
Deng et al. Virology Journal  (2015) 12:108 
DOI 10.1186/s12985-015-0339-8
SHORT REPORT Open Access
The Chinese herb-derived Sparstolonin B
suppresses HIV-1 transcription
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Abstract

Background: The Chines herb derived Sparstolonin B, (SsnB), is a recently identified natural compound that selectively
blocks TLR2- and TLR4-mediated inflammatory signaling. But it is unknown whether this compound has any effect on
HIV infection.

Findings: We found that SsnB treatment blocked HIV-1 transcription via a novel mechanism that requires the TAR
region. Treatment of human T cell lines or peripheral blood mononuclear cells with SsnB at 1 μM significantly
inhibited HIV production. Lastly, SsnB was able to inhibit HIV in synergy with AZT.

Conclusions: These data suggest that SsnB is a novel natural compound that inhibits HIV-1 transcription and
may be a new drug in the treatment of HIV infection.
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Findings
Despite the success of highly active antiretroviral ther-
apy (HAART) in containing human immunodeficiency
virus (HIV) infection, there has been an urgent de-
mand for cheaper and alternative drugs in developing
countries. Moreover, HIV persists in stable reservoirs
harboring chromosomally integrated latent HIV-1 pro-
viruses, where continuous viral production and reacti-
vation of transcription from these reservoirs are not
affected by current drugs [1–4]. As such, novel classes
of antivirals are needed to inhibit these processes. In
this regard, a drug that blocks HIV transcription would
be of great value because it offers the potential to shut
down the transcription in HIV latent reservoirs.
SsnB was isolated from a Chinese herb, Spaganium

stoloniferum [5, 6] and was recently reported to block
TLR2 and TLR4 pathways [7]. Here we report that
SsnB is a potent inhibitor of HIV infection. Specific-
ally, we performed a dose response experiment by
treating HIV pNL4.3 infected CEM-SS cells with vari-
ous doses of SsnB. Fourty eight hours post-infection
we harvested supernatants and titered the infectivity
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on the indicator cell line TZM-bl [8]. It was observed
that SsnB treatment reduced the infectivity of the super-
natants by more than 10 fold (Fig. 1a). To expand our
observation, we repeated the experiment using peri-
pheral blood mononuclear cells (PBMCs). Similarly,
increasing concentrations of SsnB inhibited the pro-
duction of HIV, measured by the release of p24 into
the supernatants (Fig. 1b).
Next, we sought to determine if SsnB inhibits HIV-

1 transcription. To this end, we performed luciferase
reporter assays. 293T cells were transfected by HIV-1
LTR-driven luciferase reporter constructs and then
treated by SsnB at various concentrations. HEK293T
cells in 24-well plates were transfected with 0.2 μg
reporter plasmid. 0.05 μg pGL4.74[hRluc/TK] was
included to control for transfection efficiency. Dual
luciferase assay was performed. In support of our
findings, SsnB treatment indeed inhibited the lucifer-
ase activity (Fig. 2a). Of note, HIV-1 LTR transcriptional
activity was significantly increased upon phorbol myristate
acetate (PMA) stimulation, whereas SsnB treatment
reduced it by nearly 30 fold (Fig. 2a). To ensure that the
observed effect was not due to the cytotoxicity of SsnB,
we sought to determine the CC50 of the compound and
found no cytotoxicity even at the highest concentration
that was tested (Fig. 2b).
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Fig. 1 SsnB inhibits HIV production. a CEM-SS cells were infected with HIV pNL4.3 (MOI 0.01) and then treated with SsnB at indicated
concentrations for 12 h. Newly released virus in the supernatants was collected 24 h after exposure to SsnB and then titered on the
TZM-Bl cells. *p < 0.01, n = 4. b PHA activated PMBCs were infected with pNL4.3 (MOI 0.1) for 5 h followed by SsnB treatment for 12 h.
After an additional 24 h, the HIV p24 concentrations in the supernatants were determined by ELISA. *p < 0.01, n = 3
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To investigate the potential mechanism of inhibition,
we generated successive deletion constructs by remov-
ing the two NF-B binding sites, three Sp1 binding
sites, and the TAR region from HIV-1 LTR [9, 10]
(Fig. 3a). All of these LTR fragments were synthesized
at WuXi AppTec (China) and subcloned into the
pGL4.11[luc2P] plasmid (Promega). We transfected
293T cells with these constructs and treated cells with
SsnB. While the removal of the NF-κB or Sp1 binding
sites has no effect on SsnB-mediated inhibition, the
ΔTAR construct became non-responsive to SsnB treat-
ment (Fig. 3b). To corroborate this finding, we co-
transfected a minimal LTR-Luc construct containing
the TAR region with a Tat expressing plasmid into 293T
cells. In the presence of SsnB, Tat-induced LTR transcrip-
tion was severely inhibited (Fig. 3c). Altogether, our results
Fig. 2 SsnB inhibited HIV LTR promoter activity. a 293T cells were transfect
either left unstimulated or stimulated with PMA (50 ng/ml) for 12 h followe
Luciferase assay was performed. Normalized HIV LTR promoter activity was
concentrations for 12 h and cell viability was determined by CellTiter Glo k
suggest that SsnB is inhibiting HIV transcription via a
novel mechanism that requires the presence of TAR re-
gion. Of note, the ΔTAR construct remained transcrip-
tionally active, albeit at much lower efficiency, which is
consistent with what has been reported recently [11].
The TAR region is very important for HIV Tat-
dependent transcriptional activation [12–14]. It would
be interesting to test in the future whether SsnB exerts
its inhibitory effect by directly interacting with TAR re-
gion or with TAR-region binding proteins such as HIV
Tat or its cofactor. Further effort to identify cellular or
viral targets of SsnB would be crucial in understanding
the mechanism of SsnB-mediated blockage of HIV
transcription.
Lastly, we tested whether SsnB is able to act synergis-

tically with approved antivirals. To this end, we tested
ed with HIV LTR plasmid together with pGL4.74 [hRluc/TK]. Cells were
d by mock or SsnB (1 μg/ml, ~3.7 μM) treatment for another 12 h.
presented. b CEM-SS cells were treated with SsnB at various
it (Promega) 24 h after the initial exposure



Fig. 3 SsnB inhibition of HIV requires TAR region. a Illustration of successive deletion constructs that were used in this experiment. The TAR-
deleted LTR was created by restriction digest to remove nucleotides downstream of +24 relative to the transcription start site. b 0.1 μg of the
reporter constructs in (a) were transfected into 293T cells in the presence or absence of SsnB (1 μg/ml) for 12 h. Luciferase assays were done
48 h after transfection. *p < 0.01, n = 3. c 0.1 μg of the minimal TAR-LTR (−31 to +83) construct was transfected into 293T cells alone or with 5 or
10 ng Tat expressing plasmid. Twenty four hours post-transfection, two samples were treated with SsnB (1 μg/ml) for 12 h. Luciferase assay was
done 24 h thereafter. Notably, this construct does not respond to PMA treatment (50 ng/ml)
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the IC50 of SsnB with the chain terminator of HIV repli-
cation, azidothymidine (AZT) [15]. Data from the drug
combination experiments were analyzed according to
theorem of Chou-Talalay [16, 17]. In each experiment,
the dose-effect data for each single agent and the com-
bination were used to plot a median-effect curve [16,
17]. The derived curves are used for calculation of the
combination index (CI) (Table 1) as described previously
[18]. The resulting combination index (CI) offers quan-
titative definition for additive effect (CI = 1), synergism
(CI < 1), and antagonism (CI > 1) in drug combinations
[16, 17]. Shown in Table 1, SsnB displayed synergy with
AZT when administered together. Altogether, our
findings show that SsnB is a novel natural compound
that exerts anti-HIV activity by suppressing HIV tran-
scription through the TAR region. These exciting re-
sults warrant future studies in testing its effect in
combination with other known HIV drugs. It is pos-
sible that SsnB may become a new class of anti-HIV
drugs that is more affordable.
Table 1 Synergism between SsnB and AZT

Expt
no.

Concentration of: CI at HIV-1 inhibition of:

AZT (μM) SsnB (μg/ml) 50 % 75 % 90 % 95 %

1 0.04, 0.16, 0.64, 1.28 0.1, 0.5, 1, 10 0.87 0.63 0.47 0.38

2 0.0025, 0.005, 0.01, 0.02 0.5, 1, 10, 50 0.77 0.53 0.46 0.43

0.5 × 106/ml CEM-SS cells were exposed to pNL4.3 virus (p24 ~ 100 ng) as
inoculum in flasks containing either single agent (four concentrations each) or
four combinations of AZT and SsnB (for example, in Exp 1, 0.04 μM AZT +
0.1 μg/ml SsnB; 0.16 μM AZT+ 0.5 μg/ml SsnB, and so on) for 12 h. Fourty
eight hours thereafter, the production of infectious virus in the supernatants
was determined by the standard TZM-bl assay [8]. The calculation was done
using the method described in [18, 19]. CIs of <1, 1, and >1 indicate synergism,
additive effects, and antagonism, respectively.
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