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Induction of interleukin-10 is dependent on p38
mitogen-activated protein kinase pathway in
macrophages infected with porcine reproductive
and respiratory syndrome virus
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Abstract

Background: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure and
respiratory illness in pigs and usually establishes a persistent infection. Previous studies suggested that interleukin-
10 (IL-10) could play a critical role in PRRSV-induced immunosuppression. However, the ability of PRRSV to induce
IL-10 in infected cells is controversial. In this study, we further investigated this issue using PRRSV strain CH-1a,
which is the first North American genotype strain isolated in China.

Results: PRRSV strain CH-1a could significantly up-regulate IL-10 production both at mRNA and protein levels in
porcine alveolar macrophages (PAMs), bone marrow-derived macrophages (BMDMs), and monocyte-derived
macrophages (MDMs). However, up-regulation of IL-10 by PRRSV was retarded by specific inhibitors of p38
mitogen-activated protein kinase (MAPK) (SB203580) and NF-κB (BAY11-7082). Additionally, p38 MAPK and NF-κB
pathways but not ERK1/2 MAPK were actually activated in PRRSV-infected BMDMs as demonstrated by western blot
analysis, suggesting that p38 MAPK and NF-κB pathways are involved in the induction of IL-10 by PRRSV infection.
Transfection of PAMs and PAM cell line 3D4/21 (CRL-2843) with viral structural genes showed that glycoprotein5
(GP5) could significantly up-regulate IL-10 production, which was dependent on p38 MAPK and signal transducer
and activator of transcription-3 (STAT3) activation. We also demonstrated that a full-length glycoprotein was
essential for GP5 to induce IL-10 production.

Conclusions: PRRSV strain CH-1a could significantly up-regulate IL-10 production through p38 MAPK activation.
Background
Porcine reproductive and respiratory syndrome (PRRS)
is characterized by respiratory disease in piglets and se-
vere reproductive failure such as a high rate of late term
abortion and early farrowing in sows [1-3]. The etiologic
agent is PRRS virus (PRRSV), which contains 10 open
reading frames (ORFs) that encode 14 non-structural
proteins (NSPs) and 8 structural proteins. ORFs 2–7 are
located in the 3’terminal region of the genome and
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encode structural proteins including the minor envelope
glycoproteins GP2 (ORF2a), GP3 (ORF3), GP4 (ORF4),
small hydrophobic proteins E (ORF2b) and the recently
discovered ORF5a protein, the major envelope glycopro-
tein GP5 (ORF5), the non-glycosylated membrane pro-
tein M (ORF6), and the nucleocapsid protein N (ORF7)
[4-7]. PRRSV has two genotypes, the European genotype
(type I) and North American genotype (type II), accord-
ing to phylogenetic analysis [8].
Pigs that survive from the acute stage of PRRSV infec-

tion usually develop persistent infection up to 150 days
[9], which is probably due to the weak immune
responses such as poor interferon alpha (IFN-α) produc-
tion [10], delayed and weak neutralizing antibody re-
sponse [11,12], and lower T cell mediated immune
response [13]. Extensive studies have been showing that
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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many intracellular pathogens that specifically target
macrophages for infection could exploit IL-10 to sup-
press host innate and adaptive immune responses
[14-17]. The mRNA profiles in bronchoalveolar lavage
cells (BALC) from piglets infected in-utero with PRRSV
suggested that IL-10 could play a role in PRRSV-induced
immunosuppression [18]. Previous studies also showed
that PRRSV infection in vitro significantly up-regulated
IL-10 gene expression in porcine peripheral blood
mononuclear cells (PBMC), porcine alveolar macro-
phages (PAMs), bone marrow-derived immature den-
dritic cells (BM-imDCs), and PBMC-derived mature
dendritic cells [19-22]. In in-vivo model, both the Euro-
pean and North American PRRSV strains could signifi-
cantly induce IL-10 gene expression in PBMC and
BALC of infected pigs [19]. However, a recent study
showed that there were differences among various Euro-
pean strains of PRRSV in IL-10 induction in DCs [23].
In the case of North American PRRSV strains, SD-23983
lacked the capacity to up-regulate IL-10 in DCs [24]. A
virulent strain vFL12, which is derived from an infec-
tious cDNA clone, also could not up-regulate IL-10 ex-
pression both in vitro and in vivo [25]. Therefore, the
ability of PRRSV to induce IL-10 production could be
strain-dependent and needs to be further investigated.
IL-10 gene expression in macrophages can be induced

by stimuli such as lipopolysaccharide (LPS). It has been
demonstrated that LPS-induced IL-10 production in
human peripheral blood monocytes is dependent on the
endogenous pro-inflammatory cytokines IL-1 and/or
tumor necrosis factor alpha (TNF-α) through p38 but
not ERK1/2 mitogen-activated protein kinase (MAPK)
signaling pathway activation [26]. Whereas stimulation
of murine bone marrow-derived macrophages (BMDMs)
with LPS plus FcgammaR (FcγR) ligation leads to
enhanced ERK1/2 activation and increased signal trans-
ducer and activator of transcription-3 (STAT3) binding
to the IL-10 promoter [27]. Zymosan, a stimulus for
Toll-like receptor TLR2 and dectin-1, induces DCs to
secrete abundant IL-10 through activation of ERK1/2
[28]. However, the regulation of IL-10 production in
porcine macrophages during PRRSV infection is poorly
understood. In the present work, we investigated the
ability of PRRSV to induce IL-10 production in porcine
macrophages and its underlining molecular mechanisms.

Results
IL-10 production is up-regulated at both mRNA and
protein levels after PRRSV infection
Previous studies have shown that different PRRSV iso-
lates and genotypes might have a distinct ability to in-
duce IL-10 production in infected cells. We further
investigated this issue using PRRSV strain CH-1a, which
is the first North American genotype strain isolated in
China in 1996. PAMs, BMDMs, and monocyte-derived
macrophages (MDMs) were inoculated with PRRSV or
UV-inactivated virus. IL-10 mRNA was significantly up-
regulated in PAMS at 12 h (2.9-fold) and 24 h (6.1-fold)
post PRRSV infection (h.p.i.) (Figure 1a). Secreted IL-10
protein level was also increased at 24 h.p.i. (Figure 1b).
In addition, PRRSV infection induced a higher expres-
sion of IL-10 in BMDMs compared with PAMs both at
the transcriptional level (about a 21-fold increase in
BMDMs and a 6-fold increase in PAMs at 24 h.p.i.) and
translational level (about 78 pgml-1 in BMDMs and
12 pgml-1 in PAMs at 24 h.p.i.) (Figure 1c and 1d). The
results in MDMs were nearly the same as in BMDMs
(Figure 1e and 1f). However, the UV-inactivated virus
did not significantly induce IL-10 production either at
IL-10 mRNA level or at protein level. Thus, these results
suggested that the PRRSV strain CH-1a could stimulate
IL-10 production in PAMs, BMDMs, and MDMs
in vitro.

Inhibition of p38 MAPK and NF-κB pathways abrogates
the production of IL-10
We first examined the effect of signal transduction path-
way inhibitors on PRRSV replication. BMDMs were
infected with PRRSV in the presence of either the PI3K
inhibitor LY294002, the ERK1/2 inhibitor PD98059, the
p38 inhibitor SB203580, or the NF-κB inhibitor BAY11-
7082 at various concentrations, and the virus titers in
the cell supernatants at 24 h.p.i were determined. The
cytotoxicity of all the inhibitors was determined by try-
pan blue exclusion dye staining. All concentrations of
the inhibitors used in this study neither caused detect-
able cell death nor significantly altered PRRSV replica-
tion in BMDMs (Figure 2).
Then, we investigated which signaling pathway was

involved in the regulation of IL-10 production by PRRSV
infection. Our results showed that IL-10 mRNA expres-
sion in BMDMs was significantly decreased to about
43%, 21%, and 11% when treated with p38 inhibitor
SB203580 at 1 μM, 5 μM, and 10 μM, respectively
(Figure 3a). NF-κB inhibitor BAY11-7082 aslo signifi-
cantly inhibited IL-10 expression in BMDMs and the IL-
10 level was dose-dependently down to 86%, 78%, 57%,
and 29% when compared with the PRRSV infected con-
trol (Figure 3a). PRRSV induced IL-10 production at the
protein level was also significantly decreased when trea-
ted with high concentration of p38 MAPK (5 μM and
10 μM) and NF-κB inhibitors (1 μM) (Figure 3b). Nei-
ther PI3K inhibitor LY294002 nor the ERK1/2 inhibitor
PD98059 inhibited PRRSV-induced IL-10 production.
Similar results were also observed in p38 and NF-κB
pathway inhibitor treated PAMs (data not shown). These
results suggested that p38 MAPK and NF-κB pathways
might be involved in PRRSV-induced IL-10 production.
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Figure 1 IL-10 was up-regulated in PRRSV-infected macrophages. PAMs and BMDMs were infected with PRRSV or UV-inactivated virus at an
MOI of 1. Cells stimulated with LPS (1 μgml-1) were used as positive control. (a), (c), (e) Cells were harvested at the indicated time points and
real-time PCR was performed to evaluate IL-10 mRNA levels. (b), (d), (f) Measurement of secreted IL-10 protein levels in the supernatant of
PRRSV-infected PAMs and BMDMs at indicated time points by ELISA. The results represent means ± SD of three independent experiments.
*Significant difference (P < 0.05) from media control using Student’s t-test.
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PRRSV-infection activates p38 MAPK and NF-κB pathway
in BMDMs
To confirm that p38 MAPK and NF-κB signaling path-
ways are activated in PRRSV-infected BMDMs, p38 and
ERK1/2 phosphorylation and IκB degradation were ana-
lyzed by western blot. As shown in Figure 4(a), the phos-
phorylated p38 was significantly increased at 12 h and
24 h post infection. PRRSV infection slightly stimulated
ERK1/2 phosphorylation in BMDMs at 3 h.p.i., and then
the phosphorylation gradually declined. At 36 h.p.i., viral
infection induced obvious cytopathic effect (CPE) which
may lead to the decreases of p38 and ERK1/2. Cells
inoculated with UV-irradiated virus did not enhance p38
and ERK1/2 phosphorylation (Figure 4b). Furthermore,
IκB was gradually degraded in PRRSV-infected BMDMs
[29], MARC-145, and PAMs [30,31]. Thus, these results
suggested that PRRSV infection significantly activated
the p38 MAPK and NF-κB pathways but not ERK1/2
MAPK pathway.

GP5 induces IL-10 production both at mRNA and protein
levels
To examine which PRRSV protein could induce IL-10
production, all of the PRRSV structural and non-
structural protein genes (derived from the viral genome
of CH-1a strain) were cloned into a mammalian expres-
sion vector and verified for expression, except for NSP6
which has only 16 amino acids. Each of these constructs
was transfected into PAMs and real-time PCR was per-
formed. As shown in Figure 5(a), IL-10 gene expression
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Figure 2 Viral replication was not obviously affected when cells were treated with inhibitors of p38 (SB203580), ERK1/2 (PD98059),
PI3K (LY294002), and NF-κB (BAY11-7082) pathways. (a) BMDMs were pretreated with DMSO or PI3K inhibitor LY294002, ERK MAPK inhibitor
PD98059, p38 inhibitor SB203580, and NF-κB inhibitor BAY11-7082 at the indicated concentrations for 2 h. Cells were then infected with PRRSV
(MOI = 1) and harvested at 24 h.p.i.. Virus titers in the cell supernatants were measured by a standard 50% tissue culture infective doses (TCID50)
assay. (b) BMDMs were treated with DMSO or PI3K inhibitor LY294002, ERK MAPK inhibitor PD98059, p38 inhibitor SB203580, and NF-κB inhibitor
BAY11-7082 at the indicated concentrations for 24 h. Then the cytotoxicity of the inhibitors on BMDMs was determined by trypan blue exclusion
dye staining. Data represent means ± SD of three independent experiments.
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was significantly induced by ORF2a, ORF4 and ORF5
compared with empty vector (2.4-fold, 1.8-fold, and 6.5-
fold, respectively). On the contrary, none of the PRRSV
NSPs could induce IL-10 mRNA production and among
all NSPs screened, NSP1, NSP2, and NSP4 down-
regulated IL-10 mRNA levels to 68%, 54%, and 61%
compared with control vector, respectively. Similar
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Figure 3 PRRSV-stimulated IL-10 production was selectively inhibited
BMDMs were pretreated with DMSO or PI3K inhibitor LY294002, ERK MAPK
BAY11-7082 at the indicated concentrations for 2 h. Cells were then infecte
isolated from cells was reverse transcribed and then analyzed using real-tim
ELISA. Data represent means ± SD of three independent experiments. *Sign
results were obtained in the PAM cell line 3D4/21
(CRL-2843) (data not shown). Among the PRRSV struc-
tural proteins, only GP5 significantly induced IL-10 pro-
duction in PAMs at protein level when compared to
controls (Figure 5b), which was further confirmed with
the result that porcine IL-10 promoter activity was
increased to about 2.2-fold in GP5- transfected CRL-
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d with PRRSV (MOI = 1) and harvested at 24 h.p.i.. (a) Total RNA
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ificant difference (P < 0.05) from PRRSV control using Student’s t-test.
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Figure 5 GP5 induced IL-10 mRNA and protein expression. (a) PAMs were transfected with PRRSV structural and non-structural proteins
(2 μg) or stimulated with LPS (1 μgml-1) as positive control. IL-10 mRNA expression at 24 h post transfection was evaluated by real-time PCR. (b)
Cell supernatants collected from viral structural protein transfected PAMs were analyzed for IL-10 production by ELISA. (c) CRL-2843 cells were
cotransfected with a mixture of pIL-10-luc plasmid, pRL-TK plasmid, and viral structural protein-encoding plasmids or empty vector. At 24 h post
transfection, luciferase activities were measured with the Dual-Luciferase Reporter Assay System. (d) Increasing amounts (0.1, 0.5 and 2 μg) of
GP5-encoding plasmid were transfected into PAMs. IL-10 mRNA expression at 24 h post transfection was examined by real-time PCR. The results
represent means ± SD of three independent transfections. * Significant difference (P < 0.05) from empty vector control using Student’s t-test.
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2843 cells (Figure 5c). In addition, our results showed
that induction of IL-10 by PRRSV GP5 was in a dose-
dependent manner (Figure 5d).

The intact GP5 protein is required for the induction
of IL-10
To determine the essential region of GP5 to induce
IL-10 production, we transiently transfected PAMs with
constructs encoding wild-type GP5 or C-terminal and
N-terminal deletion mutants (Figure 6a). As shown in
Figure 6(b), the ability of deletion constructs N189,
N125, C30, C66, and C126 to induce IL-10 expression
was dramatically decreased compared with wild-type
GP5. Moreover, IL-10 expression induced by a
C-terminal-deletion construct N65 was down to the
basal level. These results suggested that the intact GP5
was required for its ability to induce IL-10 expression.

p38 MAPK and STAT3 pathways are involved in
GP5-induced up-regulation of IL-10
It was of interest to determine which pathways were
involved in GP5-induced IL-10 production. As shown in
Figure 7, GP5 dose-dependently (0.1, 0.5, and 2 μg) acti-
vated p38 MAPK but not ERK1/2. STAT3 was also acti-
vated in GP5 transfected CRL-2843 cells. Collectively,
these results indicated that p38 MAPK and STAT3 path-
ways were involved in GP5-induced production of IL-10.

Discussion
IL-10 is a regulatory cytokine which is known to inhibit
production of several pro-inflammatory cytokines such
as IL-1 and TNF-α. In this study, we showed that IL-10
was up-regulated in PRRSV CH-1a-infected PAMs,
BMDMs, and MDMs both at mRNA and protein levels
in vitro. A recent study focused on the genome-wide
host transcriptional responses to CH-1a infection also
WT
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over, through the use of signal transduction pathway
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MAPK and NF-κB signal transduction pathways played
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important roles in the induction of IL-10 during PRRSV
infection. This is in accordance with previous reports, in
which the authors showed that p38 MAPK pathway was
essential for IL-10 production induced by LPS [26,33].
Another study also reported that IL-10 production sti-
mulated by apoptotic cells was regulated at the tran-
scription level in a p38 MAPK dependent manner [21].
Transcription factor NF-κB is also likely to be a candi-
date for the transactivation of the IL-10 gene, since the
IL-10 promoter has nine putative NF-κB binding sites
[34]. We also showed that p38 MAPK and STAT3 path-
ways were activated in GP5-transfected macrophages
(Figure 7). It seems that p38 MAPK pathway is very im-
portant in IL-10 induction, since other viral proteins, for
instance, extracellular HIV-Tat also induced IL-10 tran-
scription in primary human monocytes through the acti-
vation of calmodulin/CaMK-II-dependent p38 MAPK
[35,36]. The STAT3 transcription factor may also bind
to an element in the IL-10 promoter and the use of a
dominant negative form of STAT3 was able to decrease
IL-10 transcription [37].
MAPK activation has also been shown to be required

for the optimal replication of some viruses [38]. In this
study, viral replication was not obviously affected when
cells were treated with inhibitors of p38 (SB203580),
ERK1/2 (PD98059), PI3K (LY294002), and NF-κB
(BAY11-7082) pathways (Figure 2). A previous study
showed that rhesus rotavirus replication was not signifi-
cantly altered by the presence of p38 inhibitor,
SB203580 at 10 μM in HT-29 cells or at 20 μM in
MA104 cells [39]. Lee et al. (2012) showed that
SB202190, another p38 inhibitor, down-regulated the
viral gene expression only at high concentration (10 μM)
[40]. Different p38 inhibitors might cause the differences
in the effects of inhibitors on PRRSV replication in trea-
ted cells. Lee et al. (2010) also demonstrated that
PD98059 had no effect on PRRSV replication in PAMs
[41]. In contrast to our results, a recent report indicated
that inhibition of PI3K/Akt by treatment with LY294002
at 25 μM prior to PRRSV infection reduced virus repli-
cation [42]. The different effects of PI3K inhibitor
LY294002 on PRRSV replication might be due to the dif-
ferent concentrations used in their and our studies. In
our report, we used no more than 10 μM.
GP5 is the most variable structural protein [43], and

plays an important role in PRRSV pathogenesis. For in-
stance, the existing of a decoy epitope in GP5 and
glycan-shielding of the neutralization epitopes contribu-
ted to delayed and weak neutralizing antibody response
[44,45]. GP5 was also suggested to be the apoptotic fac-
tor mediating the induction of apoptosis of uninfected
bystander cells [46,47]. Recently, a study using chimeric
viruses of a highly virulent strain vFL12 and an attenu-
ated vaccine strain showed that NSP3-8 and ORF5 were
the location of major virulence determinants [48]. Here,
we showd that GP5 induced IL-10 production. Taken
together, these results suggested that GP5 might play
important roles in the pathogenesis of PRRSV infection.
By using constructs truncated at different locations in
GP5, the full-length of GP5 structure seems to be essen-
tial for IL-10 induction. Truncation of proteins will com-
promise their overall structure. Thus, more subtle
changes could be introduced to map residues involved
in specific functions (e.g. mutations) in the future.
Collectively, our results demonstrated that PRRSV

strain CH-1a did up-regulate IL-10 production in
macrophages. However, studies using vFL12, a virulent
PRRSV strain, showed that there was no detectable level
of IL-10 in the supernatant of PRRSV-infected macro-
phages and dendritic cells [25], and TNF-α was also
poorly induced [49]. The authors suggested that the in-
duction of IL-10 by several other PRRSV strains may be
associated with their ability to induce pro-inflammatory
cytokines during the acute phase of infection. However,
IL-10 gene expression was up-regulated (1.9-fold)
whereas TNF-α gene was only slightly up-regulated (1.5-
fold) in Lelystad PRRSV strain-infected PAMs [20]. An-
other report demonstrated that exposure of BM-imDCs
to PRRSV resulted in a significantly increased secretion
of IL-10 but not TNF-α [50]. Interestingly, our lab found
that Chinese highly pathogenic PRRSV (HP-PRRSV) in-
fection failed to induce detectable IL-10 (unpublished
data), but induced lower levels of TNF-α in PAMs [29].
Further studies need to be done to figure out whether
IL-10 up-regulation is associated with virus induced im-
munosuppression as proposed or just associated with
their ability to induce pro-inflammatory cytokines.

Conclusions
In conclusion, our results showed that PRRSV strain
CH-1a is one of those strains that can up-regulate IL-10
production in different types of swine macrophages
(PAMs, BMDMs, and MDMs). Moreover, p38 MAPK
signal transduction pathway played an important role in
PRRSV induction of IL-10. This work may provide some
insights into the molecular mechanisms of IL-10 regula-
tion in swine macrophages during PRRSV infection.

Methods
Cell culture and virus preparation
MARC-145 cells, which is a PRRSV-permissive cell line
sub-cloned from MA-104 cells (African green monkey
kidney cells), were purchased from the China Institute of
Veterinary Drug Control and maintained in Dulbecco’s
minimum essential medium (DMEM) supplemented with
10% heat-inactivated FBS, 100U penicillin ml-1 and 0.1 mg
streptomycin ml-1. PAMs were obtained by postmortem
lung lavage of 8-week-old specific pathogen free (SPF)



Table 1 Primer sequences

Name Sequence

IL-10 F CGGCGCTGTCATCAATTTCTG

IL-10 R CCCCTCTCTTGGAGCTTGCTA

Cyclophilin F AATGGCACTGGTGGCAAGTC

Cyclophilin R GATGCCAGGACCCGTATGC

ORF5 F GGGGTACCATGTTGGGGAAATGCT

N189 R CGGGATCCCTATAAAGGGGTTGCCACGG

N125 R CGGGATCCCTAAATGACGAAGCAAATCAACGC

N65 R CGGGATCCCTACTCCACTGCCCAGTCAAAT

C126 F GGGGTACCAGGCTTGCGAAGAACTGC

C66 F GGGGTACCACTTTTGTCATCTTTCCCGTG

C30 F GGGGTACCAACGCCAACAGCAACAGC

ORF5 R CGGGATCCCTAGAGACGACCCCAT

Restriction enzyme sites are underlined.
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pigs, and maintained in RPMI 1640 supplemented with
10% FBS. PBMC were separated from peripheral blood
and further differentiated into MDMs as described previ-
ously [51]. Bone marrow cells were flushed from femur
and tibia and cultured in the same medium as MDMs.
Non-adherent cells were removed on day 3. After 5 days
of culture, differentiated macrophages (BMDMs) were
used for further study. The PAM cell line 3D4/21 (CRL-
2843) established by transformation of PAMs with SV40
large T antigen [52] was purchased from the American
Type Culture Collection (ATCC) and maintained in RPMI
1640 medium supplemented with 10% FBS as described
previously [31]. All the cells were maintained at 37°C with
5% CO2.

CH-1a (the first PRRSV isolate in China), a North
American genotype PRRSV strain, was propagated and
titrated in MARC-145 cells. Inactivation of PRRSV was
performed by UV irradiation of the virus suspension
with 120 mJ cm-2 using a Bio-Link crosslinker (Vilber
Lourmat). Virus inactivation was confirmed by inoculation
of the UV-treated virus on MARC-145 cells followed by
immunofluorescence assay against PRRSV N protein.

Inhibition of signal transduction pathways
BMDMs were preincubated with DMSO, or various con-
centrations of PI3K inhibitor LY294002 (1 to 10 μM)),
ERK1/2 MAPK inhibitor PD98059 (5 to 25 μM), p38
MAPK inhibitor SB203580 (1 to 10 μM), and NF-κB in-
hibitor BAY11-7082 (0.01 to 1 μM) (Enzo life Sciences)
for 2 h and then infected with PRRSV at an MOI of 1 for
24 h. LPS (E.coli 055:B5) purchased from Sigma was used
as a positive control for IL-10 induction. Cells were har-
vested and IL-10 mRNA levels were evaluated by real-
time PCR. Secreted IL-10 levels were determined by
ELISA. Virus titers in the cell supernatants were measured
by a standard 50% tissue culture infective doses (TCID50)
assay. The cytotoxicity of the inhibitors on BMDMs was
determined by trypan blue exclusion dye staining.

Construction and transfection of viral protein-encoding
plasmids
Genes encoding viral proteins were amplified from
CH-1a genome and cloned into pcDNA3.1-myc-his (N-
terminal tagged) between Kpn I and BamH I sites.
Three clones of each constructs were sequenced and
the clones of consensus sequence with the viral gen-
ome were used for further study. Truncated GP5 was
amplified from pcDNA3.1-GP5 using primers listed in
Table 1 and also inserted into pcDNA3.1-myc-his. The
expression of these constructs was verified by western
blot using rabbit anti-myc monoclonal antibody. PAMs
and CRL-2843 cells were transfected using Amaxa
Human Macrophage Nucleofector Kit in a Nucleofector
II (Lonza) with program Y-001.
Real-time PCR
Total cellular RNA was isolated using a Total RNA Kit
(OMEGA) and then on-column DNase I digestion was
performed to remove any contaminating DNA. Reverse
transcription was performed using M-MLV reverse tran-
scriptase (Promega) with oligo (dT) 15 primer. IL-10
mRNA expression was analyzed by SYBR-green based
real-time PCR using an ABI 7500 Real-Time PCR Sys-
tem. IL-10 mRNA copy numbers were normalized by
comparing to housekeeping cyclophilin copy numbers
and expressed relative to mock control. Primer
sequences were listed in Table 1.

ELISA
Cell supernatants of treated macrophages were centri-
fuged at 3,000 g for 5 min to remove cell debris and
stored at −80°C until use. Secreted IL-10 in the cell
supernatants were determined using commercial ELISA
kits (R&D Systems) according to the manufacturer’s
instructions.

Western blot analysis
Whole-cell extracts from treated BMDMs or CRL-2843
cells were prepared as follows. Cells were washed twice
with ice-cold PBS, lysed in 1% Triton X-100 lysis buffer
(20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM DTT,
1 mM EDTA, 10% glycerol, 1 mM DTT and 20 μM NaF )
for 15 min on ice. The lysates were centrifuged at 10,000 g
for 20 min and the supernatant was aliquoted and stored
at −80°C. Similar amounts of protein from each extract
were separated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinyl difluoride (PVDF) membranes
(Millipore). After blocking for 1 h with blocking buffer
(5% fat-free milk and 0.1% Tween-20 in PBS), the mem-
branes were incubated for 2 h with the following primary
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antibodies diluted at 1:2,000: anti-phospho-p38 MAPK
(no.9211), anti-p38 MAPK (no.9212), anti-phosphor-p44/
42 MAPK(ERK1/2) (no.4370), anti-p44/42 MAPK(ERK1/
2) (no.4695), anti-IκBα (no.9242) (Cell Signaling Technol-
ogy), anti-phospho-STAT3, anti-STAT3 (Signalway Anti-
body), anti-myc, and anti-α-Tubulin (MBL) antibodies.
HRP-conjugated anti-mouse IgG or anti-rabbit IgG (Santa
Cruz Biotechnology) were used as secondary antibodies at
a dilution of 1:5,000. The antibodies were visualized using
ECL reagent (GE Healthcare) according to the manufac-
turer’s instructions.

Luciferase reporter assays
pIL-10-luc plasmid was constructed by cloning porcine
IL-10 promoter sequences into pGL3 basic vector (Pro-
mega) in our lab [53]. CRL-2843 cells were cotransfected
with a mixture of pIL-10-luc plasmid, pRL-TK renilla
luciferase plasmid, and viral structural protein-encoding
plasmids or empty vector using Lipofectamine 2000
(Invitrogen). At 24 h post transfection, luciferase activ-
ities were determined with the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacturer’s
instructions.

Statistical analysis
All experiments were performed with at least three inde-
pendent replicates. Data were analyzed using two-tailed
Student’s t-test (paired). If the P value was less than 0.05,
the difference was considered to be statistically significant.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
WHF designed the study and revised the manuscript. RQ and YF constructed
viral structural protein-encoding plasmids and performed luciferase reporter
assays. HXZ conducted virus isolation and helped in manuscript reviewing.
JH and LHW performed all other assays presented, and drafted the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by Faculty starting grant and State Key Laboratory
of Agrobiotechnology (Grant 2010SKLAB06-1), China Agricultural University,
China.

Author details
1State Key Laboratories of Agrobiotechnology, Department of Microbiology
and Immunology, College of Biological Science, China Agricultural University,
Beijing 100193, China. 2Department of Microbiology and Immunology,
College of Biological Science, China Agricultural University, Beijing 100193,
China. 3Present address: Shihezi University School of Medicine, Shihezi,
Xinjiang 832002, China. 4Beijing Entry-exit inspection and quarantine bureau,
No.6 Tian shui yuan road, Beijing 100026, China.

Received: 26 January 2012 Accepted: 7 August 2012
Published: 21 August 2012

References
1. Dee SA, Joo HS: Recurrent reproductive failure associated with porcine

reproductive and respiratory syndrome in a swine herd. Journal of the
American Veterinary Medical Association 1994, 205:1017–1018.
2. Done SH, Paton DJ: Porcine reproductive and respiratory syndrome:
clinical disease, pathology and immunosuppression. The Veterinary record
1995, 136:32–35.

3. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson
WT, Morrison RB, Gorcyca D, Chladek D: Characterization of swine
infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332).
Journal of veterinary diagnostic investigation: official publication of the
American Association of Veterinary Laboratory Diagnosticians, Inc 1992,
4:127–133.

4. Snijder EJ, Meulenberg JJ: The molecular biology of arteriviruses. The
Journal of general virology 1998, 79:(Pt 5)961–979.

5. Snijder EJ, van Tol H, Pedersen KW, Raamsman MJ, de Vries AA:
Identification of a novel structural protein of arteriviruses. Journal of
virology 1999, 73:6335–6345.

6. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP: Novel structural
protein in porcine reproductive and respiratory syndrome virus encoded
by an alternative ORF5 present in all arteriviruses. The Journal of general
virology 2011, 92:1107–1116.

7. Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, Atkins JF,
Snijder EJ, Posthuma CC: Discovery of a small arterivirus gene that
overlaps the GP5 coding sequence and is important for virus
production. The Journal of general virology 2011, 92:1097–1106.

8. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA:
North American and European porcine reproductive and respiratory
syndrome viruses differ in non-structural protein coding regions. The
Journal of general virology 1999, 80:(Pt 2)307–315.

9. Allende R, Laegreid WW, Kutish GF, Galeota JA, Wills RW, Osorio FA: Porcine
reproductive and respiratory syndrome virus: description of persistence
in individual pigs upon experimental infection. Journal of virology 2000,
74:10834–10837.

10. Albina E, Carrat C, Charley B: Interferon-alpha response to swine
arterivirus (PoAV), the porcine reproductive and respiratory syndrome
virus. Journal of interferon & cytokine research: the official journal of the
International Society for Interferon and Cytokine Research 1998,
18:485–490.

11. Loemba HD, Mounir S, Mardassi H, Archambault D, Dea S: Kinetics of
humoral immune response to the major structural proteins of the
porcine reproductive and respiratory syndrome virus. Archives of virology
1996, 141:751–761.

12. Plagemann PG: Neutralizing antibody formation in swine infected with
seven strains of porcine reproductive and respiratory syndrome virus as
measured by indirect ELISA with peptides containing the GP5
neutralization epitope. Viral Immunol 2006, 19:285–293.

13. Lowe JE, Husmann R, Firkins LD, Zuckermann FA, Goldberg TL: Correlation
of cell-mediated immunity against porcine reproductive and respiratory
syndrome virus with protection against reproductive failure in sows
during outbreaks of porcine reproductive and respiratory syndrome in
commercial herds. Journal of the American Veterinary Medical Association
2005, 226:1707–1711.

14. Ji J, Sahu GK, Braciale VL, Cloyd MW: HIV-1 induces IL-10 production in
human monocytes via a CD4-independent pathway. International
immunology 2005, 17:729–736.

15. Sloan DD, Jerome KR: Herpes simplex virus remodels T-cell receptor
signaling, resulting in p38-dependent selective synthesis of interleukin-
10. Journal of virology 2007, 81:12504–12514.

16. Kekarainen T, Montoya M, Mateu E, Segales J: Porcine circovirus type 2-
induced interleukin-10 modulates recall antigen responses. The Journal of
general virology 2008, 89:760–765.

17. Balcewicz-Sablinska MK, Gan H, Remold HG: Interleukin 10 produced by
macrophages inoculated with Mycobacterium avium attenuates
mycobacteria-induced apoptosis by reduction of TNF-alpha activity. The
Journal of infectious diseases 1999, 180:1230–1237.

18. Johnsen CK, Botner A, Kamstrup S, Lind P, Nielsen J: Cytokine mRNA
profiles in bronchoalveolar cells of piglets experimentally infected in
utero with porcine reproductive and respiratory syndrome virus:
association of sustained expression of IFN-gamma and IL-10 after viral
clearance. Viral Immunol 2002, 15:549–556.

19. Suradhat S, Thanawongnuwech R, Poovorawan Y: Upregulation of IL-10
gene expression in porcine peripheral blood mononuclear cells by
porcine reproductive and respiratory syndrome virus. The Journal of
general virology 2003, 84:453–459.



Hou et al. Virology Journal 2012, 9:165 Page 10 of 10
http://www.virologyj.com/content/9/1/165
20. Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, Giuffra
E: Genome-wide transcriptional response of primary alveolar
macrophages following infection with porcine reproductive and
respiratory syndrome virus. The Journal of general virology 2008,
89:2550–2564.

21. Chang HC, Peng YT, Chang HL, Chaung HC, Chung WB: Phenotypic and
functional modulation of bone marrow-derived dendritic cells by
porcine reproductive and respiratory syndrome virus. Veterinary
microbiology 2008, 129:281–293.

22. Flores-Mendoza L, Silva-Campa E, Resendiz M, Osorio FA, Hernandez J:
Porcine reproductive and respiratory syndrome virus infects mature
porcine dendritic cells and up-regulates interleukin-10 production.
Clinical and vaccine immunology: CVI 2008, 15:720–725.

23. Silva-Campa E, Cordoba L, Fraile L, Flores-Mendoza L, Montoya M,
Hernandez J: European genotype of porcine reproductive and respiratory
syndrome (PRRSV) infects monocyte-derived dendritic cells but does not
induce Treg cells. Virology 2010, 396:264–271.

24. Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, Christopher-Hennings J:
Porcine reproductive and respiratory syndrome virus productively infects
monocyte-derived dendritic cells and compromises their antigen-
presenting ability. Archives of virology 2007, 152:289–303.

25. Subramaniam S, Sur JH, Kwon B, Pattnaik AK, Osorio FA: A virulent strain of
porcine reproductive and respiratory syndrome virus does not up-
regulate interleukin-10 levels in vitro or in vivo. Virus research 2011,
155:415–422.

26. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM:
Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-
alpha: role of the p38 and p42/44 mitogen-activated protein kinases.
J Immunol 1998, 160:920–928.

27. Lucas M, Zhang X, Prasanna V, Mosser DM: ERK activation following
macrophage FcgammaR ligation leads to chromatin modifications at the
IL-10 locus. J Immunol 2005, 175:469–477.

28. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K,
Kasprowicz DJ, Kellar K, Pare J, van Dyke T, et al: Yeast zymosan, a stimulus
for TLR2 and dectin-1, induces regulatory antigen-presenting cells and
immunological tolerance. The Journal of Clinical Investigation 2006,
116:916–928.

29. Hou J, Wang L, He W, Zhang H, Feng WH: Highly pathogenic porcine
reproductive and respiratory syndrome virus impairs LPS- and poly(I:C)-
stimulated tumor necrosis factor-alpha release by inhibiting ERK
signaling pathway. Virus research 2012, 167:106–111.

30. Lee SM, Kleiboeker SB: Porcine arterivirus activates the NF-kappaB
pathway through IkappaB degradation. Virology 2005, 342:47–59.

31. Fu Y, Quan R, Zhang H, Hou J, Tang J, Feng WH: Porcine Reproductive and
Respiratory Syndrome Virus (PRRSV) Induces Interleukin-15 through the
NF-kappaB Signaling Pathway. Journal of virology 2012, 86:7625–7636.

32. Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, et al:
Understanding PRRSV infection in porcine lung based on genome-wide
transcriptome response identified by deep sequencing. PloS one 2010,
5:e11377.

33. Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F,
Kumar A: The p38 mitogen-activated kinase pathway regulates the
human interleukin-10 promoter via the activation of Sp1 transcription
factor in lipopolysaccharide-stimulated human macrophages. The Journal
of biological chemistry 2001, 276:13664–13674.

34. Eskdale J, Kube D, Tesch H, Gallagher G: Mapping of the human IL10 gene
and further characterization of the 5' flanking sequence. Immunogenetics
1997, 46:120–128.

35. Gee K, Angel JB, Mishra S, Blahoianu MA, Kumar A: IL-10 regulation by HIV-
Tat in primary human monocytic cells: involvement of calmodulin/
calmodulin-dependent protein kinase-activated p38 MAPK and Sp-1 and
CREB-1 transcription factors. J Immunol 2007, 178:798–807.

36. Leghmari K, Bennasser Y, Bahraoui E: HIV-1 Tat protein induces IL-10
production in monocytes by classical and alternative NF-kappaB
pathways. European journal of cell biology 2008, 87:947–962.

37. Benkhart EM, Siedlar M, Wedel A, Werner T, Ziegler-Heitbrock HW: Role of
Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol
2000, 165:1612–1617.

38. Wei L, Zhu Z, Wang J, Liu J: JNK and p38 Mitogen-Activated Protein
Kinase Pathways Contribute to Porcine Circovirus Type 2 Infection.
Journal of virology 2009, 83:6039–6047.
39. Holloway G, Coulson BS: Rotavirus activates JNK and p38 signaling
pathways in intestinal cells, leading to AP-1-driven transcriptional
responses and enhanced virus replication. Journal of virology 2006,
80:10624–10633.

40. Lee YJ, Lee C: Stress-activated protein kinases are involved in porcine
reproductive and respiratory syndrome virus infection and modulate
virus-induced cytokine production. Virology 2012, 427:80–89.

41. Lee YJ, Lee C: Porcine reproductive and respiratory syndrome virus
replication is suppressed by inhibition of the extracellular signal-
regulated kinase (ERK) signaling pathway. Virus research 2010, 152:50–58.

42. Zhang H, Wang X: A dual effect of porcine reproductive and respiratory
syndrome virus replication on the phosphatidylinositol-3-kinase-
dependent Akt pathway. Archives of virology 2010, 155:571–575.

43. Meng XJ, Paul PS, Halbur PG, Morozov I: Sequence comparison of open
reading frames 2 to 5 of low and high virulence United States isolates of
porcine reproductive and respiratory syndrome virus. The Journal of
general virology 1995, 76:(Pt 12)3181–3188.

44. Ansari IH, Kwon B, Osorio FA, Pattnaik AK: Influence of N-linked
glycosylation of porcine reproductive and respiratory syndrome virus
GP5 on virus infectivity, antigenicity, and ability to induce neutralizing
antibodies. Journal of virology 2006, 80:3994–4004.

45. Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA, Lopez OJ:
Identification of neutralizing and nonneutralizing epitopes in the
porcine reproductive and respiratory syndrome virus GP5 ectodomain.
Journal of virology 2002, 76:4241–4250.

46. Fernandez A, Suarez P, Castro JM, Tabares E, Diaz-Guerra M:
Characterization of regions in the GP5 protein of porcine reproductive
and respiratory syndrome virus required to induce apoptotic cell death.
Virus research 2002, 83:103–118.

47. Suárez P, Díaz-Guerra M, Prieto C, Esteban M, Castro JM, Nieto A, Ortín J:
Open reading frame 5 of porcine reproductive and respiratory syndrome
virus as a cause of virus-induced apoptosis. Journal of virology 1996,
70:2876–2882.

48. Kwon B, Ansari IH, Pattnaik AK, Osorio FA: Identification of virulence
determinants of porcine reproductive and respiratory syndrome virus
through construction of chimeric clones. Virology 2008, 380:371–378.

49. Subramaniam S, Kwon B, Beura LK, Kuszynski CA, Pattnaik AK, Osorio FA:
Porcine reproductive and respiratory syndrome virus non-structural
protein 1 suppresses tumor necrosis factor-alpha promoter activation by
inhibiting NF-kappaB and Sp1. Virology 2010, 406:270–279.

50. Peng YT, Chaung HC, Chang HL, Chang HC, Chung WB: Modulations of
phenotype and cytokine expression of porcine bone marrow-derived
dendritic cells by porcine reproductive and respiratory syndrome virus.
Veterinary microbiology 2009, 136:359–365.

51. Wang L, Zhang H, Suo X, Zheng S, Feng WH: Increase of CD163 but not
sialoadhesin on cultured peripheral blood monocytes is coordinated
with enhanced susceptibility to porcine reproductive and respiratory
syndrome virus infection. Veterinary immunology and immunopathology
2011, 141:209–220.

52. Weingartl HM, Sabara M, Pasick J, van Moorlehem E, Babiuk L: Continuous
porcine cell lines developed from alveolar macrophages: partial
characterization and virus susceptibility. Journal of virological methods
2002, 104:203–216.

53. Quan R, Fu Y, He W, W-h F: Cloning and characterization of the porcine
IL-10 promoter. Veterinary immunology and immunopathology 2012,
146:277–282.

doi:10.1186/1743-422X-9-165
Cite this article as: Hou et al.: Induction of interleukin-10 is dependent
on p38 mitogen-activated protein kinase pathway in macrophages
infected with porcine reproductive and respiratory syndrome virus.
Virology Journal 2012 9:165.


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	IL-10 production is &b_k;up-&e_k;&b_k;regulated&e_k; at both mRNA and protein levels after PRRSV infection
	Inhibition of p38 MAPK and &b_k;NF-&e_k;&b_k;&kappa;B&e_k; pathways abrogates the production of IL-10
	PRRSV-infection activates p38 MAPK and &b_k;NF-&e_k;&b_k;&kappa;B&e_k; pathway in BMDMs
	GP5 induces &b_k;IL-&e_k;&b_k;10&e_k; production both at mRNA and protein levels

	link_Fig1
	link_Fig3
	link_Fig2
	link_Fig4
	link_Fig5
	The intact GP5 protein is required for the induction of IL-10
	p38 MAPK and STAT3 pathways are involved in &b_k;GP5-&e_k;&b_k;induced&e_k; up-regulation of IL-10

	Discussion
	link_Fig6
	link_Fig7
	Conclusions
	Methods
	Cell culture and virus preparation
	Inhibition of signal transduction pathways
	Construction and transfection of viral &b_k;protein-&e_k;&b_k;encoding&e_k; plasmids
	Real-time PCR
	ELISA
	Western blot analysis

	link_Tab1
	Luciferase reporter assays
	Statistical analysis

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53

