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Abstract

Background: Porcine reproductive and respitatory syndrome virus (PRRSV) is a recently emerged pathogen and
severely affects swine populations worldwide. The replication of PRRSV is tightly controlled by viral gene expression
and the codon usage of translation initiation region within each gene could potentially regulate the translation
rate. Therefore, a better understanding of the codon usage pattern of the initiation translation region would shed
light on the regulation of PRRSV gene expression.

Results: In this study, the codon usage in the translation initiation region and in the whole coding sequence was
compared in PRRSV ORF1a and ORFs2-7. To investigate the potential role of codon usage in affecting the
translation initiation rate, we established a codon usage model for PRRSV translation initiation region. We observed
that some non-preferential codons are preferentially used in the translation initiation region in particular ORFs.
Although some positions vary with codons, they intend to use codons with negative CUB. Furthermore, our model
of codon usage showed that the conserved pattern of CUB is not directly consensus with the conserved sequence,
but shaped under the translation selection.

Conclusions: The non-variation pattern with negative CUB in the PRRSV translation initiation region scanned by
ribosomes is considered the rate-limiting step in the translation process.
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Introduction
Porcine reproductive and respiratory syndrome virus
(PRRSV) infection causes serious disease in swine popula-
tions with a series of clinical consequences, such as high
mortality, reproductive failure, post-weaning pneumonia
and growth reduction [1,2]. Based on its serological char-
acteristics, PRRSV has two main serotypes, which named
the Northern American isolate (US) and the European iso-
late (EU), respectively [3-7]. PRRSV is an enveloped, sin-
gle-stranded positive-sense RNA virus with a genome size
of about 15.4kb and classified into the order Nidovirales of
family Arteriviridae [8,9]. The PRRSV genome contains

ORF1a, encoding papain-like cysteine protease, ORF1b,
encoding RNA dependent RNA polymerase, ORF2-6,
encoding envelop proteins, and ORF7, encoding the
nucleocapsid protein [10-13]. Despite a well-organization
of the ORFs within the single RNA genome, viral proteins
are in fact encoded from subgenomic RNAs that are likely
generated through a discontinuous transcription mechan-
ism [12,14]. Therefore, each subgenomic RNA could be
translated at different translation rates that are regulated
by codon usage bias (CUB). Because the faster a polypep-
tide chain is completed, the more rapid the ribosomes
return to initiate and complete another polypeptide chain.
The relationship between the efficiency of translation
initiation and the level of gene expression has been well-
established in many species [15-19]. Moreover, when the
distance between the initiation codon and the non-prefer-
ential site is less than 50-60 positions (codons), the
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ribosomes can be blocked at the non-preferential positions
to shape a queue of ribosomes [20].
It is generally considered that the alternative synon-

ymous codons are not used with equal frequencies
among organisms, and the codon usage pattern plays a
role in genes expressed at higher levels [21-30]. Jacques
and Dreyfus proposed that the translation initiation site
is a rate-limiting factor for gene expression [31]. Never-
theless, a regulatory relationship, which is thought to be
mediated by preferential codons, between CUB and
translation efficiency for individual genes is challengeable
[32,33]. This suggested that a heterogonous gene is not
necessarily expressed at a low level simply because its
codons are infrequently translated by the host cell. There
is a codon bias with respect to intragenic codon bias in
the initial sequences of genes for which major proteins
are strikingly different from their downstream codon
bias. It is found that the translational initiation region
plays an important role in regulating the translational
efficiency and the pattern of synonymous codon usage
varies in different regions along a coding sequence
[34,35]. This indicated that the alternative synonymous
codon usage might be related with gene function, protein
structure and translation efficiency. In this study, we
focus on the pattern of CUB in the translation initiation
region of PRRSV as well as the characteristics of the
synonymous codon usage at each position in the target
region, since the interest in the pattern of CUB has been
aroused by its potential relevance to the translational effi-
ciency of PRRSV subgenomic RNAs. And the frequency
of non-preferential codons usage in the target region is
investigated in order to evaluate the role of translation
selection on the formation of negative CUB pattern.

2. Materials and methods
2.1. Sequences data and the synonymous codon usage
value
The 13 complete RNA sequences of PRRSV were down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI) http://www.ncbi.nlm.nih.gov/Genbank/
and the synonymous codon usage values (SCUV) for this
virus were reported previously [30]. Multiple alignment
analyses were performed with the Clustal W (1.7) method
of DNAStar software (7.0) for windows. The translation
initiation regions (the 1st to the 50th residue) of ORF1a,
ORF2, ORF3, ORF4, ORF5, ORF6 and ORF7 were used as
targets for alignment analysis respectively.

2.2. The calculation of codon usage bias
To calculate CUB, it is supposed that statistically equal
and random usage of all available synonymous codons
was the “neutral point” (RSCU0 = 1.00) for the develop-
ment of serotype-specific codon usage [19]. CUB:

CUB =
n∑

i=1

(RSCUij − RSCU0)/n

More simply, CUB is the average value of difference
between RSCUij and RSCU0 at each position of the target
region. n represents all codons appearing in this position.
When all RSCU values according to a particular position
in the target region are RSCU0, CUB is equal to zero. It
means that there are few preferential or non-preferential
codons existing at this position. In contrast, when CUB
value is much more deviation than RSCU0, codons with
CUB are preferentially chosen at a particular position.

2.3. Analysis of codon usage characteristic of the
translation initiation region
We analyzed the codon usage characteristics of the trans-
lation initiation region depending on R values, where the
R value, computed as the ration R = (ni/Ni)/(n/N), repre-
sents the relative abundance for a particular codon in the
translation initiation region. ni represents the total number
of a particular codon within the 1st to ith amino acids, Ni

represents the total number of corresponding amino acid
in the 1st to ith amino acid ones, n is the total number of a
certain codon within the whole coding sequence, and N is
the total number of corresponding amino acids within the
whole coding sequence. When R value is equal to 1.00, it
means that the frequency of this codon in the target
region is equal to the frequency of this codon in the whole
coding sequence; when R value is lower than zero, it
implies that the frequency of this codon in the target
region is lower than that of the whole coding sequence;
when R value is higher than zero, it suggests that the
frequency of this codon is higher than that of the whole
coding sequence.

2.4. Aanalysis of characteristics of positions with negative
CUB in the target regions
To substantiate the characteristics of codon usage for
positions with negative CUB in the target regions, we
analyzed the target positions depending on the data, (i)
the variations of codons and amino acids, (ii) R values
for codons of the target positions.

3. Results
3.1. Multiple alignment analysis
The consensus amino acid sequence is based on the com-
parison of the strains in previous study [30]. The posi-
tions of amino acid conservation are listed in Table 1.
The conservation of amino acid usage in translation
region was analyzed. For ORF1a, 94% of amino acids in
the target region of US serotype were invariant; 70% in
the target region of EU serotype were conserved. For
ORF2, 78% of amino acids were invariant in US serotype;
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60% were invariant in EU serotype. Non-conserved
amino acids scattered into the target regions of both US
and EU serotypes. For ORF3, 74% of amino acids were
invariant in US serotype; 60% were invariant in EU sero-
type, the most conserved amino acids tended to exist in
the C’ termination of the target regions of both US and
EU serotypes. For ORF4, 76% of amino acids were invar-
iant in US serotype; 72% were invariant in EU serotype.
Non-conserved amino acids scattered in the flank of the
target regions of both US and EU serotypes. For ORF5,
72% of amino acids were invariant in US serotype; 66%
were invariant in EU serotype. Non-conserved amino
acids scattered into the target regions of both US and EU
serotypes. For ORF6, 96% of amino acids were invariant
in US serotype; 82% were invariant in EU serotype, and
non-conserved amino acids had a tendency to exist in
the N’ termination. For ORF7, 90% of amino acids were
invariant in US serotype; 76% were invariant in EU sero-
type, and conserved amino acids scattered into the target
region compared with that of US serotype. The various
extents of the conserved amino acids encoded by ORFs
of PRRSV suggested that these residues played an impor-
tant role in virus biology.

3.2. Characteristics of codon usage bias in the target
regions
The bars of all positions in the translation initiation
region represented the CUB degree (Figure 1). Although
different invariant degrees of the amino acids exist in the
target regions between US and EU serotypes, the similar
patterns of codon usage are present in the target regions
of both US and EU serotypes (Table 2). For ORF1a, 58%
of positions possess the similar pattern of codon usage in
the target regions of both serotypes. Although the two

target regions corresponding to both the US and EU
serotypes have a significant difference to the conservation
in obvious amino acids, a large size of the similar patterns
of codon usage exist in the target region and the
most positions possessed the positive codon usage bais
(Figure 1A). For ORF2, 34% of positions have the similar
pattern of codon usage, and the positions in the N-term-
inal fragment had a tendency to choose low codon bias.
It was also observed that the number of the positions
with the negative codon usage bias for US serotype was
more than that of EU serotype (Figure 1B). For ORF3,
62% of positions have the similar pattern of codon usage
(Figure 1C). For ORF4, 72% positions contain the similar
pattern of codon usage (Figure 1D). For ORF5, 40% of
positions have the similar pattern of codon usage, and
these positions with the similar pattern of codon usage
do not appear to exist near the N’ termination (Figure
1E). For ORF6, 26% of positions which contain the simi-
lar pattern of codon usage do not exist near the N’ termi-
nation (Figure 1F). For ORF7, 44% of positions have the
similar pattern of codon usage, and the most positions
with low codon usage bias tend to exist near the N-term-
inal fragment (Figure 1G).
The various extents of the conserved pattern of codon

usage for their positions in PRRSV ORFs suggest that
CUB associated with these positions might modulate the
corresponding gene expression.

3.3. The rate of codon usage frequency in the translation
initiation region to that of the whole coding sequence
The R value for each codon was calculated and listed in
Table 3. A higher R value indicated more preferential
usage in the translation initiation site than that of the
whole coding sequence. CUBij value for each codon was

Table 1 The positions of invariant amino acids in the translation initiation region

ORF Serotype The position of amino acid conservation in the translation initiation region

ORF1a US The 2nd to 17th, 19th to 34th, 36th to 41st, 43rd to 50th

EU The 3rd, 6th to 13th, 15th to 18th, 20th to 23rd, 25th to 28th, 30th to 32nd, 34th, 35th, 39th to 41st, 44th, 46th, 48th to 50th

ORF2 US The 2nd to 4th, 6th, 8th, 11th to 13th, 15th to 22nd, 25th to 31st, 33rd to 41st, 43rd to 44th, 46th to 49th

EU The 2nd to 4th, 7th, 12th to 13th, 15th, 18th, 20th, 22nd, 24th to 27th, 32nd to 37th, 40th, 41st, 43rd to 49th

ORF3 US The 4th, 5th, 7th, 9th to 12th, 14th, 16th to 19th, 21st, 22nd, 24th to 26th, 29th, 31st, 33rd to 47th, 49th, 50th

EU The 2nd, 4th, 15th, 18th, 20th, 24th to 26th, 28th, 31st to 50th

ORF4 US The 2nd, 6th to 8th, 10th to 12th, 14th, 17th to 31st, 33rd, 34th, 36th to 41st, 44th,
46th to 50th

EU The 3rd, 4th, 6th, 7th, 9th, 12th, 13th, 17th to 32nd, 34th, 36th to 39th, 41st, 42nd, 44th, 46th to 48th, 50th

ORF5 US The 2nd, 6th to 8th, 10th, 12th, 14th, 15th, 18th to 23th, 26th to 28th, 30th to 34th, 36th, 39th to 46th, 48th to 50th

EU The 3rd, 4th, 6th, 7th, 14th to 16th, 18th, 19th, 21st, 24th, 26th to 28th, 30th to 34th, 36th, 39th to 46th, 48th to 50th

ORF6 US The 2nd to 9th, 11th to 15th, 17th to 50th

EU The 2nd, 4th, 5th, 7th, 8th, 15th to 22nd, 24th to 50th

ORF7 US The 2nd to 10th, 12th to 14th, 16th to 45th, 47th, 50th

EU The 2nd, 3rd, 5th, 6th, 8th to 10th, 12th, 15th to 21st, 23rd to 28th, 30th, 31st, 33rd, 35th to 38th, 42nd to 50th
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Figure 1 The CUB degree of translation initiation region in PRRSV ORFs, the white bar represents US serotype while the gray
represents EU. A, ORF1a; B, ORF2; C, ORF3; D, ORF4; E, ORF5; F, ORF6; G, ORF7.
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listed in Table 4. Depending on the data from Table 3, 4
and comparison with the whole coding sequence of
PRRSV, for ORF1a, the codons with negative CUB, namely
GCA (Ala), GCG (Ala), CAA (Gln), AGU (Ser), ACA
(Thr) and ACG (Thr), were more preferentially chosen in
the target region for both serotypes; for ORF2, the codons,
namely UGU (Cys), AUA (Ile), AAA (Lys), CCG (Pro),
AGU (Ser) and UCG (Ser), were more preferentially used;
for ORF3, the codons, namely UGU (Cys), AGC (Ser) and
ACG (Thr), were more preferentially chosen; for ORF4,
the codons, namely GAC (Asp), UUC (Phe), AGU (Ser)
and UCG (Ser), were more preferentially chosen; for
ORF5, the codons, namely UGU (Cys), CCG (Pro), UCG
(Ser) and ACG (Thr), were more preferentially chosen; for
ORF6, the codons, namely CAA (Gln), AUA (Ile) and
CUA (Leu), were more preferentially used; for ORF7, the
codons, namely GGA (Gly) and AAA (Lys), were more
preferentially chosen. Due to these non-preferential
codons, ribosomes might be stalled by them to regulate
the efficiency of gene translation.

3.4. The characteristics of codon usage for the target
positions
The positions with negative CUB do not always use the
codons with negative CUB, and the R value for the
codons with negative CUB vary compared with R = 1.00.
However, some target positions contain the codons with
negative CUB and R values > 1.00, suggesting that some
new characteristics might influence the translation effi-
ciency of the corresponding coding sequence. In transla-
tion initiation region of ORF1a, the non-preferential
codons (R value > 1.00) are preferentially used in the 4th

(US and EU serotypes), 9th (US), 12th (EU), 19th (US), the
22nd (US and EU), 27th (US), 31st (US and EU) and 40th

(US), while some non-preferential codons, which have R
value < 1.00 or R value > 1.00, exist in the 16th (EU) and
30th (US and EU) positions. For ORF2, the non-preferen-
tial codons are more preferentially used in the 7th (EU),
8th (EU), 9th (EU), 11th (US), 20th (EU), 27th (EU), 30th

(US), 33rd (US), 40th (EU), 43rd (EU), 44th (US) and 48th
(EU) positions, while some non-preferential codons with
R value > 1.00 or R value < 1.00 exist in the 12th (US)
position. For ORF3, non-preferential codons (R value >

1.00) exist in the 4th (US), 13th (US and EU), 17th (EU),
26th (US and EU), 31st (US and EU), 32nd (EU) and 37th

(US) positions, while the non-preferential codons with R
value > 1.00 or R value < 1.00 are used in the 5th (EU),
6th (US and EU), 7th (US), 11th (US and EU),16th (US)
and 43rd (EU) positions. For ORF4, the non-preferential
codons with R value > 1.00 are used in the 3rd (US and
EU), 7th (US and EU), 20th (US and EU), 27th (US and
EU), 28th (US and EU), 29th (US and EU), 38th (EU),40th

(US and EU), 41st (US), 44th (EU) and 49th (US and EU),
while some non-preferential nodons with R value > 1.00
or R value < 1.00 are used in the 31st (EU) position. For
ORF5, the non-preferential nodons with R value > 1.00
are used in the 9th (EU), 12th (US), 14th (EU), 22nd (US)
23rd (US), 32nd (US), 36th (US), 39th (EU), 40th (EU), 44th

(EU), 48th (EU) and 49th (EU), while non-preferential
codon with R value > 1.00 or R value > 1.00 are used in
the 8th (US), 24th (US), 46th (US) and 47th (US) positions.
For ORF6, the non-preferential codons (R value > 1.00)
are used in the 3rd (US), 4th (EU), 7th (US), 13th (US), 14th

(EU), 15th (EU), 19th (EU), 21st (US), 22nd (EU), 24th

(EU), 26th (EU), 27th (US), 30th (EU), 31st (EU), 32nd (US),
37th (US), 40th (US), 45th (EU) and 48th (EU) positions,
while some non-preferential codon (R value < 1.00 or R
value > 1.00) are used in the 2nd (EU), 5th (US and EU),
46th (US) and 50th (US) positions. For ORF7, the non-
preferential codons (R value > 1.00) are chosen in the
11th (US), 32nd (US), 40th (US and EU), 41st (US), 43rd

(EU), 44th (EU), 48th (US) and 50th (US) positions, while
some non-preferential codon (R value > 1.00 or R value <
1.00) are used in the 3rd (US), 24th (EU), 25th (EU) and
35th (US) positions. The rest positions with negative CUB
do not arise from the existence of non-preferential
codons but contain some preferential codons (CUB > 0),
implying that these positions do not affect the efficiency
of gene translation. The degeneracy of the genetic code
enables the same amino acid sequences to be encoded
and translated in different ways. However, the synon-
ymous codon usage is not purely random.

4. Discussion
RNA virus possesses high mutation rates and therefore
virus populations exist as dynamic and complex mutant

Table 2 The similar pattern of codon usage in the target regions in both US and EU serotypes

ORFs The positions corresponding to similar codon usage pattern in the target region

ORF1a the 2nd to 4th, 6th to 8th, 10th, 11th, 14th, 15th, 17th, 20th to 24th, 26th, 29th to 36th, 39th, 44th, 45th, 48th

ORF2 the 3rd to 5th, 14th, 17th, 21st, 23rd, 24th, 28th, 31st, 34th, 36th, 37th, 41st, 44th, 46th, 49th, 50th

ORF3 the 2nd, 6th, 9th to 15th, 18th to 20th, 23rd to 26th, 28th to 31st, 33rd to 36th, 38th, 39th, 41st, 44th, 45th, 47th to 49th

ORF4 the 2nd to 10th, 12th, 13th, 15th to 18th, 20th, 22nd to 25th, 27th to 29th, 33rd, 34th, 36th, 37th, 39th, 40th, 43rd, 45th, 46th, 47th to 50th

ORF5 the 7th, 11th, 13th, 15th to 17th, 20th, 21st, 25th to 31st, 33rd, 37th, 39th, 41st, 50th

ORF6 the 11th, 17th, 18th, 20th, 23rd, 25th, 33rd, 38th, 41st, 43rd, 44th, 49th

ORF7 the 2nd, 5th, 6th, 8th, 9th, 15th, 18th, 21st to 23rd, 26th to 31st, 36th, 38th to 40th, 46th
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Table 3 Preferentially used codons in the target region in
US and EU serotypes of PRRSV

ORF1a ORF2 ORF3

Codon US EU US EU US EU
aGCA b1.69 b1.43 0 0.91 0.15 0.64

GCC 1.00 0.98 1.42 2.16 0 0.91
aGCG b2.25 b1.34 0 0 b2.17 0

GCU 0 0.76 1.03 0.83 2.94 1.88
aAGA 0 0 0.5 b1.37 0 0

AGG 1.22 0 0 0 3.72 0
aCGA b2.42 0 0 0 0 0

CGC 0 0 0 0 0 2.05

CGG 3.07 5.63 3.79 1.14 0 0
aCGU 0 0 0 b1.07 0.47 b2.90

AAC 0.43 0.90 1.86 0 0.12 1.01
aAAU b1.72 0.68 0.40 0 b1.35 1.00
aGAC 0 b1.56 0 0 0 0

GAU 2.31 0.37 0 1.26 0.38 0.25

UGC 1.08 1.62 1.25 0 0.36 0.18
aUGU 0.92 0.50 b1.01 b1.51 b1.44 b1.43
aCAA b1.89 b1.08 0.50 0.86 0 0

CAG 0.17 0.92 0 1.21 0 2.15
aGAA 0.55 0.28 0 0 b1.50 0

GAG 1.30 1.38 0 1.14 0.27 1.30
aGGA 0 0.39 0 b2.46 0 0

GGC 1.40 1.63 3.13 0 1.51 3.82

GGG 2.00 1.16 0 0.29 0 0

GGU 0.15 0.48 1.40 1.25 2.58 0.42
aCAC 0 0 0 b1.58 0 0.72

CAU 0 0 0 0.21 1.41 1.32
aAUA b8.26 0 b2.55 b3.19 0 0

AUC 0 0 0 0 0 2.58

AUU 0 0.59 0 0 4.31 0
aCUA b2.32 0.24 0.32 0 0 b4.42

CUC 1.90 1.87 0 0 1.84 0.77

CUG 0.92 0 0 0.65 1.39 0.43

CUU 1.01 1.34 0.66 0.24 0 1.02
aUUA 0.28 0.22 0.64 b3.54 0 0

UUG 0 0.80 1.99 2.04 0.74 1.29
aAAA 0 0 b1.27 b2.64 0 0

AAG 0 0 0 0 0 0
aUUC b1.01 0.48 0.17 b1.09 0.99 0.95

UUU 1.01 1.46 1.14 0.78 1.02 1.07

CCA 0 0.98 1.50 1.04 0 4.51

CCC 2.27 0.11 0 0 0.39 0
aCCG 0 b2.43 b1.36 b1.07 b3.79 0

CCU 1.01 0.81 0 3.21 0 0.24
aAGC 0.42 b1.56 0 0.43 b2.02 b1.26
aAGU b6.36 b8.28 b4.94 b4.13 0 b1.87

UCA 1.89 1.68 0.28 0.41 0 1.17

UCC 0.21 0.98 0.09 0.60 0.83 0.59
aUCG 0 0 b1.58 b1.70 0 b1.30

UCU 2.79 1.33 1.16 0.63 2.21 1.22

Table 3 Preferentially used codons in the target region in
US and EU serotypes of PRRSV (Continued)
aACA b1.97 b1.48 b6.17 0 b1.24 0.70

ACC 0.89 0.58 0 0 0 0.70
aACG b2.22 b1.49 0 b1.83 b1.74 b2.11
aACU 0 b1.06 0 0 0.96 0.82

UAC 1.33 0 0 1.36 1.32 2.03
aUAU 0.37 0.30 b1.77 0.53 0 0.11
aGUA 0 b2.67 0 b4.79 0 0

GUC 0.77 1.77 3.78 0.33 0.11 0.33

GUG 1.71 0.31 0 2.04 1.88 0

GUU 0.76 0.53 2.96 0 1.08 4.14

ORF4 ORF5 ORF6 ORF7

Codon US EU US EU US EU US EU
aGCA b1.25 0.16 0 0 0 b1.60 0 b1.09

GCC 0.55 0.96 1.91 3.08 0.65 1.69 1.22 1.75
aGCG b1.27 b1.09 0.85 0.57 b1.60 0 0 0

GCU 0.98 1.20 1.35 0 2.24 0.21 1.50 0.74
aAGA 0 0 0 b3.69 0 0 b2.78 0.71

AGG 0 0 0 0.15 0 0 0.17 2.19
aCGA 0 0 b7.83 0 b4.58 0.99 0 0.33

CGC 0 0 0 0 2.29 5.79 0 0.75

CGG 0 0 0 0 0 0.23 0 0.29
aCGU 0 0 0 b1.80 0 0 0 0

AAC 3.67 1.36 1.34 1.42 0 0.31 1.09 1.42
aAAU 0 0.56 0 0.20 0.29 0.86 0.89 0.83
aGAC b1.38 b1.39 0.58 0.18 b1.33 0.64 0.50 0

GAU 0.50 0.69 0 2.65 0.67 0.86 0.75 0

UGC 0.64 0.67 0.82 0.99 0.44 1.38 1.92 1.00
aUGU b1.41 0.99 b1.13 b1.02 b1.33 0.24 0 0.29
aCAA 0.42 b1.14 0.25 1.00 b1.50 b1.38 0.64 0.78

CAG 1.46 0.95 2 0 0.33 0 1.13 1.07
aGAA 0.50 0 0 0 0.17 0.45 0 0

GAG 0.19 2.14 1.49 0.29 0 0 0 0
aGGA 0 0 0 0 0 0.84 b1.31 b1.14

GGC 0.63 0 1.63 1.98 0.79 0.77 1.05 0.89

GGG 0 0 1.03 0.54 1.87 1.97 0.63 0.85

GGU 4.00 3.33 0.17 0 0 0.56 1.35 1.11
aCAC 0 0 0 b2.90 0.78 b2.05 0 0

CAU 0 1.48 1.94 0 1.46 0 0 0
aAUA 0 0 0 b2.58 b1.12 b1.86 0 b3.29

AUC 1.26 1.24 1.07 0.12 1.19 0.90 1.46 0

AUU 0.73 1.20 1.34 0.37 0.80 0.08 0 0
aCUA 0 b2.26 b1.37 0 b1.66 b1.35 0 0

CUC 1.52 1.15 0.60 0 0.19 0.74 0 0

CUG 0 1.14 0.70 0.99 1.19 1.48 1.46 1.78

CUU 1.19 1.81 0.62 0.77 1.27 0.94 0 0
aUUA 0 0.23 0.55 0 0.77 0.16 0 0

UUG 1.50 0.19 1.69 2.16 0.73 0.84 0.22 1.05
aAAA b1.21 0.20 b1.34 1.00 0 0.31 b1.08 b1.21

AAG 0.69 1.82 0.23 0.38 2.43 1.32 0.98 0.86
aUUC b1.28 b1.18 b1.88 0.99 1.00 0.42 0 0

UUU 0.76 0.12 0.84 0.98 0.87 1.49 0 0
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distributions [36-41]. However, the redundant intensity of
mutation has deleterious effects on the viral fitness. Thus,
the robustness of viral sequences can perform a reduced
sensitivity to perturbations affecting phenotypic expres-
sion. The balance between the high mutations and the
robustness produce a dynamic population pool, termed as
‘quasispecis’ [36,42]. As to comparative genomics, it is
generally accepted that sequences with a crucial function
are conserved among different but related organisms
[43-45]. In addition, Akashi found that the frequency of
preferential codons is significantly higher at the conserved
amino acid positions than that at the non-conserved
amino acid positions among different Drosophila species,
suggesting that translation selection favors the conserved
pattern of synonymous codon usage to enhance the accu-
racy of gene expression [46]. A lot of experimental data
have shown that rates of chain elongation during transla-
tion of proteins are not uniform [47]. Non-uniform char-
acter of distribution of codons with different usage
frequencies along mRNA is assumed to be a main factor
to modulate the translation rate. Extensive studies have
been carried out previously on the determination of the
translation rates and the overall level of gene expression
for certain individual codons [48-52]. From this research,
we observed that the conserved pattern of codon usage
did not simply follow the corresponding positions in the
conserved sequence fragment, suggesting that the conser-
vation of codon usage within a gene sequence have an

important function in modulating its translational rate.
The positions with the conserved positive CUB enhance
the accuracy and efficiency of their gene translation. It has
been observed that preferential codons can reduce the fre-
quency of amino acid misincorporations, resulting in an
approximately 10-fold increase of protein products over
non-preferential codons for the same amino acid [53].
However, the positions with negative CUB in the transla-
tion initiation region of each PRRSV subgenomic RNA are
not ignored. Because these positions are likely to regulate
the translation initiation rate to generate the target pro-
duct with high activity. Lithwich and Margalit reported
that CUB is most highly associated with protein expres-
sion and is most conserved [26]. Once a significant num-
ber of gene sequences have been obtained, it will be taken
into consideration that biased codon usage can regulate
the expression levels of individual genes by modulating

Table 3 Preferentially used codons in the target region in
US and EU serotypes of PRRSV (Continued)

CCA 3.83 0 0 0.76 3.00 0 2.25 1.85

CCC 0.40 1.67 0 0 0 0.79 0 0.59
aCCG 0 0.43 b4.25 b1.29 0 0 b2.00 0.33

CCU 0 0.24 0.17 0 0 1.65 0 0.50
aAGC b1.34 0 b1.69 0.57 0.98 b3.10 1.00 b2.47
aAGU b3.67 b2.57 0 0 b4.28 0 0 b2.51

UCA 4.31 0.64 0 0 2.20 0 0 2.99

UCC 0.78 0 0.32 1.17 0.79 0 1.35 1.26
aUCG b1.91 b1.95 b1.58 b1.48 b2.20 0 0 0

UCU 0.47 0.86 1.45 1.78 2.02 0.31 0 0
aACA 0 0 0 b1.32 0.17 b1.76 0 b1.63

ACC 1.78 1.41 0.98 0.67 0.83 0.56 0 0
aACG 0 b1.69 b6.79 b2.13 b2.35 0 0 0
aACU 0.78 0.21 0 0.53 0.18 0.43 0 0

UAC 0 0 1.80 1.11 0.67 1.05 0 0
aUAU 0 0 0.48 0.90 b1.50 0.55 0 0
aGUA 0 0 0 0 0.98 0.27 0 0

GUC 0.92 1.04 0.34 0 0 0 1.72 2.96

GUG 0.52 0.10 2.79 0 2.10 2.29 0 0

GUU 2.25 1.77 0 0 0 0 0 0
a presented the non-preferential codon.
b presented that the non-preferential codon was more preferentially chosen in
the translation initiation region than that of the whole coding sequence.

Table 4 Synonymous codon usage bias for the whole
coding sequence of PRRSV

aAA Codon bCUBij AAa Codon bCUBij

Ala GCA -0.143 Leu CUA -0.490

GCC 0.309 CUC 0.164

GCG -0.350 CUG 0.377

GCU 0.184 CUU 0.096

Arg AGA -0.107 UUA -0.670

AGG 0.092 UUG 0.522

CGA -0.258 Lys AAA -0.003

CGC 0.411 AAG 0.003

CGG 0.012 Phe UUC -0.083

CGU -0.149 UUU 0.083

Asn AAC 0.040 Pro CCA 0.047

AAU -0.04 CCC 0.059

Asp GAC -0.045 CCG -0.198

GAU 0.045 CCU 0.092

Cys UGC 0.001 Ser AGC -0.128

UGU -0.001 AGU -0.194

Gln CAA -0.018 UCA 0.075

CAG 0.018 UCC 0.418

Glu GAA -0.116 UCG -0.317

GAG 0.116 UCU 0.145

Gly GGA -0.441 Thr ACA -0.031

GGC 0.369 ACC 0.439

GGG 0.016 ACG -0.347

GGU 0.056 ACU -0.061

His CAC -0.153 Tyr UAC 0.174

CAU 0.153 UAU -0.174

Ile AUA -0.234 Val GUA -0.635

AUC 0.166 GUC 0.110

AUU 0.068 GUG 0.406

GUU 0.118
a mean amino acid
bThe CUBij value was calculated following by the equation: CUBij = RSCUij-
RSCU0, and RSCUij value came from the previous study [30].

Su et al. Virology Journal 2011, 8:476
http://www.virologyj.com/content/8/1/476

Page 7 of 10



the rates of polypeptide elongation [21,54-58]. Komar
pointed out that although preferential codons enable the
corresponding gene to be translated efficiently, the non-
preferential codons replaced by the corresponding prefer-
ential codons can regulate the gene expression to perform
the precise protein folding [59]. Lavner and Kotlar indi-
cated that translation selection may shape codon bias pat-
tern, not only to increase translation efficiency by favoring
preferential codons in highly expressed genes, but also to
decrease translation rate by favoring non-optimal codons
in lowly expressed ones [60]. A relationship between the
translation efficiency and CUB have been reported that it
can lead to link between the protein folding by modulating
the translational rate and the synonymous codon usage
bias [47,61-65]. The nucleotide sequences around the N-
terminal region of the protein appear to be particularly
sensitive to the presence of rare codons [66,67]. Our data
showed that some positions in the translation initiation
regions of ORFs tended to preferentially choose non-pre-
ferential codons which were more preferentially used in
these regions than the whole coding sequences. This phe-
nomenon suggested that the determinant of the invariant
pattern of codon usage is not only correlated with the con-
served sequence, but also dependent of the translation
selection. As codon usage pattern comprised of preferen-
tial and non-preferential codons contributes to different
translation rates, it is possible to change the local transla-
tion rates of a gene by suitable selection of its synonymous
codons. A gene sequence with non-preferential codons
intends to encode turns, loops and domain linkers within
its protein structure through the limited step to the trans-
lation rate [47,63,64,68]. Taken together, under the trans-
lation selection, the conserved non-preferential codons in
the translation initiation regions of PRRSV may affect the
translation efficiency so as to maintain the normal biologi-
cal functions of their target products. Komar and Jaenicke
indicated that the non-preferential coodns play an impor-
tant role in maintaining the normal function or activity of
CAT product [68]. It shows the importance of non-prefer-
ential codons to the formation of the target products. As
non-preferential codons or even one aggregating near the
translation initiation codon can decrease translation rate
arising from the limitation of availability of tRNAs
depending on the host cell [69], the view that non-prefer-
ential codons probably have a negative effect on gene
expression can be explained by the ‘minor codon modula-
tor hypothesis’ [70]. When the tRNA concentration of
minor codons becomes extremely limited, ribosomes of
the host cell block at the minor codons to inhibite the
ribosome from entering into the initiation site effectively,
thereby resulting in a decrease in the translation rate.
Moreover, the non-preferential codons locating at the
translation initiation region modulate the number of ribo-
somes that are sequestered by an mRNA if the rates of

elongation at these codons were so sufficiently slow that
stalled ribosomes could block access to the initiation sig-
nals [19,71].
In summary, the conserved non-preferential codons in

the translation initiation region have a high relationship
with the regulation of gene expression. And the conserved
codons with negative CUB are preferentially used in the
initial region, which may be explained by the minor codon
modulator hypothesis and the translation selection. These
codons within this critical region might play a negative
role in regulation of gene expression.
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