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Background: The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and
traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into
the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage.

Methods: The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold.
It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by
SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS).

Results: Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which
are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia
myovirus BcepBTA. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the
small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin
cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as
baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins.

In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease
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Background

Bacteriophage 7-7-1 is known to infect motile cells of
Agrobacterium sp H13-3 (formerly Rhizobium lupini [1]),
and as such is termed flagellotropic. Using electron mi-
croscopy, Lotz et al. [2] demonstrated translocation of
phage 7-7-1 along flagellar filaments. Filament associated
phage particles initially possess DNA-filled heads, which
are subsequently found emptied when attached to the
phage receptor at the flagellar base. This bimodal mechan-
ism of adsorption dramatically increases the chance for
finding the receptor at the cell surface, because (i)
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swimming bacteria with their flagella spread out act as a
five- to 10-fold expanded target for the phage and, (ii)
once attached, phage particles are directed to the receptor
by a one-dimensional walk along the flagellum (instead of
a random ‘search’ by three-dimensional diffusion). In no
case has the process of phage translocation along the fla-
gellum been visualized. Based on circumstantial evidence,
Samuel et al. [3] have estimated that the flagellotropic
phage x of Salmonella needs <1 s to reach the flagellar
base. These authors have also provided evidence for a ‘nut
and bolt’ mechanism by which phage y moves along the
filament. They argue that the long tail fiber fits the right-
handed grooves between helical rows of flagellin subunits
and that the counter-clockwise (CCW) rotation of the fla-
gellum forces the phage to follow the grooves as a nut fol-
lows the threads of a bolt.
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However, such conditions are not met by the ‘complex’
flagella of Agrobacterium sp H13-3. In fact, complex fila-
ments exhibit a prominent pattern of right-handed helical
ridges and grooves recommending itself as convenient
‘threads; but the sense of flagellar rotation is exclusively
clockwise (CW; [4-6]). Hence, ‘nut and bolt’ mechanics
would force an attached phage particle to the distal end
rather than to the flagellar base. Thus, the observed move-
ment of 7-7-1 to the flagellar base demands a different,
yet unknown mode of translocation. Differences between
the two flagellotropic phages are also reflected by their
distinct morphologies: electron micrographs of phage x
show a single long (200-220 nm) tail fiber wrapped
around the ‘plain’ filament of Salmonella (7], whereas
phage 7-7-1 exhibits five short (16 nm) tail fibers with
splayed tips. Figure 1B shows a scale diagram of phage
7-7-1 as deduced from high-resolution electron micro-
graphs (Figure 1A).

7-7-1 is the first flagellotropic phage shown to infect a
soil bacterium driven by the uni-directional CW rotation of
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its complex flagella, a pattern clearly different from the
CCW-CW bias of the plain flagella driving Salmonella [9].
This departure from the well-studied enterobacterial para-
digm and the rare phage morphology prompted us to
analyze the genome and the structural proteome of 7-7-1.

Results

Genome

Electron micrographs of platinum/iridium-stained 7-7-1
DNA revealed mostly linear and a few circular molecules
of approximately 25 pm contour lengths (mass of
=273.5 kb; data not shown) suggesting DNA circularization
by cohesive ends. These single-stranded termini are not
covered by 454 sequencing. The 454 sequence data
revealed that the genome of the phage was 69,391 bp
(52.4 mol%G + C). Following automated annotation using
MyRAST the genome was manually curated revealing
127 ORFs and no tRNAs. The majority (84, 65.6%) of
the ORFs showed no homology to any protein in the
current NCBI databases. A minority showed similarity to

micrographs.

Figure 1 High-resolution electron micrograph (A) and scale diagram (B) of bacteriophage 7-7-1. A 14-nm collar connects the
icosahedral head with the contractile tail that exhibits a surface structure of helical rows running at an angle of 50°. Five 16-nm tail
fibers with splayed tips probably lead the phage along the flagellar filament to the cell surface, where they act as specific adsorption organelles
that attach the phage to its final receptor. Details of the tail fine structure were uncovered by optical diffraction [8] of highly resolved electron
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prophage (28, 21.9%) or phage proteins (16, 12.5%). In the
latter case 7-7-1 gp20-26 were collinear to a set of genes
from Burkholderia phage BcepB1A [10] which is also a
virulent myovirus. Phage 7-7-1 displays a number of
unique features including the physical separation of the
genes encoding the small (orf100) and large (orf112) subu-
nits of the terminase complex. In addition, there is no evi-
dence for a holin-lysin cassette (Figure 2; Additional file 1,
Table S1).

DNA replication

DNA replication of this phage involves a helicase (orf23)
and a polymerase (orfl7). The latter shows greatest se-
quence similarity to the DNA polymerases of Pseudo-
monas phage 73 (YP_001293433) and Burkholderia
phage BcepGomr (YP_001210246) which are members
of the Siphoviridae, and Burkholderia phage BcepBl1A
(YP_024903) which, like 7-7-1, is a myovirus. An Inter-
ProScan shows it to be a member of the DNA/RNA poly-
merases superfamily (SUPERFAMILY SSF56672) with
the motif located between residues 318 and 480. Two
other proteins potentially involved in replication are the
products of genes 28 and 33. Gp28 is a 255 amino acid
protein possessing ParB-like nuclease motifs (Pfam
PF02195 ParBc; SMART SMO00470 ParB-like nuclease do-
main and SUPERFAMILY [11] SSF110849 ParB/Sulfire-
doxin) as well as ParB-like partition TIGRFAMs [12]
protein motif TIGR00180 parB_part: ParB-like partition
proteins. This type of protein has also been found in
myoviruses such as Burkholderia ambifaria phage BcepF1
(YP_001039693), Mycobacterium phage Pio (AER49600)
and enterobacterial phage P1 (AAQ14139). Gp33 contains
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a N-(deoxy)ribosyltransferase-like superfamily (SUPER-
FAMILY SSF52309) motif.

Transcription

Based upon the assumption that the genome circularizes via
cohesive termini (not identified), there are two large tran-
scriptional units encompassing orf 22-13 and orf 23-127,
1-12. Since another member of the class a-proteobacteria,
Rhizobium etli, possesses rpoD-dependent promoters which
closely resemble the Escherichia coli consensus sequence
(TTGACA[N15-17]TATAAT) [13] we assumed that this
phage might contain recognizable promoters. We identified
five potential promoter sequences, including divergent pro-
moters between the two transcription units (Additional file
2, Table S2). In addition four rho-independent terminators
were identified and two high AG stem-loop structures.
Interestingly, no bidirectional terminators were discovered
between orfl2 and orfl3 (Additional file 2, Table S2). No
evidence was found as to how transcription is temporally
regulated in this virus.

The genome of phage 7-7-1 encodes for two proteins
involved in DNA synthesis — a helicase (gp23) and a
polymerase (gpl7). The polymerase displayed no con-
served motifs, and is distantly related to gp43 homologs
from cyanomyoviruses. The helicase contained a high
scoring (E-value: 1.0le-41) COG1061, DNA or RNA
helicases of superfamily II protein motif (SSL2); and,
homology to helicases from Burkholderia phage
BcepBl1A [10], and Vibrio phages VP16C and VT16T
[14].

PSI-BLAST analysis of Gp3 against the NCBI virus
database resulted in hits described as tail/DNA
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Figure 2 Genetic map of 7-7-1 showing genes encoding hypothetical proteins in black; conserved hypothetical proteins, blue;
structural proteins, red; regulatory proteins, green; DNA and nucleotide metabolism, purple; terminase subunits, brown. Putative
promoters are indicated with black arrows on stalks, while predicted rho-independent terminators are indicated with white circle on stalks, and
stem-loop structures are indicated with black circle on stalks.
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circulation protein (Salmonella phage ST64B [15],
Enterobacteria phage SfV [16], Pseudomonas phage
DVM-2008, and Burkholderia phage KS10 [17]. This
protein possesses two protein motifs: COG4228, Mu-like
prophage DNA circulation protein, and pfam07157,
DNA circulation protein N-terminus (DNA_circ_N)
which are conserved protein domains of indeterminate
function. Gp4 contains two inconsistent overlapping
motifs: COG4379, Mu-like prophage tail protein gpP (E-
value: 2.99e-22), and, pfam05954, phage late control
gene D protein (Phage_GPD; E-value: 1.76e-17). The
homologs include tail proteins from Mu, D108, SfV and
ST64B. These results, coupled with the genome location
and the observation that Gp3 is a structural protein (see
next section), suggest that both of these proteins are
involved in the sequence/assembly of the phage tail.

Virion structural proteins

BLAST analysis revealed several proteins as being involved
in phage morphogenesis including baseplate protein (gp7),
tail fibre (gp102), portal (gp113), prohead protease (gp114),
major capsid (gpl1l5) and tail sheath (gp126). HHpred
[18,19] analysis on other proteins in the morphogenesis
cassette was used to identify three other proteins - gp5, gp6
and gp10. Gp10 which we had termed a conserved hypo-
thetical membrane protein shows structural similarity
(Probability =91.01; E-value=0.11) to RCSB Protein Data
Bank [20] 3BKH, the lytic transglycosylase (gpl44) of
Pseudomonas phage @KZ which is probably the endolysin
for this virus [21]. Gp6 is related (Probability =83.90;
E-value=0.63) to 2IA7 — a putative tail lysozyme (T4 gp5
analog); while gp5 is a structural analog of 3AJQ, phage P2
protein V which is the tailspike protein (Probability =96.23;
E-value=0.021) [22].

Proteomics
Electrospray ionization-MS/MS analysis of the structural
phage proteins separated by SDS-PAGE led to the ex-
perimental identification of 24 virion proteins with se-
quence coverage from 8.4 to 85.7% (Table 1/Figure 3).
Although only phage proteins with a minimum number
of two unique peptides were considered, the identifica-
tion of gp124 by a single peptide hit was approved based
on a reliable proline spectrum [23]. Electrophoretic
mobilities of the identified peptides were consistent with
their predicted molecular masses, and seven of the nine
visible protein bands on the gel could be unambiguously
identified (Figure 3). Moreover, traces of the capsid
(gp115) and the tail sheath protein (gp126) were identi-
fied throughout the gel, which can be explained by aspe-
cific retention and partial degradation of these abundant
proteins.

Although the major capsid protein gp115 is clearly the
most abundant protein, only peptides of its C-terminus
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were found. This suggests that the N-terminal part is
cleaved off during maturation of the capsid. Indeed,
similarity searches indicate that the C-terminal part of
gpl15 has high similarity with the major capsid protein
of the HK97 family and that gp114 is similar to various
prohead proteases. As the N-terminal part of the HK97
capsid is cleaved off by a prohead protease encoded by
the upstream gene [24,25], the protein band with a mo-
lecular weight of approximately 33 kDa refers to the ma-
ture major capsid protein.

A final, remarkable finding is the identification of a
small, 28 amino acid protein which originally fell below
the threshold of gene prediction (i.e. 100 bp). Though
the function of this polypeptide is unknown, the high
‘protein identification probability’ of 100% and the
coverage of 85.7% confirmed its presence in the phage
particle. This proves that proteogenomics, namely the
use of proteome analysis to annotate the genome, is a
powerful tool to identify missed protein-coding genes
and thereby complements genome annotation.

Discussion

While a number of flagella-specific phages have been iso-
lated — Salmonella phage X, Caulobacter phages ¢Cp34
[26], dCb13 and ¢CbK [27], and @6 [28]; Bacillus phages
AR, 3NT, PBSI [29], SP3 [30], and PBP1 [31]; Proteus
phage PV22 [32]; Pseudomonas phage ¢CTX [33], Agro-
bacterium tumefaciens phages GS2 and GS6 [34]; Aero-
monas hydrophila phage PM3 [35], and, Asticcacaulis
biprosthecum QAcS2, and PAcM4 [36] — to the best of
our knowledge only y (Denyes, personal communication)
and @CTX [37] have been sequenced. Using the BLASTP
feature in BioEdit [38] the products of five 7-7-1 genes (13,
21, 26, 72 and 102) possessed homologs in Salmonella
phage y. Interestingly, we defined gpl102 as a putative tail
fibre protein; and, it shows weak sequence similarity from
residues 203-300 to a similarly defined protein from phage
x. In view of the quite different tail fibre morphologies
observed in phage y and phage 7-7-1, respectively, the re-
gion of similarity may define a general motif involved in
phage-flagellum interaction.

Bacteriophage 7-7-1 shows relatively little overall DNA
sequence similarity to other phages. At the protein level,
CoreGenes revealed eight homologs of BcepB1A proteins,
restricted to TerS and a variety of hypothetical proteins.
These results indicate that phage 7-7-1 is unique and de-
serving of recommendation to ICTV as the type phage in a
new genus: the 7-7-1-like bacteriophages.

Materials and methods

Bacteria and bacteriophages

Agrobacterium sp H13-3 (formerly Rhizobium lupini H13-3)
was isolated from the rhizosphere of Lupinus luteus [39)].



Table 1 Overview of the structural proteins identified by ESI-MS/MS

Protein number Protein name Protein Max. No. of Maxi. sequence Slice in which most Remarks
MW (Da) unique spectra coverage (%) abundant

gp2 Conserved hypothetical 81,838 28 53.9% 5

protein
gp3 Putative DNA circulation 43,673 6 22.6% 9

protein
gp6 Conserved hypothetical 19,283 6 43.3% 20

protein
agp7 Baseplate protein; phage 43,379 11 43.9% 9

P2 GpJ homolog
gp8 Hypothetical protein 31,431 5 27.3% 13
ap9 Hypothetical protein 31,400 4 23.2% 13-14
gp102 Putative tail fibre 61,504 6 17.7% 4
gp103 Hypothetical protein 14,237 4 44.7% 22
gp106 Hypothetical protein 14,221 7 51.7% 23
gp107 Hypothetical protein 52,046 18 36.9% 1
gp108 Hypothetical protein 37,504 3 13.5% 11
gp11l Hypothetical protein 4,295 2 45.2% 25
gp113 Portal protein 45,459 10 34.2% 9
gpl114 prohead protease 28,590 2 10.5% 18
gp115 Major capsid protein 52,513 19 46.5% 11-13-14 only 'C-terminal'
sequence coverage
gp116 Hypothetical protein 14,261 3 37.9% 20-21-22
gpl117A Hypothetical protein 3,205 4 85.7% 25
gp118 Hypothetical protein 24,820 9 44.3% 14
gp119 Hypothetical protein 22,041 9 84.7% 17
gp121 Hypothetical protein 15,986 3 35.0% 19
gp122 Hypothetical protein 23,047 6 20.5% 15
gp124 Hypothetical protein 20,253 1 84% 18 protein identification
probability of 87.70%

gp126 Tail sheath protein 54,066 21 50.5% 7
agp127 Hypothetical protein 14,475 5 50.7% 18

For every detected protein the protein name, the predicted molecular weight (Da), the maximum number of unique spectra and sequence coverage (%) is listed. Moreover, the gel slice in which those maximums were
observed is given, as well as some additional remarks.
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Figure 3 SDS-PAGE analysis of the purified structural phage proteins (lane B) on a 12% SDS-PAGE separation gel alongside a
PageRuler™ prestained protein ladder (Fermentas) (lane A). The entire lane was cut into numbered slices (). Subsequently the origin of the
visible protein bands were identified by ESI-MS/MS analysis (ii, showing Gps).

Phage 7-7-1, which is an isolate from garden compost [40], ex-
clusively infects Agrobacterium sp H13-3 [1].

Bacteria were grown in NY medium (8 g nutrient
broth, 3 g yeast extract per liter) at 40 rpm in a gyratory
shaker at 30°C. Phage lysates up to 2 x 10" PFU per ml
were obtained by infection of an exponentially growing
culture at ODgsonm=0.1 (8 x10” CFU per ml) with
phage at an MOI of 5x 10™ followed by threefold dilu-
tion with pre-warmed NY and further incubation pen-
ding lysis.

Electron microscopy

Purified phage particles were spread on carbon-coated
copper grids, washed once with distilled water and then
negatively stained with 4% uranyl acetate, pH 4.8. Micro-
scope magnifications were calibrated with a replica of an
optical grating and micrographs were taken with a JEOL
7A (Japan Electron Optics Laboratory Co., Ltd.).

DNA isolation for sequencing

Phage DNA was isolated by phenol-chloroform extrac-
tion [41] and purified by using the Lambda DNA kit of
Qiagen (Hilden, Germany). The DNA was subjected to
pyrosequencing (454 technology) at the McGill Univer-
sity and Genome Québec Innovation Centre (Montreal,
QC, Canada) to 378X coverage.

Genome annotation
The 7-7-1 sequence was initially subjected to automated
annotation using MyRAST (http://blog.theseed.org/servers/

presentations/t1/running-a-job-with-the-desktop-rasthtml),
tRNAScan-SE [42] and ARAGORN [43], following which
all open reading frames (ORFs) were confirmed using
Kodon (Applied Maths Inc., Austin, TX. USA). The indi-
vidual proteins were screened against the nonredundant
protein databases in NCBI using Batch BLAST (http://green-
gene.uml.edu/programs/ NCBI Blasthtml). In addition they
were screened for conserved motifs using InterProScan [44],
Pfam [45], TMHMM v2.0 [46] and Phobius [47].

Putative promoters were identified based upon se-
quence similarity to the consensus RpoD-specific E.coli
promoter sequence TTGACA[N15-17]TATAAT while
rho-independent terminators were identified using
ARNold [48,49] complemented with MFOLD [50].

The genome was submitted to NCBI and accorded ac-
cession number JQ312117.

Comparative genomics

This phage was compared at the DNA and protein levels
to other related phages using progressiveMauve [51] and
CoreGenes [52,53].

Proteomics

Structural phage proteins were purified as described by
Moak and Molineux [54]. Briefly, a solution of CsCl-
purified phage particles (10" PFU) was mixed with metha-
nol and chloroform (1:1:0.75 by volume). After agitation
and centrifugation, the upper layer was discarded and an
equal volume of methanol was added. The protein pellet
obtained by centrifugation at 14, 000 rpm for 6 min, was
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dried and resuspended in 125 mM NH4HCOj;. Subse-
quently, the heat denatured sample (95°C, 5 min) was
loaded on a 12% SDS-PAGE gel. The Coomassie-stained
gel (Simply Blue Safestain; Invitrogen) was cut into slices,
which were subjected to trypsin digestion [55]. Peptides
were analyzed using electrospray ionization-tandem mass
spectrometry (MS/MS) as described previously by Lavigne
et al. [56]. The obtained spectra were screened against a
database containing all ‘stop-to-stop’ protein sequences in
all six frames. Generally, the identification parameters were
a ‘protein identification probability’ of at least 99.8% and a
‘best peptide identification probability’ of 95%.

Additional files

Additional file 1: Table S1. Characteristics of genes and proteins
encoded by phage 7-7-1.

Additional file 2: Table S2. Putative promoters and predicted
terminators found in 7-7-1. Table S3. Mass spectroscopic analysis of
individual gel bands, mzML formatted files in zipped format.
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