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Abstract

Background: Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV)
infection together with some bacteria is found to enhance pathogenicity.

Methods: SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification.

Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV
and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility

trachea and a longer virus shedding period.

in pigs and humans.

and transmissibility. Differences in viral titers between groups were compared using Student’s t-test.

Results: During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14%) of 29 influenza A viruses
were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial
susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used
antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and
transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S.
maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission
among guinea pigs was observed, virus—bacteria co-infections resulted in higher virus titers in nasal washes and

Conclusions: This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine
population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the
infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV
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Background

Influenza A virus infection is a clinically and economically
important pathogen causing respiratory disease in pigs
worldwide. Swine influenza virus (SIV) subtypes HIN1,
H3N2 and HIN2 can also cause zoonotic disease with flu-
like symptoms in humans [1]. The recent emergence of the
pandemic HIN1 virus was potentially of swine origin and
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provides a reminder that infection of pigs with influenza A
viruses pose important public health concerns [2].

Influenza virus infections are usually exacerbated by
secondary bacterial infections, and are one of the major
causes of severe influenza pneumonia in humans, pos-
sibly due to the synergistic effect of these microorgan-
isms during respiratory tract invasion [3,4]. It was
reported that co-infection of SIV and bacteria such as
Streptococcus pneumoniae, Haemophilus influenzae or
Staphylococcus aureus leads to higher morbidity and
mortality in mammals [5-7].

From our swine influenza surveillance work from 2006
to 2009, samples were inoculated into specific pathogen
free (SPF) eggs for viral isolation [8]. It was found that
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inoculated embryonated eggs of some SIV-positive isolates
died during the isolation procedure. Visual inspection of
these eggs showed that the allantoic fluid was turbid. From
previous experience, the majority of SIVs do not cause egg
death, as any bacteria in the swab are killed by the mul-
tiple antibiotics in the transport medium. Thus, we
hypothesized that the collected samples contained bacteria
that was not killed by antibiotics in the transport medium,
and that these multidrug resistant bacteria survived by es-
caping antibiotic treatment, and might contribute to an
increased chance of co-infection with influenza virus due
to the enhancement of viral susceptibility and interspecies
transmission. In light of reports of SIV infections in
humans, especially in individuals that have had direct con-
tact with pigs [9], this study aimed to identify co-infecting
bacteria and investigate their interactions with SIV in viral
replication and transmission using a guinea pig infection
model.

Results

Bacterial isolation and identification

SIV-positive samples still containing bacteria after treat-
ment with antibiotics in viral transport medium were sub-
jected to bacterial isolation and identification. All of the
isolates produced typically similar small (<1 mm), circular,
convex, colorless colonies. Analysis with the RiboPrinter
Microbial Characterization System demonstrated that all
these samples contained Stenotrophomonas maltophilia.
The isolates displayed a typical API 20 NE profile (1-4-3-
2-3-4-1) with a good identification score of 99.9% at the
species level (Table 1). Furthermore, the similarity of 16S
rRNA sequences from tested samples and S. maltophilia
[GenBank: HQ246220] was >99%. Thus, these findings
demonstrated that these isolates were S. maltophilia.
Among the 29 isolates, seven (24.14%) viruses were co-
infected with S. maltophilia: swine/Guangdong/7/06
(H3N2), swine/Shandong/133/07 (H3N2), swine/Fujian/
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43/07 (H3N2), swine/Guangdong/106/07 (H3N2), swine/
Guangdong/211/2006 (H3N2), swine/Guangdong/109/
2006 (HIN1) and swine/Guangdong/33/2006 (HINTI).
Further antimicrobial susceptibility testing using the disc
diffusion method showed that the bacteria were multidrug
resistant and possessed a high degree of resistance towards
clinically used antibiotics such as streptomycin, sulfadimi-
dine, gentamicin, trimethoprim, ampicillin, amoxicillin,
novobiocin, nitrofurantoin, cefotaxime, ceftazidime.

Susceptibility in guinea pigs

Guinea pigs have recently been shown to be an alterna-
tive mammalian model for the study of human infection
with influenza A virus, especially for the study of viral
transmissibility [10]. Thus, we used guinea pigs to evalu-
ate the susceptibility and transmissibility of SIV or SIV
co-inoculated with S. maltophilia. Among the seven
swine influenza isolates, A/Swine/Guangdong/7/06
(H3N2) belonged to a recent human-like lineage and
possessed the closest genomic homology with human
virus A/Moscow/10/99 [8]. This virus was therefore
selected for the animal experiments.

During the 14-day experimental observation period,
no weight loss was observed following infection with
SIV or S. maltophilia either alone or as a co-infection.
However, guinea pigs co-inoculated with the virus and
bacteria showed depression, while no obvious disease
signs were observed in the virus or bacteria-inoculated
groups. S. maltophilia were recovered from the tracheas
and lungs of the bacteria-inoculated groups but not from
the DPBS control group, which suggested that S. malto-
philia successfully infected the guinea pigs. Viruses were
recovered from nasal washes and tracheas but not from
lungs, with the highest viral titers occurring on day 2
post-inoculation (p.i.). The yields of infectious virus were
higher in nasal washes than in tracheas. The viral repli-
cation kinetics in the nasal washes and tracheas are

Table 1 Biochemical profile of the isolate with API 20 NE system

Reactions/Enzymes Results Reactions/Enzymes Results
Reduction of nitrates + Assimilation (mannitol) -
Indole production (tryptophane) - Assimilation (N-acetyl-glucosamine) +
Fermentation (glucose) — Assimilation (maltose) +
Arginine dihydrolase - Assimilation (Potassium gluconate) -
Urease — Assimilation (capric acid) -
Hydrolysis (B-glucosidase) (esculin) Assimilation (adipic acid) -
Hydrolysis (protease) (gelatin) Assimilation (malate) +
-galactosidase + Assimilation (trisodium citrate) +
Assimilation (glucose) — Assimilation (phenylacetic acid) -
Assimilation (arabinose) - Cytochrome oxidase -

Assimilation (mannose) +

“+: positive result; —: negative result.
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shown in Figure 1. The duration of virus replication was
longer in the co-inoculated group and viruses could be
detected on day 8 p.i. The virus titers in nasal washes in
the co-inoculated group were significantly higher
(P<0.05) than in the group with single virus inoculation
at all detection times. All guinea pigs inoculated with
SIV showed seroconversion when tested on day 14 p.i.
(Table 2).

Transmissibility in guinea pigs

Virus was not detected in any of the contact animals
and seroconversion tests were all negative for SIV, sug-
gesting that transmissibility did not occur in this experi-
ment (Table 2).

Histopathology in guinea pigs

To compare the histopathological changes in guinea pigs
inoculated with SIV or S. maltophilia alone or by co-in-
oculation, the trachea and lungs were removed from
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infected animals on day 4 p.i., were fixed in 10% neutral
buffered formalin and processed for routine histology.
The representative histopathology is shown in
Figure 2A-D. The histopathological changes in guinea
pigs infected with virus and bacteria were more severe
than in groups solely infected with virus or bacteria.
Guinea pigs infected with both virus and bacteria
showed severe pathological lesions in the trachea, char-
acterized by severely damaged tunica mucosa tracheae.
A number of mucous epithelial cell exfoliates, inflamma-
tory cells, and erythrocytes were found in the trachea.
Neutrophils were the predominant inflammatory cell
when analyzed at high magnification (Figure 2D). The
virus-infected groups showed mild pathological lesions
in the trachea, which were characterized by dropout of
mucous epithelium and few inflammatory cells adhering
to the surface of the trachea (Figure 2C). There were no
apparent histological changes observed in the trachea of
the bacteria-infected and control groups (Figure 2A-B).

Nasal wash titers (log;,EID5¢/ml)

N v ™ ©

Tracheal titers (logqoEID5¢/ml)

N 2 ™ [
Days post-inoculation

significant differences of means with p<0.01.

Days post-inoculation

Figure 1 Replication of influenza virus A/Swine/Guangdong/7/06 (H3N2) in guinea pigs. Groups of 18 animals were inoculated intranasally
with 100 pL (10° EIDs) of virus, or a 100 plL mixture of virus (10° EIDso) and S. maltophilia (1.5x 107 CFU). On days 1, 2, 4, 6 and 8 post-
inoculation, three animals from each group were euthanized. Nasal wash, tracheas and lungs were collected for virus titration in eggs. (A) Virus
titers in nasal washes. (B) Virus titers in tracheas. Each bar represents the virus titer expressed as mean logq EIDso/mL + SD. The lower limit of
detection was 10" EIDso/mL, or 10" EIDso/mL of tissue homogenate. Virus titers at each time point were compared between single virus-
inoculated and virus-bacterial co-inoculated groups. * indicates statistically significant difference of means with p <0.05, ** indicates statistically

SIV-alone group
EZ3 SIV-S.maltophilia group
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Table 2 Virus, clinical signs, virus replication, transmission and seroconversion of guinea pigs

Inoculum Inoculated guinea pigs

Contact guinea pigs Transmission

Peak mean nasal

Clinical signs .
wash titer + SD (day)

Seroconversion
(HI titer range)

Virus detected
h el
in nasal wash

Seroconversion
(HI titer range)

None 550+06 (2)

6.25+04 (2)

Swine influenza virus (SIV)

SIV+S. maltophilia Depression

3/3°(40) 0/3 0/3
3/3 (40-80) 0/3 0/3

None

None

“Number of positive guinea pigs/total number; “Peak nasal wash titers are expressed as the mean log;oEIDs/mL +SD; ““Serum was collected on day 14 p.i. for
the virus inoculated group and on day 21 p.i. for the contact group, and homologous strains were used to detect SIV seroconversion with chicken red blood cells
in hemagglutination inhibition assays. ““"The lower limit of detection was 10" EIDso/mL.

In addition, no apparent histological changes were observed
in the lungs of all the infected and control groups.

Discussion

During the surveillance period (2006—2009), we found the
first evidence for co-infection of SIV and S. maltophilia in
pigs in several provinces in China, where the isolated
S. maltophilia showed multidrug resistance. The co-
infection of SIV and S. maltophilia has only previously been
reported in Brazil [11].

S. maltophilia is an aerobic, non-fermentative, Gram-
negative bacterium belonging to the genus Stenotropho-
monas [12]. S. maltophilia is ubiquitous in aqueous
environments, soil and plants, and frequently colonizes
breathing tubes such as endotracheal or tracheostomy

tubes, the respiratory tract and indwelling urinary cathe-
ters. It is a causal agent of infection and has gained con-
siderable prominence in recent years as an important
nosocomial pathogen associated with significant case/
fatality ratios in debilitated or immunosuppressed patients
[13-17].

In 2004, S. maltophilia was first reported in pigs from
China [18], which was followed by several reports de-
scribing bacteria infecting both healthy and diseased pigs
[19-21]. However, the colonization rate of swine with
S. maltophilia in China was unknown, and co-infection
of S. maltophilia and influenza A virus had not been
previously reported in the Chinese swine population.

In this study, the synergistic effect of SIV and S. mal-
tophilia caused depression in co-infected guinea pigs.

B

b

(A, B, and D) x 400; Cx 200.

Figure 2 Representative histopathological changes in HE-stained trachea from inoculated guinea pigs day 4 post-inoculation.

(A) Negative control. No apparent histopathologic lesions. (B) Bacteria-infected group. No apparent histopathologic lesions. (C) Virus-infected
group. Dropout of mucous epithelium and inflammatory cell infiltration (solid arrow). (D) Co-infected group. Dropout of mucous epithelium cells,
with many neutrophils and erythrocytes present (solid arrow). Tissue sections were observed under a microscope (Nikon, Japan). Magnification:
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Higher virus titers in nasal washes and tracheal sam-
ples and a longer period of virus shedding in nasal
washes of co-infected animals was found in compari-
son with animals infected only with either virus or bac-
teria. In addition, the co-infected group showed more
severe pathological lesions in the trachea than the
other groups. This in vivo finding suggests that co-
infection can enhance SIV replication during infection
of guinea pigs. However, replication of the virus was
still confined to the upper respiratory tract and was
not found in the lungs, as is the case for most human
influenza viruses [22-24]. Swine influenza viruses can
cause disease in humans [1]. Several cases of co-
infection of influenza A virus and S. maltophilia in
humans have also been reported [11,25]. S. maltophilia
is a multidrug resistant bacterium and possesses a high
degree of resistance towards most commonly used
broad-spectrum antibiotics, which is also confirmed in
this study [26,27]. S. maltophilia can survive antibiotic
treatment and co-infect hosts together with SIV, which
can enhance viral replication and may increase the in-
cidence of human infection with SIV, or SIV and
S. maltophilia. During the treatment of SIV co-infection,
controlling S. maltophilia will contribute to a reduction in
illness and viral spread in pigs and human.

Conclusions

Here, we present data providing the first evidence for
co-infection of influenza A virus and S. maltophilia in
Chinese pigs. We show that co-infection contributed to
the virulence of SIV in experimental guinea pigs. SIV
and S. maltophilia pose an important public health con-
cern, we believe it is of interest to further investigate co-
infections involving these two infectious agents.

Material and methods

Samples

From 2006 to 2009, 3,546 nasal and tracheal swab sam-
ples were collected for influenza surveillance in four
main swine industrial provinces in China (Beijing,
Fujian, Guangdong and Shandong). Twenty-nine strains
of swine influenza A virus, including 19 HIN1, a single
HIN2 and 9 H3N2 strains were obtained. Genetic
characterization of these viruses was reported in a previ-
ous study [8]. Swab sample transport medium contained
minimum essential medium (MEM), 2 x 10’ IU/L penicil-
lin G, 1x107IU/L streptomycin, 100 mg/L gentamicin,
100 mg/L nystatin, 100 mg/L polymyxin B and 1000 mg/L
sulfanilamide. SIV-positive samples suspected of contain-
ing bacteria (assessed by egg death and turbidity of the
allantoic fluid) were used for bacterial isolation and
identification.
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Bacterial isolation and identification

SIV-positive swab samples suspected of containing bac-
teria were streaked onto LB agar plates and incubated at
37°C for 24 h. Bacterial colonies were collected and
identified using a RiboPrinter Microbial Characterization
System (DuPont Qualicon, DE, USA) [28]. Biochemical
characterization was performed using an API 20 NE
(BioMerieux, France) and analyzed with Apiweb soft-
ware (BioMerieux, France) according the manufacturer’s
instructions [29]. To confirm the identified result, sev-
eral colonies selected randomly were used as template
for 16S rRNA sequencing as previously described [30].
Sequences were analyzed by Basic Local Alignment
Search Tool (BLAST) for species identification as previ-
ously described [29].

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by
disc diffusion methods recommended by the Clinical
and Laboratory Standards Institute (CLSI). The anti-
microbial discs tested included ofloxacin, levofloxacin,
streptomycin, sulfadimidine, gentamicin, azithromycin,
trimethoprim, ciprofloxacin, minocycline, ampicillin,
amoxicillin, novobiocin, vancomycin, nitrofurantoin,
cefotaxime, ceftazidime. (supplied by Tiantan Company
of Pharmaceutical and Biological Products Development,
Beijing, China). Determination of the antimicrobial sus-
ceptibility test was performed according to the manufac-
turer’s instructions, which followed the criteria of the
CLSI. Reference strains Escherichia coli ATCC 25922
and Pseudomonas aeruginosa ATCC 27853 were used as
quality control organisms in all antimicrobial susceptibil-
ity tests.

Animals

To investigate the interaction of SIV and S. maltophilia
in influencing viral susceptibility and transmissibility in
mammalian hosts, SPF/VAF (virus antibody free) Hartley
strain female guinea pigs weighing 300-350 g and sero-
logically negative for influenza virus were used. Animal
experiments were approved by the Beijing Association
for Science and Technology, the approve ID is SYXK
(Beijing) 2007-0023, and complied with the guidelines
of Beijing laboratory animal welfare and ethical of Beijing
Administration Committee of Laboratory Animals. Zoletil
100 (tiletamine-zolazepam; Virbac S.A., Garros, France)
was used to anesthetize animals by intramuscular injec-
tion (10-15 mg/kg).

Susceptibility in guinea pigs

Animals were inoculated with SIV or S. maltophilia
alone or by co-infection of SIV and S. maltophilia.
Groups of 18 animals were anesthetized and inoculated
intranasally with 100 pL (10° 50% egg infection dose,
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EIDso) of virus, or 100 uL of 1.5x 107 colony forming
units (CFU) S. maltophilia, or a 100 pL mixture of the
virus (10° EIDs,) and bacteria (1.5 x 10’ CFU). Animals
inoculated with Dulbecco’s phosphate-buffered saline
(DPBS) were used as controls. On days 1, 2, 4, 6 and 8
p.i., three animals from each group were euthanized.
Nasal washes, tracheas and lungs were collected and a
part of each organ was homogenized in DPBS-A (DPBS
containing 2,000 U/mL penicillin G and 2.5 mg/mL
streptomycin) and then 0.10 mg/mL vancomycin was
added (the S. maltophilia isolate was sensitive to vanco-
mycin) for virus titration by EIDs, assay. Nasal washes
were performed by instilling a total of 1 mL of DPBS-A
into the nostrils and collecting liquid runoff into a sterile
Petri dish. To confirm successful bacterial inoculation,
tracheas and lungs were also collected for isolation and
identification on day 4 p.i., as previously described [31].
Groups of the remaining three animals were observed
for 2 weeks for body weight, signs of disease, and tested
for SIV seroconversion on day 14 p.i.

Transmissibility in guinea pigs

For the contact transmission study, groups of 15 naive
guinea pigs were housed with the virus-inoculated, or
virus and bacteria co-inoculated animals at 24 h p.i. and
observed for 21 days. On days 2, 4, 6 and 8 p.i,, the nasal
washes, tracheas and lungs of three contact animals for
each group were collected and titrated for EIDs, assay.
Groups of the remaining three animals were observed
over 21 days for body weight and signs of disease, and
tested for seroconversion on day 21 post-contact.

Histopathology
On day 4 p.i., trachea and lung specimens from inocu-
lated guinea pigs were fixed in 10% neutral buffered for-
malin, routinely processed, and embedded in paraffin.
Sections (4-pum thickness) were stained with hematoxylin
and eosin (HE).

Statistical analysis

Differences in viral titers between single virus-inoculated
and virus-bacterial co-inoculated groups were compared
using Student’s ¢-test. A P-value less than 0.05 was con-
sidered statistically significant.
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