely, the UL73 gene,
coding for the envelope glycoprotein N, possesses highly
hypervariable regions (50 % variability). The UL74 gene
coding for gO also shows a considerable (30 %) variability,
but has not been largely analysed in this category of at-risk
subjects [38]. In summary, although no conclusive results
concerning the infection outcome and tissue tropism of
HCMV variants carrying specific glycoprotein polymor-
phisms have been produced to date, the genetic character-
isation of the infecting HCMV strains appears useful for the
infection prognosis and, thus, remains the focus of many
current studies [13]. As already mentioned, it is unlikely
that just a single polymorphic gene product is responsible
for a specific infection outcome and/or tissue tropism,
especially in the case of a viral agent as complex as HCMV.
Instead, it is probable that the viral phenotype is deter-
mined by a combination of polymorphic genetic loci that
operate synergistically [19, 24]; this is likely the case for
UL73 and UL74 (coding for gN and gO, respectively).
In this study we have addressed the polymorphisms of

HCMV genes encoding gB, gN and gO envelope glycopro-
teins in a cohort of paediatric patients with congenital or
post-natal HCMV infection, in order to assess whether
the presence of specific genetic combinations of viral
glycoprotein subtypes may constitute reliable markers of
infection outcome. By first analysing the distribution of
single genotypes, we found a significant predominance of
gN4 in congenital infections, in accordance with other
studies [17, 18], implicating this genotype as a potential
prognostic marker of HCMV congenital infection. Fur-
thermore, our results support a significant association of
congenital infections with the gN4c genetic variant; a
similar trend was found for gO3. The RFLP results were
further confirmed by applying DNA sequencing and
phylogenetic analysis to randomly selected samples.
With regard to combined genotypes, we detected a

statistically significant association of gN4 and gO3 gen-
etic variants in congenitally infected children; it is note-
worthy that, among those presenting clinical signs at
birth (7/19), all were gN4 and nearly all (6 out of 7)



Fig. 4 Combined patterns of HCMV gN and gO genotypes and relationships with clinical pictures at birth. * Premature birth. ** Small size at birth
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showed the gN4-gO3 combination. On the other hand,
most of the post-natally infected infants did not show
any clinical signs at birth; a minority of them presented
clinical signs not compatible with HCMV infection (see
Fig. 4).
It is also of interest to consider that although congeni-

tally infected newborns with clinical signs are at higher
risk of developing long-term neurological and sensory
sequelae (about 49 % on average) [6, 39–41], a consider-
able portion of asymptomatic babies (about 13.5 %)
eventually manifest such problems [6, 26]. Moreover, the
above mentioned percentages may be under-estimated
in the literature because data on late disabilities are
often incomplete and follow-up periods too short to
identify late sequelae.
Thus, the development of prognostic markers of

HCMV congenital infection is of great importance for
the identification and characterisation of predominant
genetic variants of HCMV in at-risk patients, as well as
for the development of protective vaccines. With regard
to the latter, the major problem concerns the high vari-
ability of circulating strains that are differentially in-
volved in clinical manifestations with different degrees
of severity, making it highly difficult to choose a viral
product that would present the highest level of safety
whilst effectively eliciting humoral as well as cellular im-
munity. In this context, it is noteworthy that the gN viral
glycoprotein is one of the viral products eliciting the
highest neutralising antibody response and that anti-gN4
immunity also seems to protect against frequent re-
infection [42]; it is also likely that specific genetic vari-
ants of the gN4 protein (such as gN4c as shown here)
could enhance this relevant feature even further.
Another interesting aspect of HCMV congenital infec-

tions is the possible presence of multiple viral strains.
Indeed, although a number of studies have outlined the
notion that mixed infections are more frequently found
in adult immunocompromised hosts [15, 43], more re-
cently published studies have also described the presence
of multiple HCMV strains in congenital infections at a
relatively high rate (15–46 %) [44, 45].
Surprisingly, we didn’t find mixed HCMV infections in

our study population. This might be attributed to the
fact that our sample size, although sufficient to obtain
statistically significant results, was quite small, thus asso-
ciated with a lower probability of detecting mixed infec-
tions; for instance, similar results were also obtained
recently by other Authors [7]. Moreover, it has been re-
ported that a mixed infection has a higher chance of be-
ing detected if the less represented genotype constituted
at least 25 % of the total viral population [7]; thus, we
can speculate that additional genotypes may have been
present in a smaller proportion in our study population.
Another interesting notion, highlighted by Ross and
collaborators [44], is that in some cases only one type of
HCMV genotype could be found in a specific biological
sample, while other genotypes could prevail in samples
obtained from different compartments of the same child.
This observation could also account for the apparent ab-
sence of mixed genotypes in our study population as
only urine samples were tested.
Work is in progress in our laboratory to collect and

analyse more than one type of biological sample from
HCMV infected babies.
In summary, identification of the predominant molecu-

lar combinations of glycoprotein subtypes in congenital
HCMV infections, like gN4-gO3 as shown in the present
study, is crucial for unravelling the complicated interplay
between glycoprotein genetic variation and HCMV patho-
genicity. Identification of such combinations will also per-
mit a more accurate prenatal diagnosis and focussed,
long-term follow-up care for infected babies.

Conclusions
This study is one of few to address not only the poly-
morphisms of individual genes encoding HCMV glyco-
proteins, but also their combination in one of the most
important categories of at-risk subjects, i.e. congenitally
infected children.
Although the sample size considered in the present study

is limited, it has sufficient power to detect significant differ-
ences in the two paediatric groups considered. Indeed, we
reveal that the gN4-gO3 genotype association is statistically
significant in the congenitally infected cohort.
These results indicate that the gN4 (mostly the gN4c

variant) and gO3 glycoprotein genotypes could provide
reliable markers of congenital infection. The identified
variants could also constitute ideal candidates for
prophylactic measures that aim to counteract the onset
of late disabilities in congenitally infected children.

Materials and methods
Patients and clinical samples
Forty children with congenital (n = 19) or post-natal (n =
21) HCMV infection hospitalised at the University-Hospital
of Parma, Italy, over a 15-year period were included in this
retrospective study (formal consent was not required). In-
clusion into either the congenitally or post-natally infected
group was based on the positive or negative outcome of a
HCMV urine test performed at birth, according to the rules
indicated by the Centers for Disease Control and Preven-
tion (Atlanta, USA; see: http://www.cdc.gov/cmv/testing-
diagnosis.html). Detailed characterizations of both the
study populations are listed below.

Congenitally infected children
Age range at the time of HCMV urine positive testing:
1–5 days after birth.

http://www.cdc.gov/cmv/testing-diagnosis.html
http://www.cdc.gov/cmv/testing-diagnosis.html
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Sex: 9 females; 10 males.
Mothers’ serostatus during pregnancy: HCMV sero-

conversion during pregnancy: 16; no data available: 3.
Reasons for the request of HCMV urine testing at the

time of birth: 16 infants born from HCMV-seroconverted
mothers during pregnancy (one neonate presented cervical
lymphadenomegaly; three presented a mild liver enlarge-
ment; 12 had normal parameters at birth). Of the three
cases with no data available on the mothers’ serostatus: one
newborn presented acute hepatopathy; one presented tran-
sitory ventriculomegaly; one presented hepatomegaly, liver
tract stenosis and increased transaminase levels.

Post-natally infected children
Age range at the time of HCMV urine negative testing:
3–9 days after birth.
Age range at the time of HCMV urine positive testing:

2 months to 5 years after birth (most likely primary peri-
natal infections via breast milk or environmental pri-
mary infections).
Sex: 12 females; 9 males.
Mothers’ serostatus: presence of anti-HCMV IgG anti-

bodies before pregnancy: 10; anti-HCMV antibodies
negative during pregnancy: 2; no data available: 9.
Reasons for HCMV urine testing at the time of birth: in

two cases it was requested to make a differential diagnosis
with Toxoplasma gondii infection that occurred during preg-
nancy; three newborns presented a skin rash finally attrib-
uted to an allergic reaction; five newborns presented
increased transaminase levels, but exhibited normal liver and
spleen dimensions; six newborns had a premature birth;
three newborns presented a small size at birth, one newborn
presented lymphadenopathy, later attributed to Streptococcus
pyogenes infection; one newborn presented a respiratory syn-
drome, later diagnosed as a Staphylococcus aureus infection.
None of the newborns considered in this study pre-

sented neurological signs or sensory impairment at birth.
Medical follow-up of the infected paediatric patients
during early childhood was not available.
Forty HCMV-positive urine samples (obtained from

each of the aforementioned paediatric subjects) were
considered in the study. Laboratory tests were per-
formed at the Virology Unit of the University-Hospital
of Parma; samples underwent a rapid culture test using
human fibroblasts, and HCMV immediate-early antigens
were detected in infected cells using an indirect im-
munofluorescence assay. After initial testing, urine sam-
ple were then stored at −80 °C until later use.
The samples were subjected to DNA extraction

followed by gB, gN and gO genotyping.

DNA extraction and amplification
A 1 ml aliquot of each urine sample was used for total
DNA extraction employing the commercial kit “QIAamp
Blood Mini kit” (Qiagen), according to the manufac-
turer’s instructions. The extracted DNA was subjected to
polymerase chain reaction (PCR) using primers for gB,
gN and gO specific regions and amplification conditions
previously described [12, 16, 22]. The laboratory strains
AD169 (ATCC VR-538) and Towne (ATCC VR-977)
were used as positive controls.
Restriction fragment length polymorphism
The considered HCMV glycoprotein gene fragments were
digested with the following combinations of restriction
enzymes: RsaI (Rhodopseudomonas sphaeroides) and HinfI
(Haemophilus influenzae) [gB]; SacI (Streptomyces achro-
moqenes), ScaI (Streptomyces caespitosus) and SalI (Strepto-
myces albus G.) [gN]; HpaII (Haemophilus parainfluenzae)
[gO]. Restriction enzymes were obtained from Thermo
Scientific. Digestions were performed according to manu-
facturer’s instructions. The patterns of restriction fragments
were analysed by a 2 % agarose gel electrophoresis. Molecu-
lar weight markers were from Invitrogen (1 Kb DNA
ladder; 100–12,000 bp) and from Nanogen Advanced
Diagnostics (Marker Hinf I; 46–1380 bp).
DNA sequencing and phylogenetic analysis
DNA sequencing and phylogenetic analysis were per-
formed using a random selection of 6 gB, 11gN and 8 gO
HCMV clinical strains previously characterized by RFLP.
PCR products were purified (Qiaquick Gel Extraction Kit,
Qiagen) and sequenced with an automated sequencer
(CEQ 2000XL DNA Analysis System – Beckman Coulter).
For DNA sequencing, the same primers used to amplify
gB, gN and gO genetic loci (UL55, UL73, UL74) were
employed. The electropherograms were analysed and edi-
ted using the DNA Sequencing Analysis software Version
3 (Applied Biosystem). The genetic identity of each strain
was determined by comparison with reference strains
available in GenBank database (US National Center for
Biotechnology Information, NCBI). The partial gB, gN
and gO genotype sequences were deposited in GenBank
under the accession numbers listed hereafter: KT987990,
KT987991, KT987992, KT987993, KT987994, KT987995
for UL55; KT987979, KT987980, KT987981, KT987982,
KT987983, KT987984, KT987985, KT987986, KT987987,
KT987988, KT987989 for UL73; and KT987996,
KT987997, KT987998, KT987999, KT988000, KT988001,
KT988002, KT988003 for UL74. Multiple sequence align-
ments and phylogenetic tree constructions were per-
formed with MEGA v6.0 [46], applying the maximum-
likelihood method. Tree reliability was assessed by boot-
strap re-sampling over 1000 replicates. Reference strains
that shared >97 % nucleotide identity with our sequences
were retrieved from the GenBank database.
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Statistical analysis
Data were analysed using the SPSS (Statistical Package
for Social Science) software (Version 20.SPSS). Statistical
analysis was performed using Fisher’s exact test to assess
the significance of single and combined HCMV glyco-
protein genotypes frequency distribution in congenitally
vs post-natally infected groups. Statistical significance
was considered at a P <0.05.
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g: glycoprotein; HCMV: human cytomegalovirus; PCR: polymerase chain
reaction; RFLP: restriction fragment length polymorphism.
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