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Abstract

decisions.

Background: Persistent infection of the Japanese Encephalitis Virus (JEV) has been reported in clinical cases,
experimental animals, and various cell culture systems. We previously reported the establishment of spontaneous
JEV persistent infection, assisted by defective interfering particle accumulation and/or attenuated helper viruses, in
BHK-21 cells devoid of virus-induced apoptosis, cBS6-2 and cBS6-3. However, cell-specific factors may play important
roles in controlling JEV replication and have never been assessed for this specific phenomenon. Recent evidence
suggests that viruses have evolved various mechanisms to cope with endoplasmic reticulum stress signaling
pathways for their efficient amplification and transmission, including the unfolded protein response (UPR).

Results: To identify the host cell factors that affect JEV persistence, we investigated the expression of essential UPR
factors in cBS6-2 and cBS6-3 cells. Of the selected UPR factors tested, the most noticeable deviations from those of
the normal BHK-21 cells with JEV acute infection were as follows: the suppression of C/EBP homologous binding
protein (CHOP) and the constant up-regulation of immunoglobulin binding protein (BiP) expression in cBS6-2 and
cBS6-3 cells. In JEV acute infection on normal BHK-21 cells, silencing CHOP expression through specific SiRNA
blocked cell death almost completely. Meanwhile, depletion of BiP by specific siRNA unlocked CHOP expression in
€BS6-2 and cBS6-3 cells, resulting in massive cell death. Fulminant apoptotic cell death for both cell clones on
tunicamycin treatment revealed that the JEV persistently infected cells still contained functional arms for cell fate

Conclusions: BHK-21 cells with JEV persistent infection strive against virus-induced apoptosis through constant
up-regulation of BiP expression, resulting in the complete depletion of CHOP even with apparent virus amplification
in the cells. Accordingly, the attenuation of virus replication as well as the modifications to cell metabolism could
be additional factors contributing to the development of JEV persistent infection in mammalian cells.

Introduction

Viruses have evolved a wide range of strategies to persist
in their hosts. It remains a challenge to understand the
mechanisms whereby viral persistence is established and
maintained, especially viral persistence within a cell or
group of cells. Mechanisms by which RNA virus persist-
ence is initiated and maintained usually involve two
virus-specific factors: the generation of defective inter-
fering (DI) particles or temperature-sensitive mutation

* Correspondence: ysjeong@khu.ac.kr
Department of Biology, College of Sciences, Kyung Hee University, Seoul
130-701, Republic of Korea

( ) BiolVled Central

of wild-type virus [1,2]. Research suggests that host fac-
tors involved in the control of persistent infection relate
to elements of innate immunity in Morbillivirus [3] and
cellular protein synthesis in Reovirus [4].

Protein synthesis and folding occurs in the endoplas-
mic reticulum (ER). Mammalian cells have evolved many
sophisticated signaling pathways to monitor any abnor-
mality, including the accumulation of misfolded pro-
teins; these pathways are known as the unfolded protein
response (UPR) [5]. These signaling pathways monitor
the ER’s capacity to refold and/or remove abnormally
folded proteins and to make cell-fate decisions according
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to the homeostatic balance [6,7]. In all known animal cells,
the following are known to be activated to initiate the
UPR: three ER-localized transmembrane UPR transducers,
inositol requiring kinase 1 (IRE1), double-stranded RNA-
activated protein kinase-like kinase (PERK), and activating
transcription factor 6 (ATF6) [8]. Under basal conditions,
these three sensors are associated with immunoglobulin
binding protein (BiP), also known as GRP78, which is a
chaperone of the heat shock protein 70 family. Each
branch operates parallel with a particular target down-
stream and contributes to both cell-protective and cell-
death pathways [6,7]. Under severe or chronic ER stress,
the UPR switches its mode of action toward apoptosis.
C/EBP homologous binding protein (CHOP), also known
as growth arrest and DNA damage-inducible protein 153
(GADD153), is the pro-apoptotic transcription factor that
plays an important role in regulating cell death after ER
stress [9,10]. Several molecular mechanisms of CHOP-
induced apoptosis have been cited, such as compromised
alteration of Bcl-2 family proteins [11,12].

A variety of viruses induce ER stress and the UPR,
having evolved various mechanisms to cope with the
UPR [13]. West Nile virus modulates all three arms of
the UPR and induces numerous apoptotic responses, in-
cluding induction of CHOP expression [14]. Modulation
of the UPR by the West Nile virus is regulated differen-
tially along with its replication cycle [15]. Similar to
other flaviviruses, the dengue virus also induces the
three arms of the UPR and CHOP expression. However,
activated CHOP does not induce its downstream apop-
totic markers, such as suppression of anti-apoptotic pro-
tein Bcl-2 and activation of caspase-3 or caspase-9 [16,17].
In addition, studies of the hepatitis C virus have shown
that both viral structural (envelope) and non-structural
(NS2) proteins can induce ER stress and the UPR activa-
tion with up-regulation of BiP and CHOP [18,19].

Japanese encephalitis virus (JEV), a member of the
Flaviviridae, is the causative agent of encephalitis in
humans and can be transmitted by persistently JEV-
infected mosquitoes [20]. Viral persistence in the ner-
vous systems of JEV-infected patients has been shown in
approximately 5% of JEV cases, suggesting that JEV per-
sistence may contribute to neural sequelae after acute
infection [21]. Though JEV is usually cytolytic for sus-
ceptible cells, persistent infection of JEV has been estab-
lished in various cell cultures, including baby hamster
kidney (BHK)-21 [22-28] as well as in a mouse model
[29]. The underlying mechanisms for JEV persistence in
cultured cells are not clearly described. We have pre-
viously demonstrated spontaneous establishment of per-
sistent JEV infection in BHK-21 cells via serial undiluted
passages without any supplemental treatment [27].
Examples of supplemental treatment include Bcl-2 over-
expression [26] or indirect infection with supernatants
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from persistently JEV-infected mosquito cells [30]. Our
previous study suggested that DI particle accumulation
and helper virus attenuation are possible mechanisms
for the development and maintenance of JEV persistence
in BHK-21 cells. Nonetheless, labile cellular factors that
may play a role in JEV persistence have never been iden-
tified in this system. JEV also induces ER stress and the
UPR, and studies suggest that the activation of the UPR
is a major cause of JEV-induced apoptosis [31]. The
UPR has never been assessed in JEV persistent infection,
however.

In this study, we utilized two persistently JEV-
infected BHK-21 cell clones (previously reported in
[27]) to identify the cell-specific factors of the UPR
involved in JEV persistence in mammalian cells. These
cell clones seldom, if ever, undergo apoptosis, while JEV
replicates actively within. We observed that there was
no CHOP expression at any time, but a significant
amount of BiP expression was constant in these cells.
Knockdown of BiP expression resulted in CHOP
induction and subsequent cell death. Because the level
of JEV amplification in these cells was not low enough
to hold an apoptotic process, we suggest that the
readjustment of BiP expression in host cells could be
one of key factors involved in cell fate decision under
viral persistence.

Results and discussion

BHK-21 cells with JEV persistent infection avoided
virus-induced apoptosis even with active virus replication
Many viruses that are originally cytopathic have been
found to lose their cytopathicity when the persistent
infection is established [2]. JEV infection induces severe
cytopathic effects in various cell culture systems, includ-
ing BHK-21 cells, and researchers have documented the
ER stress response and subsequent apoptosis in the JEV-
infected cells [31,32]. In order to assess how much of
the JEV persistently infected BHK-21 cell population is
destined to apoptosis while continuously producing in-
fectious virus particles, the two BHK-21 cell clones with
JEV persistent infection—cBS6-2 and ¢cBS6-3—were sub-
jected to flow cytometry analysis after annexin V/propi-
dium iodide staining. The number of apoptotic cells and
the late apoptotic or necrotic cells increased significantly
upon wild-type JEV infection in normal BHK-21 cells
(Figure 1A). On the contrary, the number of cBS6-2 or
¢BS6-3 cells with JEV persistent infection undergoing
apoptosis seemed to remain below the basal level shown
in the naive BHK-21 cells. The amount of intracellular
infectious JEV particles produced in the persistently
infected cells was 5- to 7-fold less than that of an acute
infection (Figure 1B). All cells subjected to the flow
cytometry were plated and analyzed at the same time
points. The cells were grown under the same culture
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Figure 1 Persistently JEV-infected cell clones show apoptosis resistance even with active virus replication. (A) BHK-21 cells either
mock-infected or infected with JEV at an MOI of 1 and harvested 72 hr later. PI cell clones were harvested at 72 hr after freshly seeding. Prepared
cells were stained with annexin V/propidium iodide, and individual flow cytometric dot plots were displayed. (B) The extra- and intracellular virus
samples were collected at the indicated p.i. time and counted by plaque-forming assay.
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conditions, and no notable difference in the cell numbers
of each population was observed.

Constant expression of elevated amounts of BiP and
complete depletion of CHOP were associated with the
survival of the persistently infected BHK-21 cells

JEV infection is known to induce the UPR in BHK-21
cells through BiP-PERK and/or BiP-IRE1 arms, which is
followed by CHOP-mediated apoptosis [31,33,34]. Based
on these reports, this study primarily assessed the ex-
pression profile of the UPR factors in the BiP-PERK arm
of the BHK-21 cells with JEV persistent infection. Normal
BHK-21 cells were infected with JEV and harvested at 0, 6,
12, 18, 24, 30, and 36 hr post-infection (p.i.) in order to
obtain cell lysates. Two JEV persistently infected BHK-21
cell clones, cBS6-2 and cBS6-3, were freshly seeded and
harvested at their confluence on the culture flask; their cell
lysates were subjected to Western blotting. Phosphorylation
of PERK was gradually increased, peaked at 18 hr p.i.,
and decreased thereafter in acutely JEV-infected cells
(Figure 2A). In persistently JEV-infected cells, however,
there was only a minute amount of both PERK and
p-PERK. Unlike PERK, the expression of elF2a in the
persistently infected cells seemed enhanced, as shown
in normal BHK-21 cells with JEV acute infection at
30-36 hr p.i; however, the amount of p-elF2a was barely
detectable (Figure 2A).

Phosphorylation of elF2a often leads to inhibition of
protein translation in general, but the translation of
ATF4 is promoted by p-elF2a [35]. This phenomenon
was reconfirmed in this experiment as the expression of
ATF4 increased gradually 6 hr p.i. in JEV acutely infected
cells (Figure 2A). CHOP, the key mediator of ER stress-
induced apoptosis, was also induced and accumulated

gradually along with the ATF4 activation. In contrast, for
the JEV persistently infected cell clones, the expression of
CHOP was not detected at all, even in the presence of
ATF4 for its transcription (Figure 2A). Unlike c¢BS6-2,
impaired expression of ATF4 in ¢cBS6-3 was repeatedly
noticed in several independent experiments. It was
noteworthy that a much higher level of BiP was main-
tained in both JEV persistently infected cells throughout
the culture period.

To further investigate whether the JEV persistently
infected cell clones kept the UPR pathway intact, naive
BHK-21 cells and the two cell clones with JEV persistent
infection were treated with 0.5 pg tunicamycin mL ™" for
24 hr. Compared to the DMSO-treated control, both
tunicamycin-treated normal BHK-21 cells and cBS6-2
cells showed PERK-elF2a-ATF4 pathway activation
followed by CHOP induction (Figure 2B). Most of the
cells treated with tunicamycin, including ¢BS6-2 and
cBS6-3 cells, succumbed to apoptotic cell death within
24 hr (data not shown). Although CHOP was also clearly
induced, expression of p-PERK or ATF4 in c¢BS6-3
cells was not comparable to the normal BHK-21 cells
or ¢BS6-2 cells on tunicamycin treatment for unknown
reasons. This observation suggests that cBS6-3 cell clones
may utilize another pathway to induce CHOP expression,
perhaps involving IRE1 activation. These differences in
the activation process of the BiP-PERK arm between
¢BS6-2 and ¢BS6-3 imply that individual cells comprising
a cell batch with JEV persistent infection could have their
own unique modification in cellular physiology to avoid
the virus-induced apoptosis.

Taken together, these results suggest that the JEV
persistently infected cells avoid fulminant apoptosis
by maintaining a constant, highly-elevated level of BiP,
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Figure 2 Modulation of the unfolded protein response in persistently JEV-infected cell clones. (A) Protein samples were collected from
BHK-21 cells infected with JEV at an MOI of 1 at 0 to 36 hr p.i, and from persistently JEV-infected (PI) cell clones cBS6-2 and cBS6-3. Cell lysates
were analyzed by Western blotting for p-PERK, total PERK, p-elF2q, total elF2a, ATF4, CHOP, BiP, JEV NS3, and the internal control 3-actin. Band
intensities for BiP and NS3 were determined by densitometry and normalized to those for B-actin. (B) BHK-21 cells and PI cell clones treated with
0.5 pg tunicamycin mL™" (lanes TUN), or with DMSO, were harvested 24 hr later, and the cell lysates were prepared and determined for protein

which results in the complete suppression of CHOP
induction.

Silencing CHOP expression blocked JEV-induced apoptosis
without the serious intervention of viral replication

Based on the observations, there was no detectable
CHOP expression during continued virus replication in
the JEV persistently infected cells (Figures 1B, 2A, and
Additional file 1: Figure S1). Therefore, we attempted to
clarify the effects of CHOP on JEV-induced apoptosis
and on virus replication efficiency. Naive BHK-21 cells
transfected with specific siRNA for CHOP were infected
with JEV at 24 hr post-transfection and harvested at
36 hr p.i. The cell lysates were examined by Western
blotting with antibodies against CHOP, Bcl-2, caspase-3,
and JEV NS3. The expression of CHOP was efficiently
silenced, and cleavage of caspase-3 was not detected in
siCHOP-transfected cells (Figure 3A). We also found
that, even in the reduced expression of Bcl-2, siCHOP-
transfected cells were highly resistant to the JEV-induced
cytopathic effect, as measured by trypan blue exclusion
(Figure 3A and B).

The level of JEV NS3 protein in the cells transfected
with siCHOP and then infected with JEV was slightly
lower than that of the other cells transfected with scram-
ble siRNA (Figure 3A). This observation aligns with the
result that the virus titer obtained from the CHOP-
silenced cells was slightly compromised compared to
those from the control cells at 48 hr p.i. (Figure 3C).

These results are also consistent with a report noting
that up-regulation of CHOP during JEV infection plays a
key role in virus-induced apoptosis [31]. As infectious
bronchitis virus-induced apoptosis was suppressed and
virus replication inhibited in the CHOP-knockdown cells
[36], the complete blockage of CHOP expression in cBS6-2
or cBS6-3 cells might intervene in JEV replication and
therefore assist in the development of JEV persistent in-
fection. However, a clear explanation for this observation
is presently beyond the scope of this study.

Silencing BiP expression in JEV persistently infected cells
led to CHOP induction, followed by severe reduction in
cell viability

In this study of JEV persistently infected cells compared
to an acute infection in normal BHK-21 cells, the most
distinguishable aspects regarding the UPR factors were
the complete depletion of CHOP and the constant up-
regulation of BiP expression (Figure 2A and Additional
file 1: Figure S1). Some previous studies also showed that
BiP overexpression attenuates ER stress signaling and is
protective against apoptosis [37]. Therefore, we decided to
assess the implications of the constant expression of BiP
for maintaining cell viability against virus-induced apop-
tosis in the JEV persistently infected cells.

The ¢BS6-2 and c¢BS6-3 cells were transfected with
specific siRNA for BiP and harvested 40 hr later. The
effect of BiP silencing was examined by Western blotting
with antibodies against BiP, CHOP, caspase-3, and JEV
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Figure 3 Effects of CHOP silencing on wild-type JEV infection. (A) BHK-21 cells were transfected with specific SiRNA for CHOP or non-specific
scramble siRNA and infected with JEV at an MOI of T or mock infected at 24 hr post-transfection. Cells were harvested at 48 hr p.i. The cell lysates
were subjected to Western blotting with CHOP, Bcl-2, caspase-3, JEV NS3, and {3-actin as an internal control. The number of viable cells (B) and
infectious virus particles (C) from the (A) sample were determined by trypan blue exclusion and plaque-forming assay, respectively. *P < 0.05,

**P < 0.005.

NS3. The expression of BiP was suppressed almost com-
pletely by siBiP in both ¢BS6-2 and cBS6-3 cells, while
the CHOP expression was clearly induced (Figure 4A).
In addition, the numbers of viable cells decreased
significantly in both cell lines according to cleavage of
caspase-3 (Figure 4A and B). The results suggest that
the constant overexpression of BiP in the JEV persistently
infected cells somehow holds back CHOP expression,
resulting in the prevention of virus-induced apoptosis.
This observation is consistent with reports that the
inhibition of CHOP guarantees a higher survival rate both
in vivo and in vitro even though CHOP is not the sole
factor promoting cell death undergoing ER stress [38,39].
Furthermore, these results revealed that resistance against
virus-induced apoptosis of the cBS6-2 and cBS6-3 cells
did not result from the lower level of virus replication
efficiency; rather it was ascribable primarily to the active
participation of cellular factors in the UPR.

Conclusions

In conclusion, BHK-21 cells with JEV persistent infec-
tion strive against virus-induced apoptosis through con-
stant up-regulation of BiP expression, a key chaperone
involved in ER stress. As demonstrated in tunicamycin
treatment, these cells maintained their capacity to decide
their own cell death fate by inducing CHOP, although

some of the UPR factors relaying the BiP-PERK-ATF4
arm appeared to be impaired.

In a previous study, we successfully established JEV
persistent infection in several mammalian cells in the
presence of DI particle generation [27]. Certain modifi-
cations in the genetic makeup of helper JEV could also
play a role in the development and maintenance of the
viral persistent infection [27]. Therefore, the observa-
tions made in this experiment demonstrate that both
the compromised virus replication capacity and certain
cellular factors, such as the UPR factors, also participate
in establishing viral persistent infection in mammalian
cells.

Our study highlights the importance of certain host
cell factors in ER stress-signaling pathways for JEV
persistence by utilizing an in vitro model for the first
time. This work provides new insight into the com-
plex mechanism of viral persistence and potentially
contributes to developing useful agents and tools for the-
rapeutic intervention in the clinical sequelae of Japanese
encephalitis.

Materials and methods

Cells and virus

Baby hamster kidney-21 (BHK-21; Korea Cell Line Bank)
cells were maintained in a minimum essential medium
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(MEM; Gibco) containing 5% FBS (Gibco) and 100 units
of penicillin-streptomycin (Gibco) mL™". The persist-
ently JEV-infected BHK-21 cells have been described
previously [27]. Two cell clones, cBS6-2 and cBS6-3, were
chosen for use. All cells were grown at 37°C in a 5% CO,
incubator. JEV K94P05 strain (provided by the Korean
National Institute of Health) was employed throughout
this study. Propagation of the virus was carried out in
BHK-21 at 37°C in MEM supplemented with 5% FBS for
72 hr. After infection, the virus-containing supernatant
was collected and centrifuged to remove cell debris, and
then stored at -72°C.

Plaque-forming assay

The virus was inoculated on a monolayer of BHK-21
cells in 35 mm plates; an overlay medium was applied
containing 5% FBS, 1% penicillin-streptomycin (10,000 U),
15% 5x MEM, 61% 1x MEM, and 1% agarose. After 3 to
4 days incubation, the cells were fixed with 3.7% formal-
dehyde in phosphate buffered saline (PBS) for 2 hr and
stained with 0.1% crystal violet. To titrate the intracel-
lular virus particles, the infected cells were washed with
PBS, trypsinized, and resuspended in 1 ml of MEM.
After three times of freeze and thaw cycles, the cell deb-
ris was pelleted before collecting the virus-containing

supernatant. The virus titer was determined by a
plaque-forming assay.

Flow cytometry

To analyze apoptosis, an annexin V-fluorescein isothio-
cyanate (FITC) and PI double-staining method (MEB-
CYTO Apoptosis kit; MBL) was used according to the
manufacturer’s protocol. After the adherent cells were
harvested, they were re-suspended in binding buffer, and
5 pL annexin V-FITC and 1.5 puL PI were added to the cell
samples. The mixtures were incubated for 15 min in the
dark at room temperature and then analyzed by flow
cytometry (BD FACSCalibur).

Antibodies and reagent

Tunicamycin (Sigma-Aldrich) was dissolved in DMSO.
Rabbit anti-NS3 antibody was kindly provided by Professor
Radhakrishnan Padmanabhan (Georgetown University,
USA). Antibodies against p-PERK, total PERK, p-elF2a,
total elF2q«, BiP, and caspase-3 were purchased from Cell
Signaling Technology. Antibodies against CHOP and
Bcl-2 were purchased from Santa Cruz Biotechnology.
Anti-ATF4 antibody and Anti-B-Actin antibody were
sourced from Abcam and NeoMarkers, respectively. HRP-
conjugated goat anti-mouse antibody and HRP-conjugated
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goat anti-rabbit antibody were obtained from Molecular
Probes and Invitrogen, respectively.

RNA interference

The BHK-21 cells, cBS6-2 and cBS6-3, were seeded in
6-well plates and grown to 50% confluence. siCHOP,
siBiP, and scramble siRNA were purchased from Santa
Cruz. Transfection of siRNA was conducted using jet-
PRIME™ (Polyplus-transfection) according to the manu-
facturer’s instructions. The BHK-21 cells were infected
with JEV at 24 hr post-transfection. The cells and the
supernatant were harvested at 48 hr post-infection,
and the PI cell clones were harvested at 40 hr post-
transfection for further analysis. The collected super-
natant was used for the quantification of the viral
production, and viable cells were counted using trypan
blue exclusion.

SDS-PAGE and Western blot analysis

For total protein extraction, virus- or mock-infected cells
in monolayers were washed with cold PBS and then
lysed in ice-cold M-PER buffer (Pierce) with a cocktail
of protease inhibitors (Roche). Proteins were separated
with 7.5% or 12% gradient PAGE using the Gradi-Gel™
gradient analysis kit (Elpis biotech); they were subse-
quently transferred to PVDF membrane (Millipore).
The membrane was blocked with 5% skim milk in
TBST. Primary antibodies were incubated at 4°C with
membrane overnight in 3% skim milk in TBST or 3%
BSA in TBST. After primary incubation, the mem-
brane was washed in TBST once for 5 min and three
times for 10 min; it then was incubated with secondary
antibodies in 3% skim milk in TBST at room tempe-
rature for 2 hr. The membrane was washed again three
times in TBST for 10 min, and the proteins were
detected with an enhanced luminol-based chemilumi-
nescent detection kit (AbFrontier) according to the
manufacturer’s instructions.

Densitometry
The intensities of bands from Western blot analysis
were quantified using the Image] program (National
Institutes of Health) according to the developer’s
instructions.

Statistical analysis

The data were presented as mean + standard devia-
tions (SD) of three independent experiments. The
differences between groups were assessed by Student’s
t test. A P value <0.05 was considered statistically sig-
nificant. All statistical analyses were performed using
SPSS.
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Additional file

Additional file 1: Figure S1. Modulation of BiP and CHOP expression
in the persistently JEV-infected cell clones. Protein samples were collected
from BHK-21 cells infected with JEV at an MOI of 1 at 0 to 36 hr p.i, and
from persistently JEV-infected (PI) cell clones cBS6-2 and cBS6-3. Cell
lysates were analyzed by Western blotting for CHOP, BiP, JEV NS3, and
the internal control B-actin. Band intensities for BiP and NS3 were
determined by densitometry and normalized to those for B-actin.
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