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Abstract

The development of a vaccine against respiratory syncytial virus (RSV) has been hampered by the risk for vaccine-
enhanced RSV pulmonary disease induced by immunization with formalin-inactivated RSV (FIRSY). This study
focuses on the evaluation of vaccine-enhanced pulmonary disease following immunization with AdF.RGD, an
integrin-targeted adenovirus vector that expresses the RSV F protein and includes an RGD (Arg-Gly-Asp) motif.
Immunization of BALB/c mice with AdF.RGD, resulted in anti-RSV protective immunity and induced increased RSV-
specific IFN-y T cell responses compared to FIRSV. RSV infection 5 wk after immunization with FIRSV induced
pulmonary inflammatory responses in the lung, that was not observed with AdF.RGD. Additionally, In the FIRSV-
immunized mice following infection with RSV, pulmonary DC increased and Tregs decreased. This suggests that
distinct responses of pulmonary DC and Tregs are a features of vaccine-enhanced RSV disease and that
immunization with an RGD-modified Ad vaccine does not trigger vaccine-enhanced disease.

Introduction

RSV is a leading cause of severe viral respiratory disease
in infants and children [1]. A major obstacle in the
development of an RSV vaccine has been vaccine-
enhanced disease triggered by immunization with inacti-
vated virus antigen [2,3]. This aberrant immune-
mediated response is characterized by infiltration of
neutrophils and eosinophils, increased complement-fix-
ing antibody titers and lymphoproliferative responses
[4-7]. The exact mechanism has not been fully eluci-
dated. An altered pattern of CD4 lymphocyte activation
with eosinophil recruitment and Th2-type-predominant
cytokine production (IL-4, IL-5, IL-13 and eotaxin) sug-
gests an aberrant immune-mediated response skewed
towards Th2 responses [4,8-10]. This is supported by
data demonstrating that the disease following RSV infec-
tion can be transferred by RSV G protein-specific CD4
T cells and also occurs in the absence of CD8 T cells or
IFN-y [11-13]. RSV-specific CD8 T cells can even inhibit
the disease [7,13,14]. Initially, the RSV G protein itself
was implicated based on studies using vaccinia virus
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expressing the membrane-anchored part or the entire G
protein for immunization [15-17]. Recently, it has been
suggested that the pathway of antigen processing, rather
than the antigenic content, is responsible [4,7]. In addi-
tion, low avidity anti-RSV antibodies, which may have
resulted from poor activation of toll-like receptors, have
been observed in mice following immunization with
FIRSV [18], the most commonly used model to study
vaccine-enhanced RSV disease [4,19-21].

The RSV F protein, one of the main capsid proteins
that confers protective immunity against RSV, has been
a major target in RSV vaccine development [22]. Vacci-
nation with the F protein generates helper T cell
responses that are Thl in character [23]. Adenovirus
(Ad)-based gene delivery systems are promising plat-
forms for genetic vaccines due to their ability to act as
immune system adjuvants and to induce strong cellular
and humoral responses against the virus and the trans-
gene [24,25] and have been used as experimental vac-
cines against RSV [26-32]. In part, the effectiveness of
Ad-based vaccines results from the ability of Ad vectors
to transfer genes to antigen presenting cells in vivo, par-
ticularly dendritic cells (DC) [33-37]. The immune
response can be further enhanced to a more Thl-domi-
nant response by modification of Ad capsid proteins to
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infect DC more efficiently [38-40]. The primary interac-
tion of Ad with cells in vitro is through the knob
domain of fiber to the coxsackievirus and adenovirus
receptor (CAR) on the target cell [41,42]. A secondary
interaction occurs between the RGD (Asp-Arg-Gly)
motif in the penton base and integrins. The addition of
an RGD motif (in addition to that found in the penton
base) enhances infection of DC, which express low levels
of CAR and high levels of surface integrins [38-40].

Virus-specific humoral and cellular adaptive immune
responses are responsible for protection and recovery
from RSV infection. Lung DC, as part of the pulmonary
innate immune system, recognize the infection, evoke
anti-viral responses and modulate the Th1/Th2 balance
[43-47]. There are two major subsets of DC in the
mouse, (1) the CD11b*, CD11c"®" conventional DC
(cDC), and (2) the CD11b""", CD11cMeh, B220* plasma-
cytoid DC (pDC) [48-52]. Resting lung ¢DC have been
implicated in initiating a pro-allergic Th2 response in
the lung and in requiring special cytokine signals to
induce Th1 response, whereas pDC seem to have a pri-
mary role in producing IFN-a in response to viral infec-
tions and in promoting a Thl response by blocking the
pulmonary immune environment against a Th2 response
[43,50,53-56]. PDC balance the T helper cell responses
through cross-talk with regulatory T cells (Tregs). The
number of pDC and ¢DC is increased in lung and drain-
ing lymph nodes following experimental RSV infection
in mice [55,57-59] as well as in nasal washings of RSV-
infected infants [60]. RSV-stimulated cDC seem to have
immunostimulatory effects on both Thl and Th2
responses [57]. RSV-stimulated pDC have direct anti-
viral activity through the release of IFN-a (2). Depletion
of pulmonary pDC leads to an exaggerated Th2
response to RSV [55,56], whereas increasing the number
of pDC by recombinant Flt3 ligand leads to an increased
Th1 response [50]. Increasing cDC while depleting pDC
leads to enhanced Th2-type pathology [50]. We
hypothesized that the lung DC subsets stimulated in
response to RSV infection in immunized animals would
depend upon the T-helper cell type induced by
immunization.

The present study demonstrates that immunization
with the capsid-modified Ad vector AdF.RGD compared
to immunization with FIRSV, at doses inducing compar-
able levels of anti-RSV neutralizing and protective
immunity, leads to a more pronounced RSV-specific
Thl response and does not prime for vaccine-induced
enhanced RSV disease. Furthermore, immunization with
AdF.RGD or FIRSV results in a distinct response of pul-
monary DC and Tregs that may be useful for the char-
acterization of vaccine-enhanced pulmonary RSV
disease.
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Results

Immunization with AdF.RGD Leads to Enhanced Th1-Type
anti-RSV Immunity and Improved Protection against RSV
We first evaluated if immunization with AdF.RGD could
further polarize the anti-F immune response towards
Th1 and improve the protection against RSV in com-
parison to immunization with the capsid-unmodified
vector AdF. BALB/c mice were immunized intramuscu-
larly with either AdF, AdF.RGD or AdNull and IL-4
responses in CD4 T cells and IFN-y responses in CD8
T cells against the recombinant RSV F protein (smt3-
RSV F) and the H-2%restricted F epitope (F85-93,
KYKNAVTEL), respectively, were evaluated in lympho-
cytes isolated from spleen 10 days following immuniza-
tion (Figure 1A,B). F protein-specific IL-4 in CD4 T
cells were induced both by AdF and AdF.RGD (p <
0.001 and p < 0.03 compared to AdNull, respectively;
Figure 1A). However, the AARGD-induced response was
lower compared to AdF-induced response (p < 0.002).
In contrast, the RSV-F epitope-specific IFN-y response
in CD8 T cells was increased in the mice immunized
with AdF.RGD compared to mice immunized with AdF
(p < 0.001; Figure 1B). This suggested that the RGD
modification of the AdF vector increased the anti-RSV
Thl response and decreased the Th2 response. To eval-
uate if the immunization induces sufficient immunity to
provide protection against a subsequent pulmonary
challenge with RSV, BALB/c mice were immunized with
AdF, AdF.RGD, or AdNull and challenged 5 wk later
with RSV intranasally. Immunization with both AdF
and AdF.RGD resulted in reduced RSV titers in the
lung compared to the AdNull group (p < 0.05, both
comparisons; Figure 1C). Interestingly, immunization
with AdF.RGD resulted in further reduction in the RSV
lung titers than immunization with AdF (p < 0.01). This
suggests that the RGD modification results in increased
protective immunity against RSV. Based on these
results, the AdF.RGD vector was used for the following
experiments.

Immunization with AdF.RGD Leads to Improved Humoral
anti-RSV Immunity Without Inducing Vaccine-enhanced
Disease

Humoral immune responses were evaluated following
immunization with AdF.RGD in direct comparison to
immunization with RSV and FIRSV, a vaccine that trig-
gers vaccine-enhanced RSV disease. BALB/c mice immu-
nized with AdF.RGD, RSV or FIRSV all had increased
neutralizing anti-RSV titers in the serum after 4 wk com-
pared to mice that had received the control AdNull vec-
tor (p < 0.001; Figure 2). AdF.RGD induced neutralizing
anti-RSV antibodies at higher levels compared to live
RSV and FIRSV-immunized mice (p < 0.05). There was
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Figure 1 Frequency of RSV F protein-specific Th2-type CD4 and CD8 T cells and immunity against RSV in BALB/c mice following
intramuscular immunization with AdF or AdF.RGD (10'° pu/mouse). A, B. Ten days following immunization, spleen CD4 and CD8 T cells
were co-cultured with splenic DC alone or with DC pulsed with recombinant smt3-RSV F protein or F peptide (DC-smt3-RSV F; DC-F85-93,
respectively) and RSV F-specific cytokine responses were measured after 48 h by ELISPOT assay. A. RSV-specific IL-4 production in CD4 T cells; B.
F epitope-specific production in CD8 T cells. C. RSV titer in the lungs of mice challenged by intranasal administration of RSV (10° cfu) 4 wk after
immunization. Data represent mean + SD of 5 animals/group from one of two independent experiments. ***, ** and * denote significance of p

< 0.001, p < 001 and p < 0.05, respectively.

no difference in neutralizing anti-RSV titer between RSV
and FIRSV-immunized animals (p > 0.1).

To evaluate if immunization with AdF.RGD induces
vaccine-enhanced RSV lung disease, mice were immu-
nized with AdF.RGD, AdNull, RSV or FIRSV and then
challenged with RSV at 5 wk post-immunization. Vac-
cine-enhanced RSV disease was assessed 6 days follow-
ing RSV infection by: (1) lung histology and (2) the
cellular composition of the bronchioalveolar lavage
(BAL), (Figure 3), and (3) the Th2-type cytokines
eotaxin, IL-4, IL10 and IL-13 in lung homogenate (Fig-
ure 4). Pronounced inflammation, consistent with vac-
cine-enhanced disease, was seen in the lungs of animals
that had been immunized with FIRSV and had been
challenged with RSV (Figure 3B). Vaccination with RSV
induced moderate inflammation in the lung after RSV

challenge with less infiltration of inflammatory cells
compared to the FIRSV immunized animals after RSV
challenge (Figure 3A). In contrast, only minimal inflam-
matory changes were observed in the mice immunized
with AdF.RGD (Figure 3C). Analysis of the cell differen-
tial in the BAL showed an increase in eosinophils, lym-
phocytes and neutrophils FIRSV-immunized animals
and an increase in lymphocytes in the RSV-immunized
animals that had been challenged with RSV compared
to those that had received AdF.RGD or AdNull (Figure
3D). Only a mild increase in the number of lymphocytes
and neutrophils was observed in AdF.RGD and AdNull-
immunized animals challenged with RSV compared to
unchallenged animals (Figure 3D). Consistent to these
findings, the levels of inflammatory cytokines like IL-4,
IL-10, I1-13 and eotaxin in lung homogenate were
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Figure 2 Protective immunity induced by AdF.RGD. BALB/c mice were immunized intramuscularly with AdNull, AdF.RGD (both at 10'° pu),
formalin-inactivated RSV (FIRSV, 10° pfu) or intranasally with RSV (10° pfu) and neutralizing serum anti-RSV Titer was measured 4 wk following
immunization. Data represent mean + SD of 5 animals/group from one of two independent experiments.* denotes significance p < 0.05.
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Figure 3 Absence of RSV-induced inflammatory responses in lung and BAL following immunization with AdF.RGD. BALB/c mice were
immunized subcutaneously with AdNull, ADF.RGD (both at 10'° pu), formalin-inactivated RSV (FIRSV, 10° pfu) or intranasally with RSV (10° pfu).
Five wk later the mice were challenged intranasally with RSV (10° pfu) and lungs were harvested after 6 days. A-C. Lung histology (H+E stain): A.
RSV, B. FIRSV, C. AdF.RGD. D. Quantification of cells in BAL. Data for D are shown as mean + SEM of duplicate measurements of n = 4 mice/
group and represent one of two independent experiments.
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Figure 4 Absence of RSV-induced inflammatory responses in lung and BAL following immunization with AdF.RGD. BALB/c mice were
immunized subcutaneously with AdNull, AdF.RGD (both at 10'° pu), formalin-inactivated RSV (FIRSV, 10° pfu) or intranasally with RSV (10° pfu).
Five wk later the mice were challenged intranasally with RSV (10° pfu) and lungs were harvested after 6 days. A-D. Cytokine levels in
homogenates: A. Eotaxine levels in lung homogenate. B. IL-4 levels in lung homogenate. C. IL-13 levels in lung homogenate. D. IL-10 levels in
lung homogenate Data are shown as mean + SEM of duplicate measurements of n = 4 mice/group and represent one of two independent
experiments*** and * denote significance of p < 0.001 and p < 0.05, respectively.
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AdNull or AdF.RGD. This suggests that immunization
with AdF.RGD does not trigger these features of vac-
cine-induced lung disease.

Immunization with AdF.RGD Leads to Cellular and
Protective anti-RSV Immunity

Cellular and protective immune responses were evalu-
ated following immunization with AdF.RGD in direct
comparison to immunization with FIRSV, the vaccine
that resulted in vaccine-enhanced RSV disease. BALB/c
mice were immunized with AdF.RGD, AdNull or FIRSV
and the systemic anti-RSV cellular immune response
was evaluated 10 days after vector administration (Fig-
ure 5). The number of RSV-specific CD4 T cells secret-
ing IL-4 from the spleen cells of mice immunized with
AdF.RGD was reduced compared to mice immunized
with FIRSV (p < 0.001; Figure 5A). In contrast, AdF.
RDG induced a higher RSV-specific IFN-y response in
CD8 T cells than FIRSV (p < 0.001; Figure 5B). Protec-
tion against RSV challenge 4 wk after immunization was

similar following immunization with AdF.RGD and
FIRSV (p > 0.5) compared to the AdNull control group
(p < 0.002, both comparisons; Figure 5C). These data
indicate that, at the doses used, immunization with AdF.
RGD and FIRSV leads to comparable levels of protective
immunity, but that mice immunized with AdF.RGD
have a higher Thl and lower Th2 response than FIRSV-
immunized mice and subsequently do not develop vac-
cine-enhanced lung disease.

Characterization of Lung DC following Infection with RSV
in AdF.RGD-Immunized Mice

RSV infection results in changes in lung DC [50,56-61].
The lung ¢DC and pDC subsets regulate Thl and Th2
responses, with pDC balancing the Th1/Th2 response
via activation of Treg cells and consequently shifting the
cDC-promoted Th2 response towards Thl response
[62]. To further analyze the DC composition in the lung
following RSV infection, lung suspensions were prepared
6 days after intranasal administration of RSV and ¢DC
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Figure 5 Frequency of RSV-specific Th2-type CD4 and CD8 T
cells and protection. BALB/c mice were immunized
subcutaneously with AdNull (10'° pu/mouse), AdFRGD (10'° pu/
mouse) or FIRSV (10° pfu) A, B. Ten days following immunization
spleen CD4 and CD8 T cells were cultured with splenic DC pulsed
with UV-inactivated RSV (10° pu/ml) for 48 h. RSV-specific cytokine
response were determined by ELISPOT assay. A. RSV-specific IL-4
production in CD4 T cells. B. RSV-specific IFN-y production in CD8 T
cells. C. RSV titer in the lungs of mice challenged by intranasal
administration of RSV (10° cfu) 4 wk after immunization. Data
represent mean + SD of 5 animals/group from one of two
independent experiments. *** and ** denote significance of p <
0.001 and p < 0.01, respectively.
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and pDC populations were analyzed by flow cytometry.
Consistent with prior reports [55,57-59], the number of
CD11¢/CD11b-positive ¢cDC and the percentage of
PDCA-1-positive pDC (CD11b"/CD11c") increased after
RSV infection (data not shown). To analyze the mechan-
ism by which lung DC respond to RSV infection in AdF.
RGD-immunized mice compared to mice that received
the formalin-inactivated RSV vaccine, lung DC subsets
were isolated 6 days following RSV infection from mice
that had been immunized with AdF.RGD or FIRSV 5
wk prior to RSV infection. The ¢DC population did not
significantly change between AdF.RGD and AdF.RGD
plus RSV animals (p > 0.09; Figure 6A), indicating that
vaccination with AdF.RGD does not lead to a change in
the ¢cDC population after RSV challenge. In contrast,
¢DC increased following RSV infection in the mice
immunized with FIRSV compared to all the other
groups (p < 0.01, all comparisons; Figure 6A). A similar
pattern was observed in the pDC population with the
highest increase in the FIRSV-immunized mice chal-
lenged with RSV (p < 0.01; Figure 6B). Since viral infec-
tions are strongly controlled by IFN-a secretion by pDC
[62], we analyzed the percentage of IFN-o-positive pDC
in the lungs of vaccinated mice following challenge with
RSV. IEN-a positive pDC in the lungs of mice that had
been immunized with AdF.RGD, AdF.RGD plus RSV
and FIRSV were similar (p > 0.1, all comparisons; Figure
6C). However, there was a significant decrease in the
IFN-a secretion in pDC population in the mice immu-
nized with FIRSV and challenged with RSV (p < 0.02;
Figure 6C). This indicates that pDC and c¢DC are
increased in vaccine-induced RSV disease following
immunization with FIRSV and that their imbalance
could induce a Th2-promoting environment.

Since pDC and cDC function as activators and regu-
lators for Tregs (CD4*, CD25 P"'8" FoxP3*), a T cell
population that controls the outcome of Thl and Th2
responses [62,63], we analyzed if the CD4"CD25
"FoxP3" is affected during FIRSV-induced vaccine dis-
ease and if this effect is abolished following immuniza-
tion with AdF.RGD. The Treg population did not
differ in the mice that had been immunized with AdF.
RGD and mice that had been immunized with AdF.
RGD and subsequently been challenged with RSV (p >
0.08; Figure 7A). In contrast, animals that had been
immunized with FIRSV and were challenged with RSV
showed a significant decrease in the Treg population
(p < 0.05, all comparisons; Figure 7A). As there is a
reciprocal relationship between Treg cells and IL-17
expression by Th17 cells, we evaluated the IL-17 cyto-
kine level in the lung (Figure 7B). No significant differ-
ences were observed between mice that had been
immunized with AdF.RGD and mice that had
been immunized with AdF.RGD and challenged with
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Figure 6 Lung DC and IFN-a secretion following infection with
RSV in immunized mice. BALB/c mice were immunized
subcutaneously with AdF.RGD (10'° pu/mouse) or FIRSV (10° pfu).
A-C. Five wk later the mice were challenged intranasally with RSV
(10° pfu) for 6 days and the lung suspensions were analyzed for
cDC (CD11b*, D11, pDC (CD11H'°%, CD11cM9", B220*, PDCA-1
") and IFN-o. secretion by flow cytometry and intracellular cytokine
staining. A. cDC. B. pDC. C. IFN-a. secretion by pDC. Data are
presented as mean + SEM of 4 mice/group from one of two
independent experiments** and * denote significance of p < 0.01
and p < 0.05, respectively.
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RSV (p > 0.09; Figure 7B). In contrast, animals that
had been immunized with FIRSV and were challenged
with RSV showed a significant increase in the IL-17
level in the lung (p < 0.01, all comparisons; Figure 7B).
Overall, this data suggests that the lung DC and Treg
populations in vaccinated mice show distinct changes
following RSV challenge, dependent upon whether the
vaccine induces enhanced disease.

Discussion

Based on the exaggerated inflammatory Th2 response
primed by the formalin-inactivated RSV vaccine more
than 40 years ago, it has been thought that an efficient
and safe vaccine against RSV should induce a Thl-
dominant response. Our present study shows that, com-
pared to FIRSV, an integrin-targeted Ad vector expres-
sing the RSV F protein induces higher levels of serum
neutralizing anti-RSV antibodies with equivalent protec-
tion against RSV, but showed a decreased Th2 response
and did not induce RSV disease. Immunization with
FIRSV followed by RSV infection induces an imbalance
in the pulmonary cDC and pDC population, diminished
anti-viral activity in pDC, and a lower frequency of reg-
ulatory T cells that was not present following immuni-
zation with AdF.RGD.

Modification of Ad Vector to Increase Th1 Responses

The effectiveness of Ad-based vaccines is thought to be
based on the efficient infection of a variety of cells in
vivo, subsequently the expression of a pathogen-specific
protein encoded by the Ad expression cassette in these
cells, as well as Ad vectors functioning as adjuvants
[24,25]. Ad vectors have the capability to infect DC and
this is critical for the induction of a strong anti-Ad and
anti-transgene immune response [33-37]. Generating
protective immunity against viruses like RSV requires
the generation of humoral and cellular immunity by the
vaccine. One attractive feature of Ad for genetic vacci-
nation is the capability to modify the Ad capsid to
enhance immune responses [38-40]. Targeting Ad to
antigen-presenting cells by adding the RGD integrin-
binding motif to the fiber knob enhances anti-transgene
cellular immune responses in mice and predominantly
skews cellular immune responses towards Th1, a prere-
quisite to develop successful anti-viral vaccines [38-40].
AdF.RGD induced neutralizing anti-RSV titer, a strong
anti-RSV Thl-dominant cellular response and protected
from RSV after challenge.

Vaccine-induced RSV Disease
Although many vaccine approaches, including live atte-
nuated, viral and bacterial vectored and adjuvanted
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Figure 7 Treg cells (CD4*, CD25°"9M" FoxP3*) and IL-17 level following infection with RSV in immunized mice. BALB/c mice were
immunized subcutaneously with AdF.RGD (10" pu/mouse) or FIRSV (10° pfu). A, B. Five wk later the mice were challenged intranasally with RSV
(10° pfu) for 6 days and lung suspensions were analyzed for Treg cells by flow cytometry and IL-17 cytokine level. A. Treg cells. B. IL-17. Data are
presented as mean + SEM of 4 mice/group from one of two independent experiments* and ** denote significance of p < 0.05 and p < 0.01,
respectively.

subunit vaccines, have been evaluated in rodent and pri-
mate models, there is currently no approved RSV vac-
cine. Screening for a live attenuated RSV vaccine
candidate with the right balance of attenuation and
immunogenicity has been hampered by a lack of suitable
in vitro and in vivo models capable of accurately predict-
ing attenuation in naive infants [64]. Vaccine-induced
RSV disease following immunization with formalin-inac-
tivated preparations of RSV, based on the initial clinical
FIRSV vaccine, has been extensively studied in animal
models responses [4-7,19,21]. Studies in cotton rats, vac-
cinated with FIRSV and then challenged with RSV
showed infiltration with neutrophils, macrophages and
lymphocytes and increased Th2-type cytokines like IL-4,
IL-10, IL-13 and eotaxin in the lung, indicating a Th2
bias in enhanced inflammation [5,65]. The central role of
T cells in the augmented lung pathology has been eluci-
dated using the BALB/c mouse model. It has been shown
that CD4 T cells are crucial to the immunopathogenesis
of vaccine-augmented RSV disease [4,66,67], and that
RSV-specific antibodies (in the absence of CD4 and CD8
T cells) are not sufficient to cause disease enhancement
[4,66]. It has recently been reported that immunization
with FIRSV induces low avidity anti-RSV antibodies due
to poor activation of toll-like receptors that could conse-
quently result in an aberrant Th2 immune response [18].
Therefore, skewing to a Thl-type pattern of cytokine
production by priming with live RSV prevented subse-
quent enhanced disease [67]. Studies using recombinant
vaccinia viruses expressing various RSV proteins have
pointed to the G protein as a potential crucial factor in

the induction of vaccine-enhanced disease [68]. Since the
challenge lies in inducing a strong and protective T cell
response, while avoiding the pathological consequences
of unbalanced Th1/Th2 responses, Ad vectors, which
tend to induce strong Thl responses, are a promising
tool for a RSV vaccine. The addition of the RGD motif to
the fiber further increased the Thl response against the F
protein and did not induce vaccine-enhance diseased.

Role of DC in Vaccine-induced RSV Disease

It has been reported that the number of ¢cDC and pDC
is increased during RSV infection and even after appar-
ent resolution [55,57-61]. Collectively, these data sup-
port the hypothesis that recruitment of recently
attracted DCs in the lung leads to maintenance and
control of the immune response in the lung, even after
the actual infection and inflammation in the lung is
resolved [43,50,54-56].

To date, there has been no description of the role of
lung DC subsets in respiratory viral infections during
the onset of vaccine-induced RSV disease. RSV-infected
mice developed airway hyperreactivity as measured by a
strong increase in airway resistance in response to
methacholine. Depletion of pDCs around the time of
RSV infection enhanced peribronchial and perivascular
inflammatory infiltrates consisting of mononuclear cells
and increased pro-inflammatory cytokines and decreased
anti-viral secretion [55,56]. Mice that were immunized
with FIRSV and subsequently challenged with RSV
showed similar patterns of lung DC subset imbalance,
resulting in down-regulation of anti-viral secretion in
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pDC as well as decreased numbers of Treg cells.
Although the subset populations were increased after
RSV challenge, decreased Treg cells and elevated levels
of IL-17 levels indicated a Th2-type milieu which may
reflect an imbalance of pDC and consequently cDC
function and which was not seen following immuniza-
tion with AdF.RGD. The analysis of lung DCs and Tregs
may thus be useful in the evaluation for vaccine-
enhanced disease of new RSV vaccines.

Methods

Adenovirus Vectors

The recombinant Ad vectors used in this study are Ela-,
partial E1b- and partial E3- vectors based on the Ad5
genome. AdF contains the human cytomegalovirus
(CMV) intermediate early promoter/enhancer, the
sequenced F protein cDNA of the RSV A2 strain, same
that was used for further challenge experiments, and the
simian virus 40 (SV40) polyA stop signal as an expres-
sion cassette inserted into the E1 region. The F protein
c¢DNA was kindly provided by P. Collins (Bethesda,
MD). AdF.RGD has the high-affinity RGD sequence
GCDCRGDCECA incorporated at the COOH-terminal
end of the fiber protein [42]. The AdNull control vector
contains no transgene in the expression cassette. The
vectors were used on the basis of equal number of phy-
sical particle concentration and were propagated and
purified as described previously [69].

Mice

Female BALB/c mice were obtained from Taconic
Farms (Tarrytown, NY). The animals were housed
under specific pathogen-free conditions and used at 6 to
8 wk of age. The mice were immunized by intramuscu-
lar injection of AdF.RGD, AdNull (both at 10'® particle
units; pu), FIRSV (105 pfu), or by intranasal administra-
tion of RSV (10° pfu). All animal studies were con-
ducted under protocols reviewed and approved by the
Weill Cornell Institutional Animal Care and Use
Committee.

RSV

The RSV strain used for immunization and protection
experiments was A2 (VR-1540; ATCC). FIRSV was pre-
pared from supernatant of RSV-infected HEp-2 cells,
combined with paraformaldehyde (1:1600 dilution of 37-
38% stock, Sigma) to a final dilution of 1:4000, and stir-
red for 3 days at 37°C. The virus was then pelleted by
ultracentrifugation, resuspended, and alum-precipitated
[3,9,67].

Cellular Immune Response
To assess the RSV F-specific cellular immune response
following immunization, BALB/c mice were
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immunized by intramuscular administration of either
AdF, AdF.RGD, AdNull (all at 10'° pu), or FIRSV (10°
pfu). Unimmunized mice served as additional controls.
The frequency of antigen-specific T lymphocytes was
determined 10 days following immunization in an IFN-
v- and IL-4-specific ELISPOT assay. MAIPS-45 plates
(Millipore, Bedford, MA) were coated overnight at 4°C
with 5 pug/ml of cytokine-specific capture antibodies
[AN18 (IFN-y) or 11B11 (IL-4); Mabtech, Stockholm,
Sweden]. Spleen single cell suspensions served as the
source for DC, CD4 and CD8 T cells. CD4 or CD8 T
cells were purified by negative depletion using SpinSep
T cell subset purification kits (StemCell Technologies,
Vancouver, BC, Canada). Purity for CD4 and CD8 T
cells was between 95-98%. Splenic DC were purified
from naive animals to serve as antigen presenting cells
by positive selection using CD11c MACS beads (Milte-
nyi Biotec, Auburn, CA) and double-purification over
two consecutive MACS LS+ columns (Milentyi Biotec).
The resulting DC purity was between 90-96%. DC (5 x
10°/ml) were either pulsed for 3 hr with the H-2¢
restricted F epitope (F85-93, KYKNAVTEL, 100 uM,
purity confirmed by high-performance liquid chroma-
tography), incubated with purified recombinant RSV F
protein (100 pg/ml), or UV-inactivated RSV (10° pu/
ml) in complete RPMI medium supplemented with 10
mM Hepes, pH 7.5 (BioSource International, Camar-
illo, CA) and 10° M b-mercaptoethanol (Sigma-
Aldrich). The recombinant RSV F protein was pro-
duced from a bacterial expression vector. A bacterial
expression vector (pSmt3-RSV F) was constructed, by
cloning the PCR amplified RSV F gene (forward pri-
mer: 5-CCC CGA TCC ACA ATG GAG TTG CTA
ATC CTC-3’; reverse primer: 5-A TAA CGT AAA
TCA TTG ATT TTC GAA CCC-3’) into the pet-
SUMO expression vector (Invitrogen) and the recom-
binant fusion protein was purified by Ni-chelating
affinity chromatography according to the manufac-
turer’s protocol (Prebound, Qiagen, Valencia, CA).
Prior to addition of responder T cells, antibody-coated
plates were blocked with complete RPMI medium sup-
plemented with 10 mM HEPES, pH 7.4 (BioSource
International) and 10> M B-mercaptoethanol (Sigma-
Aldrich) for 3 h. CD4 (2 x 10°) or CD8 (10°) T cells
were incubated with splenic DC, pulsed with either
recombinant RSV F protein, F85-93 peptide, RSV, or
no antigen at a T cell: DC ratio of 6:1 for 48 h. Fol-
lowing washing, biotinylated anti-IFN-y or anti-IL-4
detection antibodies (both at 1 pg/ml, Mabtech) were
added and the plates were incubated for 2 h at 37°C,
followed by a streptavidin-alkaline phosphatase
conjugate (Vectastain-ABC peroxidase kit, Vector
Laboratories, Burlingame, CA) and a 3-amino-9-ethyl-
carbazole substrate (Sigma) for spot detection. The
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spots were counted by computer-assisted ELISPOT
image analysis (Zellnet Consulting, New York, NY).

Protection of Mice from Intranasal Challenge with RSV
To evaluate the protection against RSV infection follow-
ing immunization, BALB/c mice were immunized by
intramuscular administration of AdF.RGD, AdNull (both
at 10'° pu) or FIRSV (10° pfu), and were then chal-
lenged with RSV (10° pfu) by intranasal inoculation
after 4 wk. Four days later the mice were sacrificed, the
lungs were homogenized in 1 ml MEM and the homo-
genates centrifuged at 1200 rpm at 4°C for 10 min. Ten-
fold serial dilutions of the lung homogenate supernatant
were incubated in infection medium (MEM supplemen-
ted with 1% penicillin/streptomycin) on HEp2 cells for 3
h at 37°C. The medium was then replaced with 1%
methylcellulose in MEM containing 5% fetal bovine
serum and 1% penicillin/streptomycin). After 4 days, the
cells were fixed with 4% paraformaldehyde, stained with
1% crystal violet and the plaques were counted under a
microscope. The neutralization titer was calculated from
the average plaques of four wells as the reciprocal of the
highest dilution of serum that completely prevented
RSV activity (>90%).

Neutralizing RSV Titer

To evaluate serum anti-RSV neutralizing antibody titers,
BALB/c mice were immunized by intramuscular admin-
istration of AdF.RGD, AdNull (both at 10'® pu), FIRSV
(10° pfu), or by intranasal administration of RSV (10°
pfu). Sera was collected 4 wk post-administration and
serial dilutions of the sera in infection medium were
incubated with RSV (strain A2) for 1 h at 37°C. They
were then incubated on HEp2 cells for 90 min at 37°C.
The medium was then changed to 1% methylcellulose
medium and incubated for 4 days. The cells were fixed
and the titers quantified as outlined above.

Vaccine-enhanced RSV Disease

To evaluate vaccine-enhanced RSV pulmonary disease,
mice were immunized by intramuscular administration
of AdE.RGD, AdNull (both at 10 pu), FIRSV (10° pfu),
or by intranasal administration of RSV (10° pfu). The
mice were challenged with RSV at 5 wk post-immuniza-
tion and sacrificed 6 days later. Lungs were fixed in 4%
paraformaldehyde at a constant pressure of 25 cm H,O
for 4 hr. Histological sections were stained with hema-
toxylin and eosin and evaluated in a blinded study for
inflammatory changes by light microscopy. A second
experimental group of mice was sacrificed at 4 days fol-
lowing RSV infection for evaluation of cell content and
IL-4, IL-10, IL-13, IL-17 and eotaxin concentrations by
ELISA (R&D System, MN).
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Lung DC and Tregs

BALB/c mice were immunized with AdF.RGD, AdNull
(all at 10 pu), FIRSV (10° pfu) or RSV (10° pfu) 5 wk
prior to intranasal challenge with RSV (10° pu). Lungs
were harvested 6 days post-challenge, digested for 20 min
at 37°C with DNAsel and Collagenase (Sigma-Aldrich,
MO), and passed through a cell strainer. Myeloid and
lymphoid DC were characterized as CD11b*, CD11c>" 8™
cells (conventional DC, ¢cDC), and pDC were character-
ized as CD11b'*%, CD11c"8™, B220" and confirmed as
PDCA-1" cells by flow cytometry (BD Bioscience, CA).
IEN-a secretion by pDC was determined by intracellular
cytokine staining. Briefly, cells were fixed and permeabi-
lized with Cytofix/Cytoperm reagent (BD Biosciences) for
20 min at 4°C, then washed twice in Perm/Wash solution
(BD Biosciences). The cells were then stained (30 min, 4°
C) for intracellular cytokine using phycoerythrin (PE)-
conjugated monoclonal antibody against murine cytokine
IEN-o.. CD4*, CD25""8" FoxP3" Tregs from the lung
were analyzed 6 days post-challenge with RSV by co-
staining the lung suspensions with allophyocyanine-con-
jugated anti-murine CD4, phycoerythrin-conjugated anti-
murine CD25 and fluorescein-conjugated anti-murine
FoxP3 antibodies (BD Bioscience). Cells were then ana-
lyzed by flow cytometry using a FACSCalibur flow cyt-
ometer (Becton Dickinson, NJ).

Statistics

The data are presented as mean + standard error of the
mean. Statistical analyses were performed using a non-
paired two-tailed Student’s t-test. Statistical significance
was determined at p < 0.05.
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