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Abstract

Backgroud: Porcine circovirus type 2 (PCV2) is a primary etiological agent of post-weaning multi-systemic wasting
syndrome (PMWS), which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous
silica nanoparticles (HMSNs) have gained increasing interest for use in vaccines.

Methods: To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were
synthesized by a sol-gel/emulsion(oil-in-water/ethanol) method, purified PCV2 GST-ORF2-E protein was loaded into
HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein
by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-y were detected by
enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the
percentage of CD4+ and CD8+ were determined by flow cytometry.

Results: HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune
response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with
the HMSN/protein complex.

Conclusion: The findings suggest that HMSNs are good protein carriers and have high potential for use in future

applications in therapeutic drug delivery.
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Background

Clinical and laboratory studies have shown that porcine
circovirus type 2 (PCV2) is a primary etiological agent of
post-weaning multi-systemic wasting syndrome (PMWS).
PMWS is clinically characterized by anemia, jaundice, se-
vere weight loss, and histopathological lesions, including
lymphocyte depletion and infiltration of monocytes in
lymphoid tissues. Morbidity and mortality with PMWS
are severe in acute outbreaks, usually resulting in the
death of 70% to 80% of affected animals [1,2]. Hence,
PMWS is a disease of increasing importance to the pig

* Correspondence: shigisun21@hotmail.com; hnxiangtao@hotmail.com
"Equal contributors

State Key Laboratory of Veterinary Etiological Biology and National Foot and
Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute,
Chinese Academy of Agricultural Sciences, Xujiaping1Lanzhou, Gansu
730046, The People’s Republic of China

( BiolMed Central

industry worldwide, and determination of methods with
which to protect the piglets from PCV2 infection is a
current research hotspot. Immunization against PCV2 has
been studied intensively and found to be the most effect-
ive strategy for protecting pigs against PCV2 infection.
PCV2 contains a single-stranded circular DNA gen-
ome of about 1.76 Kb, having three large open reading
frames (ORFs) [3-5], namely, ORF1, ORF2 and OREF3.
Capsid protein (Cap protein), encoded by ORF2 of
PCV2, which is the major structural protein of the virus
with a molecular weight of 27.8 kDa, is the major im-
munogenic protein and has type-specific epitopes[4,6,7].
Neutralization of monoclonal antibodies [8,9]and swine
sera [10]have been shown to react with Cap protein.
Therefore, Cap protein has been used as a PCV2 gene
for recombinant vaccines[11-13]. However, almost all
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vaccines prepared by ORF2 proteins expressed in
eukaryotic or prokaryotic systems utilize the procedure
of primary vaccination followed by boost injectionin
order to induce persistent immune responses [11,13-16].
To optimize the PCV2 protein vaccine and induce
higher and more persistent immune responses, research-
ers have focused on developing safe and efficient drug
delivery vehicles. Since the use of drug delivery by means
of controlled technologies began in the 1970s, it has
continued to expand rapidly, so much so that there are
now numerous products for drug delivery both in the
market and in development, including dendrimers,
micelles, liposomes, microbubbles, as well as various
nanovehicles, including nanoparticles [17,18]. Of these
vehicles, hollow mesoporous silica nanoparticles (HMSNs)
for biomedical purposes, including drug delivery, have
gained increasing interest for use in vaccines. HMSNs
have unique structural features, including large surface
areas, tunable pore sizes, and well-defined surface proper-
ties; these properties indicate that they can be used as car-
riers for therapeutic compounds in vitro and in vivo. In
addition, HMSNs have been approved by the Food and
Drug Administration as a new biocompatible material.
HMSNs show multifunctional surface modification, con-
trolled release capability, and good thermal stability. Thus,
they are ideal nonviral carriers for gene/drug delivery
[19,20].

To obtain specific immune responses against PCV2
ORF2 protein, the antigenitic epitope at amino acid resi-
dues 113-147 of PCV2 ORF2 [21] was expressed; this
epitope was found to be the immunorelevant epitope for
virus type discrimination[8]and named ORF2-E. To in-
duce persistent immune responses of PCV2, purified
PCV2 GST-ORF2-E proteins were loaded into HMSNSs,
which were synthesized by a sol-gel/emulsion (oil-in-
water/ethanol) method [22] and used as a vehicle for
protein delivery with controlled release kinetics. The
resulting PCV2 GST-ORF2-E protein-loaded HMSNs
were injected into BALB/c mice. The immune responses
of mice were then evaluated. Compared with immune
responses obtained from using the PCV2 GST-ORF2-E
protein, PCV2 GST-ORF2-E protein-loaded HMSNs
induced higher humoral and cellular immune responses.
The results are very encouraging and demonstrate that
HMSNs as a protein delivery vehicle may be further
investigated for the development of subunit vaccines
based on recombinant proteins.

Materials and methods

Synthesis and characterization of HMSNs

Unless otherwise stated, chemicals were obtained from
Sigma—Aldrich. The HMSNs were synthesized by a sol-
gel/emulsion method with little modification[22]. Briefly,
ethanol and H,O and tetraethoxysilane (TEOS) and
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hexadecyltrimethy-lammonium bromide (CTAB) were
mixed and continuously stirred. Then, 25% ammonium
hydroxide solution (NH4OH in H,O) was added, and
the mixture was stirred for another 3 h to 4 h at room
temperature. Following washing with several times deio-
nized water and centrifugation at 8000 rpm to
10000 rpm for 10 min to 15 min, the resulting powders
were calcined in air at 200°C for 2 h then at 600°C for
6 h.

Transmission electron microscopy (TEM) and scan-
ning electron microscopy (SEM) were used to determine
the morphology and size of the HMSNs. Samples for
TEM measurements were prepared by dipping a drop of
the colloidal solution onto Formvar-coated copper grids
and observed with a JEOL (2001) electron microscope
operating at an acceleration voltage of 200 kV. SEM
images were taken on a Shimadzu SSX-550 field emis-
sion scanning electron microscope at 15.0 kV.

Expression of protein

PCV2 ORF2-E protein was expressed in E. coli BL21 as
described previously [21] The GST-ORF2-E fusion pro-
tein was purified by a MagneGST™ Protein Purification
System (Promega, USA). The GST fusion protein was
analyzed by SDS-PAGE and Western blot.

The size distribution of the HMSN/protein mixture

The size distributions of HMSNs were determined using
a Malvern Instruments (Malvern Instruments Ltd., UK)
Zetasizer Nano ZS series system (ZEN 3600). Samples of
the HMSN/protein complex (1 mg/150 ug; w/w) and
HMSNSs were suspended (1 mg/mL) in phosphate buffer
saline (PBS, pH 7.0). The size of the nanoparticles was
calculated using Dispersion Technology Software, ver-
sion 4.20 (Malvern Instruments Ltd.).

Protein adsorption of HMSNs

To load the protein into HMSNs, PBS (pH 7.0) solutions
containing different concentrations of HMSNs (1, 5, and
10 mg/mL) were sonicated for 15 min, and then mixed
with 200 pL of PCV2 GST-ORF2-E protein (2.4 mg/mL
in PBS) at room temperature. At different time points,
the solutions were centrifuged at 10000 rpm for 5 min,
and the amounts of proteins in the supernatants were
measured by a Micro BCA™ protein assay kit (Pierce,
Rockford, IL, USA) by measuring their UV absorbance
at 562 nm. The amount of protein adsorbed onto the sil-
ica was estimated by subtracting the protein dissolved in
the solution from the amount of protein loaded.

Release kinetics of HMSNs

HMSNs loaded with PCV2 GST-ORF2-E protein were
suspended in 15 mL PBS (pH 7.0). The solution was
divided into 15 microfuge tubes (1 mL/tube). The tubes
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were kept in 37°C for different lengths of time. At cer-
tain time points, the solution was centrifuged at
10000 rpm for 5 min. The supernatant containing pro-
teins released by the HMSNs was measured by a Micro
BCA™ protein assay kit (Pierce,USA). The amount of
protein released by the HMSNs was estimated from the
amount of protein in the supernatant.

Vaccination

All animals received humane care in compliance with
the guidelines of the Animal Research Ethics Board of
Lanzhou Veterinary Research Institute, CAAS, China.
BALB/c mice were purchased from the animal house of
Lanzhou Veterinary Research Institute and raised in iso-
lation cages.

Twenty-seven healthy eight-week-old female BALB/c
mice were randomized into three groups. The mice in
group A were immunized with PCV2 GST-ORF2-E
protein-loaded HMSNSs, those in group B were immu-
nized with PCV2 GST-ORF2-E protein, and those in
group C were immunized with the empty HMSNs in
PBS. Every mouse was injected intramuscularly with
100 pg (0.7 mg HMSNs loaded with 100 pg protein)
protein in PBS solution using a needle and syringe.
Serum samples were collected from the retro-orbital
plexus every week after immunization and used in sero-
logical tests.

Immunofluorescence assay

PCV2 infection of PK-15 cells was performed as described
previously [21]. Cells were fixed with 4% polyformalde-
hyde in PBS at room temperature for 30 min and washed
with PBST (PBS containing 0.1% Tween20, pH 7.4). The
cells were then incubated for 10 min at room temperature
with 0.1% Triton X-100 in PBS, followed by incubation for
another hour at 37°C with mouse serum diluted 50 times
in PBST containing 5% foetal bovine serum (FBS). After
three washes with PBST, cells were stained for 1 h at 37°C
with FITC-conjugated rabbit anti-mouse IgG (Dako,
Denmark) diluted 100 times in PBST containing 5% FBS.
After washing, plates were examined by fluorescence
microscopy.

Enzyme-linked immunosorbent assay

Serum samples were collected from mice at intervals of
one week and evaluated by an indirect enzyme-linked im-
munosorbent assay (ELISA) using the recombinant GST-
ORF2-E protein of PCV2 as an antigen. The detailed
protocol was followed as described [21] with minor modi-
fications. Briefly, 96-well microtiter plates (Nunc, USA)
were coated with the recombinant GST-ORF2-E protein
of PCV2 in 0.1 M carbonate/bicarbonate buffer (pH 9.6)
and incubated overnight at 4°C. After three washes in
PBST, the plates were blocked with100 pL PBST
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containing 5% non-fat dry milk for 1 h at 37°C. After three
washes in PBST, diluted mouse serum (1:100) with PBS
containing 1% non-fat dry milk was added, and plates
were again incubated for 1 h at 37°C. After three washes
in PBST, 100 pL diluted rabbit anti-mouse IgG peroxidase
conjugate (Sigma,UK) in PBST containing 1% non-fat dry
milk at a 1:2000 dilution was then added for 1 h at 37°C.
The plates were then washed three times, and the colori-
metric reaction was developed using 50 pL substrate solu-
tion (FAST o-phenylenediamine dihydrochloride, Sigma)
for 15 min at 37°C. Color development was stopped with
50 pL of 2 N H,SO,, and optical density (OD) was read at
490 nm.

T-lymphocyte proliferation assay

T-lymphocyte proliferation assay was performed using the
Cell Titer 96AQueous Non-Radioactive Cell Proliferation
Assay (Promega, USA). Mice spleens were removed in
sterile conditions and ground through a sterile cuprous
mesh (200 meshes). The spleen cells were immersed in
RPMI 1640 medium with 10% FBS, added to lymphocyte
separation medium (Sangon, China), homogenized, and
centrifuged at 1000 rpm x g for 10 min. Pellets were dis-
carded and buoyant cells were washed three times in
RPMI 1640 medium with 10% FBS. T-lymphocytes in 96-
well plates (5x 10* cells per well) were co-cultured with
PCV2 GST-ORF2-E protein (2 pg/mL) in RPMI 1640
supplemented with 10% fetal bovine serum (Gibco, Life
Technologies, Vienna, Austria), and maintained at 37°C in
a humidified 5% CO, atmosphere for 60 h. MTS(3-
(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2 H-tetra zolium, inner sath) was added
to each well, and then incubated for 4 h at 37°C under 5%
CO,. The absorbance at 490 nm was measured. Results
were expressed as a percentage of untreated controls.

Flow cytometry analysis

To determine the phenotype of the T-cell subpopulation
in spleen lymphocytes by flow cytometry, single-labeling
methods were employed for defining different subpopu-
lations. Splenocytes (10° cells) were washed in cold PBS
containing 1% albumin from bovine serum, centrifuged,
and resuspended in cold PBS. The splenocytes were then
stained with rabbit anti-mouse CD4: APC/CDS: PE (BD,
USA). Cells were incubated for 30 min at 4°C and
washed three times with cold PBS buffer. Samples were
analyzed using a FACScan system (BD Biosciences).

Quantification of mouse IFN-y

A mouse IFN-y-precoated ELISA kit (Dakewei, China)
was used to determine IFN-y in mouse sera according to
the manufacturer’s instructions. The serum was diluted
at a ratio of 1:50 and 100 pL of the resulting solution
was added to each well. Measurements were done in
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TEM (b).

Figure 1 The morphologies and microstructures of HMSNs. The HMSNs dispersed in phosphate buffer solution and observed by SEM (a) and

duplicate and the plate was read immediately at 450 nm
on a Universal Microplate Reader (Bio-Rad Instruments,
USA). A standard curve for IFN-y was obtained using
the standard protein provided by the manufacturer.

Statistical analysis

The data are presented as mean*SD. The statistical
analysis was performed using the SAS9.1 statistical soft-
ware package. First, the verification of the homogeneity
of variance by using Levene test was performed. Then,
analysis of variance between groups by using One-way
ANOVA was applied. Finally, comparison of mean pair
wise differences between groups using Least Significance

Figure 2 The expression of GST-ORF2-E protein. GST-ORF2-E
protein was analyzed by (a) SDS-PAGE and (b) Western blot with an
anti-GST monoclonal antibody. Lane 1: the third elution; Lane 2: the
second elution; Lane 3: the first elution; Lane 4, supernatant of cell
lysate after sonication; Lane 5: cell pellet after sonication; Lane 6:
BL21 cells lysate after induction of IPTG; Lane 7, BL21 cells lysate
before induction of IPTG. A clear band of 29 kDa was observed after
induction.

Difference (LSD) was performed. Significance of all stat-
istical tests was set at 0.05 (p < 0.05).

Results

Characterization of HMSNs

Hollow mesoporous silica spheres were synthesized by a
sol—gel/emulsion (oil-in-water/ethanol) approach, in
which cetyltrimethylammonium bromide surfactant was
employed to stabilize and direct the hydrolysis of oil
droplets of tetraethoxysilane. Figure 1 shows that the
resulting particles are spherical shape. SEM images re-
veal that the spheres have a rough surface and retain
their intact spherical nature even after calcination at
600°C for 6 h. TEM and SEM results indicate that the
spheres are hollow in character and have an average
diameter of about 200 nm (Figure la and Figure 1b).

Size distribution of HMSNs and HMSN/protein complex
SDS-PAGE and Western blots were used to confirm the
expression of the recombinant protein. Figure 2 shows a
specific band of about 29 kDa on the SDS-PAGE gel and
Western blot membrane when the purified protein was
tested (lanes 1 to 3).

HMSNs with protein complexation show slight
increases in diameter (Figure 3b) compared with the
HMSNs only (Figure 3a). The uniform size distribution
of the HMSN/protein mixture at a diameter of about
172 nm suggests that the mixture is suspended well in
solution. Another peak of size distribution is found at a
diameter of about 5000 nm.

Adsorption of protein

The amount of protein trapped within the HMSNs was
determined by detecting the different concentrations of
HMSNS in the supernatant before and after loading with
the PCV2 GST-ORF2-E protein. Figure 4 shows that the
loading of PCV2 GST-ORF2-E protein into the HMSNs
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Figure 3 Size distribution of HMSNs. The size distribution of HMSNs was detected by Nano-sizer before(a) and after(b) protein loading.

is dependent on the solution concentration of HMSNS.
The highest adsorption PCV2 GST-ORF2-E protein in
the HMSNs is obtained at HMSN concentrations of
10 mg/mL. The maximum amount of loaded proteins is
determined to be 150 pg per 1.0 mg of HMSNs in the
present study. Taking these results into consideration, a
nanoparticle concentration of mg/mL is selected for the
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Figure 4 Adsorption kinetics of HMSNs for PCV2 GST-ORF2-E
protein.

optimal loading of PCV2 GST-ORF2-E proteins in all
subsequent experiments. Absorption seemed to occur in
a two-step pattern in all concentrations of HMSNs.
Rapid absorbance of the protein is observed during the
first 2 h of loading, followed by a second, relatively slow
loading phase occurring in the next 30 h after.
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Figure 5 Cumulative release kinetics of PCV2 GST-ORF2-E
protein from HMSNs in PBS at pH 7.0.
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cells were used as a negative control.

Figure 6 Identification of specificity of mouse antibodies in PK15 cells infected with PCV2 by immunofluorescent microcopy. (a) PK15
cells were infected with PCV2 at 10°** TCID50 for 72 h, and then incubated with mouse antibody to PCV2 GST-ORF2-E. (b) Non-infected PK15

Release of protein

The release of PCV2 GST-ORF2-E protein from HMSNs
(10 mg/mL) at room temperature was conducted in PBS
(pH 7.0). Figure 5 shows the cumulative release kinetics of
the PCV2 GST-ORF2-E protein. The release profile can
be divided into two regions in a time-dependent process.
A rapid release is observed up to 12 h after vaccination.
During this time, about 50% of the encapsulated PCV2
GST-ORF2-E protein is released until the sixth day after
immunization. A slower release is observed afterwards.

The specific antibody of PCV2

To evaluate the specificity of mice antibodies immunized
by GST-ORF2-E, mouse sera were used in direct im-
munofluorescence experiments to determine the specifi-
city of antibodies by PCV2-infected PK15 cells. The
specific fluorescence is located predominantly in the nu-
cleus and, to a lesser extent, the cytoplasm of infected
cells (Figure 6a). No significant staining was observed in
mock-infected cells (Figure 6b), indicating the specificity
of the mouse antibody against PCV2.

Indirect ELISA was performed to detect the titer of
mouse-specific antibodies against PCV2 GST-ORF2-E
protein. Figure 7 shows that the PCV2-specific antibody
titers of mice vaccinated with the GST-ORF2-E protein
greatly increase at the second week and decrease signifi-
cantly at the third week post-vaccination. However, the
antibody titers of mice immunized with the HMSN/pro-
tein mixture increase continuously, reaching a maximum
at the third week post-vaccination. The antibody titers
of mice then decreased gradually until the fifth week
post-vaccination. The results demonstrate that the anti-
body titers of mice immunized with HMSNS/GST-
ORF2-E are significant compared with those of groups
immunized with GST-ORF2-E or the HMSNs at the
third (p<0.05) and fourth (p<0.05) weeks after
immunization. The antibody titers of mice immunized

with GST-ORF2-E were statistically significant at the
second week compared with those of the group immu-
nized with HMSNs (p < 0.05).

Lymphocytes proliferation assay

To measure T cell proliferative responses, splenocytes of
mice were isolated and restimulated in vitro with puri-
fied PCV2 GST-ORF2-E protein. As shown in Figure 8,
the proliferative capacity of the splenocytes is significant
after immunization with HMSN/GST-ORF2-E at the
second (p < 0.05) and fourth (p < 0.05) weeks compared
with that of the group immunized with the HMSNs con-
trols. Compared with group immunizaed with HMSNS,
the T-lymphocyte proliferation in mice immunized with
GST-ORF2-E is not significant at the second (p > 0.05)
and fourth (p > 0.05) weeks post-immunization.

L
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Figure 7 PCV2 specific serum antibody responses. Mice were
immunized with the HMSN/protein complex, the protein only, or
the HMSNSs only;serum samples were collected every 2 weeks.
Specific antibody responses in serum samples of 0, 14 and 28 d
were detected by ELISA as described in Section 2. Each bar
represents average values of three mice, measured in duplicate.
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Figure 8 T-cell responses elicited by immunization with HMSN/
protein complex or protein or HMSNs. Spleen cells were
harvested at certain weeks post-immunization and restimulated
in vitro with PCV2 GST-ORF2-E protein. Results show the mean +SD
of triplicate wells in each condition.

T-lymphocytes subpopulations assay

The proportions of CD4+ and CD8+ splenocytes were
determined by FCM. Figure 9a shows that CD4+ cells are
elicited in the groups immunized with the HMSN/protein
mixture and GST-ORF2-E at the second week but CD4+
cells of groups immunized with the HMSN/protein mixture
upregulated significantly at the fourth week compared with
that in the group injected with HMSNs only (p < 0.05).
The proportions of CD4+ splenocytes remained high in
mice of groups A at the sixth week post-vaccination. In
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contrast, the proportions of CD8+ cells in mice immunized
with HMSNS/GST-ORF2-E or GST-ORF2-E proteins do
not increase at the second and fourth week’s post-
immunization (p > 0.05). The proportion of CD8+ cells in
mice immunized with HMSN/GST-ORF2-E show signifi-
cant increases at the sixth week (p < 0.05) (Figure 9b). In
addition, the proportion of CD8+ cells in mice immunized
with GST-ORF2-E proteins also increase at the sixth week,
it is significant compared with that in mice immunizaed
with HMSN (p < 0.05).

Mouse IFN-y of serum

To determine the cytokine levels induced by the protein,
an ELISA kit was used to measured levels of the Thl
cytokine, IFN-y. Figure 10 shows that the levels of IFN-y
in the group immunized with HMSN/GST-ORF2-E are
induced at the second week and increased significantly
at the fourth (p <0.05) and sixth (p < 0.05) weeks com-
pared with those of the group immunized with HMSNs
only. The levels of IFN-y in the group immunized with
GST-ORF2-E only increase significantly at the fourth
weeks (p <0.05) and not remain at the sixth weeks com-
pared with those of mice immunized with HMSNSs.

Discussion

In the literature, the ORF2 protein of PCV2 is a major
candidate antigen for the development of vaccines and
serological diagnostic methods. In the present study, the
antigenic epitope of ORF2 was expressed and used as

Figure 9 Percentage of the CD4+ and CD8+ cell population in spleen of mice immunized with HMSN/protein complex or protein or
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Figure 10 IFN-y production determined from the supernatant
of splenocytes harvested from immunized mice. Splenocytes
were isolated 2, 4, and 6 weeks after immunization. IFN-y production
in the supernatant was analyzed by ELISPOT after stimulation with
PCV2 GST-ORF2-E. Data represent the means+S.D.

vaccine model to induce a specific immune response.
Recent interest in mesoporous silica materials for use as
carriers in controlled drug release has increased; such
materials could meet the need for prolonged and better
control of drug administration [23-25]. To induce per-
sistent immune responses against specific antigens,
HMSNs were used as protein carriers in the present
study. Previous studies have reported the use of mice as
a model for PCV2 infection [12,26]; thus, mice were
immunized with ORF2-E protein-loaded HMSNs and
their specific immune responses were determined.

Hollow mesoporous silica spheres were prepared by a
sol-gel/emulsion (oil-in-water/ethanol) method, result-
ing in the formation of a hydrated silica gel on the sur-
face of HMSNs. This surface layer had a mesoporous
structure, with a pore diameter of about 2 nm [22]. In-
deed, this unique structure provides the HMSN particles
with a large surface area and pore volume, thereby en-
hancing their capacity for protein adsorption and allow-
ing the hosting of chemical agents within them. This
feature of HMSNs makes them very attractive options
for use in material loading purposes. SEM images fur-
ther demonstrate that the nanoparticles can be well dis-
persed in water, thus providing maximal interfaces with
which to carry optimal amounts of chemical agents for
delivery. Results obtained from the size distribution in-
vestigation reveal no clear difference in the conform-
ation and size of HMSNs before and after adsorption of
the protein. These findings confirm the stability of the
HMSNSs and further prove the suitability of the materials
for use in carrier applications.
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The present study reveals that HMSNs have a high ad-
sorption capacity for GST-ORF2-E proteins at ratio of
150 ug/mg (protein: HMSNS), thereby decreasing the
dosage of HMSNs in the HMSN/protein mixture and
eliminating potential adverse effects resulting from high
concentrations of HMSNs[22]. This advantage indirectly
improves the immune responses of proteins loaded into
HMSNS. Release kinetics findings showed that proteins
adsorbed by the HMSNs could be released continuously
over two weeks in PBS. The persistent release of pro-
teins can provide a long-term stimulation to the immune
system, which can be confirmed by persistent immune
responses, including antibody titer and T-lymphocyte
proliferation. To improve HMSNs and offer prolonged
release kinetics, other possible factors related to the rate
of release, including pore size and the payload capability
of HMSNS, should be considered in future studies.

As expected, the antibody titers of mice immunized with
the HMSN/GST-ORE2-E protein mixture were higher than
those of mice immunized with the GST-ORF2-E protein,
especially at the third and fourth weeks post-immunization.
Furthermore, the T-lymphocyte proliferation response in
mice induced by the HMSN/GST-ORF2-E protein mixture
remained at levels higher than those in mice immunized
with the GST-ORF2-E protein, demonstrating that the pro-
teins loaded into the HMSNs not only stimulate humoral
and cellular immune responses but also induce persistent
immune responses because of the release kinetics of the
HMSNE.

In literature, the percentage and ratio of two main
lymphocyte T subsets, namely CD4+ cells or T helpers
and CD8+ or cytotoxic T cells, have been recognized as
the most meaningful parameters for evaluating the
balanced state of immunomodulation and response to
homeostasis of the intrinsic immune system [27]. CD4+ T
cells have been proven to differentiate into two pheno-
types: T helper type 1 (Th1) cells, which drive the immune
response towards a cell-mediated immune response, and
T helper type 2 (Th2) cells, which promote a humoral or
allergic response [28]. CD8+ T cells are capable of indu-
cing the death of infected somatic or tumor cells; they kill
cells that are infected with viruses (or other pathogens), or
are otherwise damaged or dysfunctional. Those cells that
survive positive and negative selection differentiate into
single-positive T cells (either CD4+ or CD8+), depending
on whether their T-cell receptor (TCR) recognizes an
MHC class I-presented antigen (CD8) or an MHC class
II-presented antigen (CD4). CD4" T cells have TcRs with
an affinity for Class II MHC, and it is believed that CD4 is
involved in determining MHC affinity during maturation
in the thymus. CD8+ T-cells mature and go on to become
cytotoxic T cells, following their activation with a class I-
restricted antigen. The present study demonstrates that
the HMSN/GST-ORF2-E mixture and GST-ORF2-E
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protein can elicit T-lymphocyte proliferative responses
after immunization. Moreover, the percentage of CD4+ T
or CD8+ T cells in mice immunized with HMSN/GST-
ORF2-E is higher than that in mice immunized with
HMSN and is higher than that hat in mice immunized
with GST-ORF2-E protein at the fourth weeks and the
sixth weeks. However, the percentage of CD4+ T cells in
the spleen of mice immunized with HMSN/GST-ORF2-E
is higher than that of CD8+ T cells at the fourth week
post-vaccination. Six weeks post-vaccination, the percent-
age of CD8+ T cells increases to levels almost as same as
that of CD8 + T cells. These findings suggest that CD4+ T
cells can be stimulated prior to CD8+ T cells after
immunization with HMSN/GST-ORF2-E, which will
promote the proliferation of CD8+ T cells, and confirm
previous conclusions that immunity associated with Thl
responses is essential for cytotoxic T lymphocyte produc-
tion. The percentage of CD8+ T cells in the present study
increased during subsequent weeks (the sixth week) after
immunization. The continuous increase in CD8+ T cells
provides protection against virus infections, an advantage
of the PCV2 proteins released by HMSNs.

CD4+ Thl cells mediate the killing of organisms re-
sponsible for a variety of intracellular infections through
the production of IFN-y[29,30], which induces the acti-
vation of macrophages and delayed-type hypersensitivity
[31,32]. These cytokines can dramatically affect not only
the strength of the immune response, but also its char-
acter [33]. In the present study, the Thl-associated cyto-
kine IFN-y was expressed after immunization with the
HMSNs/GST-ORF2-E protein mixture, suggesting that a
strong Thl immune response was induced.

In conclusion, the present work highlights exciting re-
search progress on the utilization of HMSNs as protein
delivery agents. Further improvements in the mechanisms
of the nanoparticles, such as increases in the capacity for
protein absorption and consistency of release, may be
expected in future work. While the results obtained are
encouraging and show great potential for future applica-
tions, new breakthroughs and antigen delivery systems are
still needed for this type of protein. The results confirm
that HMSNSs as vaccine carriers can improve cellular and
humoral immune responses, especially persistent immune
responses. Future studies could yield other exciting re-
search accomplishments in the growing field of nano-
vaccine-materials.
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