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Abstract

Background: Human herpesvirus 6 (HHV-6) is a T-lymphtropic and neurotropic virus that can infect various types
of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential
trigger for some central nervous system (CNS) diseases. HHV-6 is involved in the pathogenesis of encephalitis,
multiple sclerosis (MS) and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected
CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of
primary human fetal astrocytes (PHFAs) during productive HHV-6A infection and the underlying mechanisms.

Results: HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and
electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated
with activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP), which is known to be an
important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected
cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased
the release of Smac/Diablo, AIF and cytochrome ¢ from mitochondria to cytosol, which induced apoptosis via the
caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs
and NF-xB decreased in HHV-6A infected PHFAs.

Conclusion: This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected
glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.
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Background

Human herpesvirus 6 (HHV-6), a member of the beta
herpesvirus family, is a T-lymphotropic virus and the
causal agent of exanthema subitum [1-3]. In recent stu-
dies, HHV-6 has been detected in numerous central
nervous system (CNS) diseases including encephalitis,
multiple sclerosis, temporal lobe epilepsy and glioma
[4-7]. These findings suggest that HHV-6 may be asso-
ciated with some CNS diseases. In vitro, HHV-6 has
been shown to infect human glial cells (microglia,
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oligodendrocytes and astrocytes) and induce apoptosis
[8-10]. However, the molecular mechanisms of apoptosis
induced by HHV-6 in glial cells are not fully understood
as yet.

Apoptosis, a programmed suicide death of cells, which
is characterized by chromatin condensation, DNA frag-
mentation, membrane blebbing, and cell shrinkage, can
occur through the intrinsic and extrinsic casepase path-
ways [11]. Caspases, a family of cysteine proteases, regu-
late the initiation and the final execution of apoptosis in
receptor-mediated and mitochondria-mediated pathways
[12]. In the receptor-mediated pathway, caspase-8 is the
initiator caspase that can directly activate the final
executioner caspase-3 [13]. In the mitochondria-
mediated pathway, mitochondria release several pro-
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apoptotic factors including cytochrome ¢, Smac/Diablo,
and apoptosis-inducing factor (AIF) into the cytosol
[14]. Cytosolic cytochrome ¢ binds with apoptotic pro-
tease activating factor 1 (APAF1) to produce active cas-
pase-9 and subsequently active caspase-3 for caspase-
dependent apoptosis. Samc/Diablo is an antagonistic
protein for inhibitor of apoptosis proteins (IAPs), pro-
motes apoptosis along with cytochrome c by activating
caspases [15]. Mitochondria-mediated apoptosis may
also occur in caspase-independently way after mitochon-
drial release of AIF that is translocated to the nucleus
for induction of chromatin condensation and DNA frag-
mentation [16].

In the present study, we investigated the effect and
molecular mechanism of HHV-6A inducing apoptosis in
primary human fetal astrocytes (PHFAs). We found that
HHV-6A induced apoptosis in PHFAs through both cas-
pase-dependent and -independent apoptotic pathways.
In addition, our finding also demonstrated that HHV-
6A could promote cell death by suppressing IAPs and
NEF-xB-mediated anti-apoptosis pathways. To our
knowledge, this is the first demonstration of the
mechanisms of apoptosis induced by HHV-6A in
astrocytes.

Results

HHV-6A causes productive infection in PHFAs

HHV-6A was used to infect PHFAs at comparable levels
of virus DNA (1 x 10® copies/10° cells) as determined
by quantitative PCR. HHV-6A-infected PHFAs showed
typical cytopathic effects (CPE) such as cellular swelling
and cell fusion at 72 h post-infection (hpi) (Figure 1a).
To further determine HHV-6A infection in PHFAs, the
expression of a late protein gp60/110 was analyzed
using immunofluorescence assay and western blotting at
72 hpi. As shown in Figure 1b, a prominent expression
of HHV-6 gp60/110 was detected in HHV-6A-infected
PHFAs compared with that in the control mock-infected
cells. The gp60/110 late protein was clearly localized in
the cytoplasm of most multinucleate giant cells. Electron
microscopic analyses were also performed on HHV-6A-
infected PHFAs at 72 hpi. As shown in Figure 1c, viral
particles could be visualized in both cytoplasm and
extracellular matrix of HHV-6A-infected PHFAs. These
results indicate that HHV-6A can cause productive
infection in PHFAs.

HHV-6A induces apoptosis of PHFAs

To investigate the effect of HHV-6A infection on apop-
tosis in PHFAs, cells infected with HHV-6A were
stained with annexin-V-FITC and propidium iodide (PI)
after 24, 48, and 72 hpi and analyzed by flow cytometry.
As shown in Figure 2a, we observed a high percentage
of annexin-positive cells (apoptotic cells) in HHV-6A-
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infected cells at 72 hpi compared to mock-infected cells.
The percentage of early apoptotic cells and late apopto-
tic cells at 72 hpi reached 5.89% and 17.5% compared to
0.64% and 2.48% in mock-infected cells, respectively. To
further confirm the effect of HHV-6A on cell apoptosis,
we also observed the morphologic changes in HHV-6A-
infected cells using transmission electron microscopy.
HHV-6A-infected PHFAs showed the typical features of
cell apoptosis: marginalized and condensed chromatin
matrix, shrinkage and blebbing of the cytoplasm and
fragmented nuclei (Figure 2b). Virus-like particles could
be found in apoptotic HHV-6A-infected PHFAs (Figure
2¢).

HHV-6A triggers caspases activation

Caspases are synthesized as inactive precursors that are
processed to large and small subunits to form the active
enzymes. Caspase-3 is one of the main effective cas-
pases, which are activated in response to both intracellu-
lar and extracellular death signals. To explore the
pathway by which HHV-6A induced apoptosis, we mea-
sured caspase-3 activity in HHV-6A-infected PHFAs
with anti-active caspase-3 antibody using flow cytome-
try. PHFAs with activated caspase-3 were about 2.81%,
10.12% and 19.31% at 24, 48 and 72 hpi, respectively,
whereas the value was only 0.69% in the mock-infected
cells (Figure 3a). To further define whether HHV-6A
induces apoptosis via the receptor-mediated or the
mitochondria-mediated pathways, the activities of cas-
pase-8 and -9 were measured, respectively. As shown in
Figure 3b, c, HHV-6A infection resulted in significant
increases in caspase-8 and caspase-9 activities at 48 and
72 hpi in HHV-6A-infected cells compared with mock-
infected cells. These data indicate that HHV-6A induce
apoptosis of PHFAs by both the receptor-mediated and
the mitochondria-mediated pathways.

HHV-6A activates PARP cleavage and up-regulates bax/
bcl-2 ratio

PARP is an established substrate for caspase-3 in the
apoptotic events. Cleavage of PARP facilitates cellular
disassembly and serves as a marker of cells undergoing
apoptosis. Western blotting was used to detect endogen-
ous full-length PARP (116 KD), as well as the large frag-
ment (89 KD) of PARP resulting from caspase cleavage.
As shown in Figure 4a, the 89 KD cleaved fragment of
PARP was detected in infected cells at 48 and 72 hpi,
but not detected in the mock-infected cells.

The mitochondria-mediated pathway of apoptosis is
regulated by the Bcl-2 family proteins, which are known
to directly regulate mitochondrial membrane permeabil-
ity. We examined the levels of expression of Bax (pro-
apoptotic) and Bcl-2 (anti-apoptotic) proteins using
Western blotting analysis. As shown in Figure 4b, the
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Figure 1 HHV-6A causes infection in PHFAs. a. HHV-6A infection exhibited typical cytopathic effects in infected PHFAs. The morphological
characteristics of PHFAs infected with or without HHV-6A were observed under light microscope. b. HHV-6A-infected PHFAs express viral gp60/
110 protein at 72 h post-infeciton. The gp60/110 protein was determined by IFA and western blotting with an anti-gp60/110 monoclonal
antibody. ¢. Electron microscopic photographs of typical herpesvirus-like particles were observed in both cytoplasm and extracellular matrix of
HHV-6A-infected PHFAs.
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Figure 2 HHV-6A infection induces apoptosis of PHFAs. a. Mock- and HHV-6A-infected PHFAs were stained with annexin V-Pl and analyzed
by flow cytometry. Percentage of apoptotic cells was summarized. Each column represents the mean + SD of three independent experiments

(*P < 0.05, **P < 0.01, **P < 0.001). b. Electron microscopic photographs of mock- and HHV-6A-infected PHFAs. ¢. Electron microscopic
photographs of virus-like particles in apoptotic HHV-6A-infected PHFASs.
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Figure 3 HHV-6A triggers caspases activation. a. Mock- and HHV-6A-infected PHFAs were collected at various time points and the levels of
activated caspase-3 were measured by flow cytometry. b-c. The activation of caspase-8 and caspase-9 was examined by colorimetric method
using lysates from mock-infected and HHV-6A-infected PHFAs. Each column represents the mean + SD of three independent experiments (***P

< 0.001).
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Figure 4 HHV-6A activates PARP cleavage and up-regulates
Bax/Bcl-2 ratio. a. PARP in mock-infected and HHV-6A-infected
cells was analyzed by Western blotting. b. Expressions of Bcl-2 and
Bax were detected by Western blots using anti-Bcl-2 and anti-Bax
antibodies, respectively. B-actin was used as a loading control.
Quantitative values of Bcl-2 and Bax are the mean + SD from three
independent experiments (**P < 0.01, ***P < 0.001).

levels of Bcl-2 protein were significantly decreased fol-
lowing HHV-6A infection compared to that in mock-
infected cells, whereas the expression of Bax protein was
significantly increased in HHV-6A-infected cells. These
results indicate Bax/Bcl-2 ratio was significantly
increased in HHV-6A-infected cells compared with
mock-infected cells.
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HHV-6A infection results in the release of pro-apoptotic
proteins from mitochondria

Mitochondria may release several molecules including
cytochrome ¢, Smac/Diablo, and AIF to induce apopto-
sis. Mitochondrial cytochrome c release is a well-known
pre-condition for formation of apoptosome and activa-
tion of caspases for apoptosis. As shown in Figure 5,
there is a marked increase in the levels of cytochrome ¢
released from mitochondria to cytoplasm at 48 and 72
hpi compared with control. Smac/Diablo plays an
important role in apoptosis by down-regulation anti-
apoptotic IAPs. The expression levels of Smac/Diablo
were significantly increased following HHV-6A infection
in a time-dependent manner compared to that in mock-
infected cells. In addition, the expression levels of AIF,
determining caspase-independent pathway of apoptosis
were also increased obviously in HHV-6A infected cells
compared to that in mock-infected cells. The results
suggest that HHV-6A infection in PHFAs can provoke
apoptosis via the mitochondrial intrinsic pathway.

HHV-6A suppresses IAPs and NF-<B-mediated anti-
apoptosis effect
IAPs are thought to function primarily by negative regu-
lation caspases, which are cysteine proteases involved in
apoptosis. In human cells, IAPs mainly include cIAP1,
cIAP2 and XIAP. As shown in Figure 6, the levels of
these three IAPs were significantly decreased in the
HHV-6A-infected cells compared to those in mock-
infected cells.

NE-xB plays a crucial role not only in immunity,
inflammation and cell migration but also in cell survival
and apoptosis. Many studies confirmed that NF-xB up-
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Figure 5 HHV-6A infection results in the release of pro-
apoptotic proteins from mitochondria. Expressions of pro-
apoptotic proteins liberated from mitochondria were detected by
Western blots as described in Methods and Materials. B-actin was
used as a loading control.
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Figure 6 Down-regulation of anti-apoptotic proteins by HHV-
6A infection. Representative Western blots show levels of
expression of NF-xB, 1kBa., c-IAP1, c-IAP2 and XIAP. B-actin was used
as a loading control.

regulation and activation exerted an anti-apoptotic effect
leading to cells survival, transformation, and resistance
to radiation and chemotherapy [17]. As shown in Figure
6, the levels of NF-xB were significantly decreased in
HHV-6A-infected cells compared to that in mock-
infected cells, while the expression of NF-xB inhibitor-
IkBa protein was significantly increased in HHV-6A-
infected cells. These results indicate that HHV-6A infec-
tion injures IAPs and NF-xB-mediated anti-apoptosis
signal pathways in PHFAs.

Discussion

HHV-6 was first isolated from peripheral blood mono-
nuclear cells of patients with lymphoproliferative disor-
ders and AIDS [2]. There are two variants of HHV-6 (A
and B) according to distinct genetic, immunological and
virological characteristics [18]. As with other virus,
HHV-6 is able to induce apoptosis of host cells. Subse-
quent studies have demonstrated that HHV-6 has been
shown to induce apoptosis in astrocytes, oligodendro-
cytes, neuronal cell lines and CD4" T lymphocytes
[8,19,20]. Gardell et al. [8] reported that HHV-6A
induced apoptosis by an unknown mechanism in astro-
cytes, oligodendrocytes and neuronal cell lines. Inoue et
al. [20] demonstrated that TNF-a and anti-Fas antibo-
dies augmented HHV-6-induced apoptosis, suggesting
an involvement bof death receptors in HHV-6-induced
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apoptosis. In contrast, Inchimi et al. [21] found that
HHV-6 induced apoptosis of cord blood lymphocytes
through a receptor-independent pathway.

Caspases play a critical role in apoptosis, which cleave
specific substrates and activate downstream molecules
and culminate in cell death [11,13]. However, the roles
of caspases in HHV-6-induced apoptosis of astrocytes
haven’t been studied yet. In this study, we demonstrated
that the activities of caspase-3, -8 and -9 were all
increased in HHV-6A-induced apoptosis of PHFAs. In
addition, we found that PARP was cleaved in HHV-6A-
induced apoptotic PHFAs. Caspase-3 is a common effec-
tor of both death receptor and the mitochondrial signal-
ing pathways. Caspase-8 is activated by the death
receptor signaling pathway, whereas caspase-9 is acti-
vated in the mitochondrial signaling pathway during
apoptosis. We speculate that HHV-6A-induced apopto-
sis in astrocytes via both caspase-dependent receptor
and mitochondrial apoptotic pathways.

Bcl-2 family proteins are central regulators of the
mitochondrial apoptotic pathway and have been impli-
cated in various models of virus-induced apoptosis. Pug-
azhenthi et al. [22] found that simian varicella virus
induced apoptosis in monkey kidney cells via caspase-
dependent mitochondrial pathway and involves down-
regulation of bcl-2 expression. The translocation and
accumulation of Bax, a pro-apoptotic factor of Bcl-2
family in mitochondria will lead to release of cyto-
chrome c and AIF [23]. We examined the expression of
Bcl-2 and Bax in HHV-6A-induced mitochondrial dys-
function. Our data showed that the anti-apoptotic pro-
tein Bcl-2 decreased, which was accompanied by the
increase of pro-apoptotic protein Bax during HHV-6A
infection, suggesting that Bcl-2 and Bax were involved
in the apoptosis of HHV-6A-infected PHFAs.

Up-regulation of Bax induces the permeabilization of
mitochondrial outer membrane and initiates mitochon-
drial dysfunction. Mitochondria may release several mole-
cules including cytochrome c, Smac/Diablo, and AIF to
induce apoptosis via the caspase-dependent and -indepen-
dent pathways [24-26]. We separated the cytosolic and
mitochondrial fractions to examine the cytochrome ¢
levels by Western blotting and found a marked increase in
cytochrome c level in the cytosolic fraction due to a con-
comitant decrease in the cytochrome c level in the mito-
chondrial fraction following HHV-6A infection.
Mitochondrial cytochrome c releases into cytoplasm to
bind to the apoptosis protease activation factor (APAF1)
and to form a complex of apoptosome activating pro-cas-
pase 9. The activation of pro-caspase 9 initiates an enzy-
matic reaction cascade leading to the execution of
apoptosis in cells [27]. We also observed a time-dependent
increase the cytosolic level of Smac/Diablo following infec-
tion compared with control cells. Smac/Diablo can inhibit
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inhibitor-of-apoptosis-proteins (IAPs), which otherwise
inactivate caspases [28]. Mitochondria-mediated apoptosis
may also occur caspase-independently after mitochondrial
release of AIF and Endo G which are translocated to the
nucleus for induction of chromatin condensation and
DNA fragmentation. Our investigation demonstrated that
HHV-6A markedly increased the cytosolic level of AIF in
PHFAs, indicating involvement of caspase-independent
pathway of apoptosis [29].

In addition, NF-xB reportedly induces the expression of
c-IAP1, c-IAP2 and XIAP, thereby promoting NF-xB acti-
vation in a positive feed-back system [30]. NF-xB up-regu-
lation exerts an anti-apoptotic effect leading to cells
survival, transformation, and resistance to radiation and
drug therapies [31]. In contrast, NF-xB down-regulation
will break this feed-back loop and reduce the expression
of c-IAP1, c-IAP2 and XIAP, which are the direct caspase
inhibitors. In the present study, we found that HHV-6A
decreased NF-xB and increased Ix-Bo. expression in time-
dependent manners. IxBo is one member of the family of
cellular proteins that function to inhibit the activity of NEF-
£B. IxBa inhibits NF-xB by masking the nuclear localiza-
tion signals of NF-xB proteins and keeping them seques-
tered in an inactive state in the cytoplasm. IxBa up-
regulation may inhibit the activity of NF-xB which was
observed down-regulation in HHV-6A-infected PHFAs.
We also found that HHV-6A decreased expression of c-
IAP1, c-IAP2 and XIAP. Increased mitochondrial release
of Smac/Diablo could antagonize IAPs expression. Sup-
pression of survival factors such as IAPs and NF-xB could
be due to cytosolic up-regulation of Smac/Diablo [17].

Conclusion

We demonstrated that HHV-6A induces cell apoptosis
in PHFAs through both caspase-dependent and -inde-
pendent apoptosis pathways, as evidenced by (1) activa-
tion of caspase-3, -8 and -9; (2) increasing the ratio of
Bax/Bcl-2; (3) increasing the presence of Smac/Diablo,
AIF and cytochrome c in cytoplasm; (4) down-regula-
tion of anti-apoptotic NF-xB and IAPs. The identifica-
tion of the apoptotic signaling pathways in HHV-6A-
infected PHFAs would be very helpful in understanding
the mechanisms by which HHV-6A infection causes dis-
eases in the CNS.

Materials and methods

Cells and viruses

The primary human fetal astrocytes (Sciencell) were cul-
tured in DEME/F12 (Hyclone) supplemented with 10%
fetal calf serum, 100 IU/ml penicillin/streptomycin (Invi-
trogen). Human T-cell line HSB-2 cells were cultured in
RPMI 1640 medium containing 8% fetal calf serum. HHV-
6A strain GS was inoculated into HSB-2 cells. The cells
were frozen and thawed twice when 80% of HHV-6A-
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infected HSB-2 cells showed the cytopathic effects (CPE),
then centrifuged at 2000 x g for 10 min. The supernatants
were stored at -70°C as cell-free virus. Viral DNA equiva-
lents of the frozen aliquot were tested by quantitative
PCR. Uninfected HSB-2 cells were similarly cultured and
treated using the same procedure and used for mock
infection. For infection, 3 x 10° primary human fetal astro-
cytes (PHFAs) were seeded onto a poly-L-lysine (Sigma)-
coated 25-cm?2 flask (Corning). After an overnight incuba-
tion, the plate was washed three times with phosphate-
buffered saline (PBS) and infected with cell-free superna-
tant containing 10® viral DNA copies/10° PHFAs. After 3
h incubation at 37°C in 5% CQO,, cultures were washed
three times with PBS, and fresh medium was added. The
HHV-6A-infected cells were checked for CPE every day in
microscopy. Procedures for mock infection were per-
formed in the same manner as for viral infection.

Immunofluorescence assay (IFA)

PHFAs were cultured on poly-L-lysine-coated 2-cham-
ber glass slides, and the infection was performed as
described above. The procedure of immunofluorescence
assay has previously been described [32]. Briefly, PHFAs
infected with or without HHV-6A were fixed in 4% par-
aformaldehyde (in PBS), permeabilized in 0.5% Triton
X-100 (in PBS), and stained with the anti-gp60/110
monoclonal antibodies (Chemicon international) fol-
lowed by secondary antibody labeled with fluorescein
isothiocyanate (FITC).

Electron microscopy

Cells were fixed with 2.5% glutaradehyde at room tem-
perature for 1 h. After washing with PBS, the cells were
collected, dehydrated in a series of 70%, 80% and 90%
ethanol, and embedded in Epon. Ultrathin sections were
cut and mounted in nickel grids, stained with uranyl
acetate and lead citrate, and examined by a transmission
electron microscopy.

Annexin V-propidium iodide (PI) staining

Apoptosis was measured by Annexin V-propidium iodide
(PI) staining and flow cytometry. Infected and uninfected
PHFAs were trypsinized, washed in PBS and incubated
with Annexin V-FITC and PI solution (Bender MedSys-
tems, Burlingame) in the dark for 15 min. Samples were
analyzed by flow cytometry with FACSCalibur and BD
CellQuest Pro software (Becton Dickinson, Mountain
View). The amount of early apoptosis and late apoptosis
was determined as the percentage of Annexin V*/PI” and
Annexin V*/PI", respectively.

Analysis of activated caspase-3 by flow cytometry
Caspase-3 activities in HHV-6A-infected and mock-
infected PFHA were tested by flow cytometry with
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FITC-DEVD-FMK that recognizes cleaved caspase-3
according to the protocol by the manufacturer (Biovi-
sion Inc.).

Analysis of caspase-8 and caspase-9 using a colorimetric
method

The activation of caspase-8 and caspase-9 was analyzed
using a colorimetric assay kit (KeyGEN). Briefly, mock-
infected and HHV-6A-infected PFHA were collected and
resuspended in 50 pl of lysis buffer and incubated on ice
for 30 min. After centrifugation, the protein concentra-
tion was assayed by the BCA Protein Assay kit (Byotime),
and 50 pg protein was diluted in 50 pl lysis buffer for
each assay. Then 5 pl of casepase-8 or caspase-9 sub-
strate were added, respectively. The reaction mixture was
incubated at 37°C for 4 h. The released chromphore was
measured at 405 nm by a microplate reader.

Preparation of cytosolic and mitochondrial extracts

Cells were washed twice with PBS and kept for 1 h in ice-
cold hypotonic buffer (20 mM HEPES, pH7.4, 1.5 mM
MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 1 mM
dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 10 pg/
ml leupeptin, aprotinin and pepstatin) containing 250 mM
sucrose. The cells were homogenized using a Dounce
homogenizer (KONTES), and cytosolic and mitochondrial
extracts were isolated as described previously [33].

Western blotting

Cells were lysed with a lysis buffer containing 50 mmol/
L Tris (pH7.4), 0.5%NP-40, 0.01% SDS and a cocktail of
protease inhibitors. Equal amounts of protein (30 pg)
estimated by the BCA Protein Assay kit (Byotime) were
separated by electrophoresis on 10% polyacrylamide gel
and transferred to a PDVF membrane (Millipore). After
blocking for 1 hour with 5% nonfat dry milk in TBST
buffer containing 50 mmol/L Tris-HCI, 150 mmol/L
NaCl and 0.1% Tween 20 (pH7.6) at room temperature,
the blots were incubated overnight at 4°C with the spe-
cific primary antibody. Primary antibodies used were p3-
actin, IxBa, NF-xB, XIAP, c-IAP1, c-IAP2, PARP, AIF,
Cytochrome ¢ and Samc/Diablo (Cell Signaling Tech-
nology), Bax and Bcl-2 (Bioworld). Membranes were
subsequently incubated with horseradish peroxidase-
conjugated secondary antibody (Santa Cruz Biotechnol-
ogy) for 1 h at room temperature and developed using a
chemiluminescent (ECL) reagent (Applygen Technolo-
gies). The results were scanned using Gel Imaging Sys-
tem (UVP Company) and measured using Gel-Pro
Analyzer software (Media Cybernetics).

Statistical analysis
Data were presented as means + SD. One-way ANOVA
followed by LSD post-hoc test was used to assess the
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statistical significance of differences between groups. A
value of P < 0.05 was considered to be statistically
significant.

Abbreviations

HHV-6: Human herpesvirus 6; CNS: Central nervous system; MS: Multiple
sclerosis; AIDS: Acquired immunodeficiency syndrome; PHFA: Primary human
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