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Background: Human respiratory syncytial virus (HRSV) is the most important virus causing lower respiratory
infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for
understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV
genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic
changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of

Methods: In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic
characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely
hospitalized children, and without prior passage of the viruses in tissue culture.

Results: The analysis of nucleotide sequences suggested that VRNA length is a variable factor among primary strains,
while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence
variation (2-6.4%), while small hydrophobic protein and matrix genes were completely conserved across all clinical
strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been
described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the
intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the
HRSVA2 virus isolate in tissue culture, the HRSVAZ2 isolate and clinical strains formed similar virus structures such as virus
filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures.

Conclusion: This is the first report to describe the complete genetic characterization of HRSV clinical strains that
have been sequenced directly from clinical material. The presence of novel substitutions and deletions in the VRNA
of clinical strains emphasize the importance of genomic characterization of non-tissue culture adapted primary
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Introduction

Human respiratory syncytial virus (HRSV) is responsible
for approximately 64 million infections and 160,000
deaths each year [1]. It is the most important cause of
lower respiratory tract (LRT) infection in young children
and neonates, and giving rise to a spectrum of
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symptoms; from relatively mild to severe. Prior exposure
to HRSV does not give complete protective immunity;
re-infection occurs throughout life. Although HRSV
infection is a major health concern in developed coun-
tries, it is a significant cause of ALRI-associated death in
young children in developing countries [2]. There is cur-
rently no available vaccine, and the availability of speci-
fic antiviral drugs is limited.

The mature HRSV particle comprises a ribonucleopro-
tein (RNP) complex, formed by the interaction between
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the viral genomic RNA (vVRNA), the nucleocapsid (N)
protein, the phospo (P) protein, and the large (L) pro-
tein. The vRNA consists of ten contiguous genes, and
each gene begins with a short non-coding region gene
start (GS) sequence and ends with a gene end (GE)
sequence. The first nine virus genes are separated by an
additional coding sequence called the intergenic region,
and the vRNA is flanked by a leader region at the 3’
end, and a trailer region at the 5" end of the VRNA.
Although the minimal functional polymerase activity
requires an association between the N, P and L proteins
and the virus genome vRNA, additional viral proteins
called the M2-1 protein, M2-2 and M protein regulate
the activity of the polymerase [3-10]. The virus is sur-
rounded by a lipid envelope in which the three virus
integral membrane proteins are inserted. The G protein
mediates attachment of the virus to the cell during virus
entry [11], the fusion (F) protein [12] mediates the
fusion of the virus and host cell membranes during
virus entry, while the role of the SH protein is currently
unknown. In addition, two non-structural proteins called
NS1 and NS2 are expressed, which are thought not to
be present in the virus particle but play a role in coun-
tering the host innate immune response [13]. On the
basis of antigenic differences primarily in the G gene,
HRSV is divided into two main subtypes; HRSV A and
HRSV B [14], which can be further subdivided into dis-
tinct lineages and genotypes based on the genetic diver-
sity in G gene [15-18].

Molecular epidemiological studies of G gene suggest
HRSVA predominates in most epidemics [17,19-24], but
the association between HRSV subtype and severity of
infection is uncertain The availability of complete geno-
mic sequence information from HRSV field isolates is a
prerequisite to understand the clinical basis of disease,
and to better understand the biology of the virus in the
clinical scenario. Currently, complete genome sequences
are available only for four HRSVA strains (A2; GenBank
accession number M74568, RSS-2; NC_001803, Long
strain; AY911262 and Line 19; FJ614813) [25-30]. More-
over, these viral strains have been passaged in cell cul-
ture prior to genetic characterisation, which can lead to
subtle genetic changes in the vRNA as a result of tissue
culture adaptations. In this study, we present the in-
depth analysis of whole genome sequence of 14 HRSVA
primary clinical strains. These viruses were sequenced
directly from clinical material that was obtained from
HRSV-infected patients, and without any prior passage
of the viruses in tissue culture. This study provides the
first detailed genome wide comparison of primary
strains with the four cultured reference strains and
reveals the rare and some new substitutions found
exclusively in the primary strains only in F, L, M2-1 and
M2-2 genes.

Page 2 of 13

Methods

Clinical Setting and Specimen Collection

We conducted a prospective study of previously healthy
term infants less than 1 year of age admitted to The
Children’s Hospital, Denver, Colorado, USA during
three winter seasons; year 2003-2004, 2004-2005, and
2005-2006. Nasopharyngeal washings were collected
from infants who were < 1 year of age at the time of
enrolment into the study and screened for HRSV infec-
tion. Parents or legal guardian of the subject voluntarily
signed informed consent. Patients having prior LRTT or
documented wheezing disease; prior known RSV disease;
diagnosis of BPD/CLD; congenital heart disease (except
children with previous uncomplicated acyanotic CHD, e.
g., PDA, small septal defect, who are anatomically and
hemodynamically normal at the time of enrolment);
mechanical ventilation (including CPAP) in the prior 6
months and known immunodeficiency were not
included in this study. Ethical clearance for the study
was obtained from the COMIRB of the University of
Colorado, Denver.

cDNA synthesis and PCR of complete RSVA genome

Viral RNAs was extracted from 250pl of the nasopharyn-
geal washings using the Trizol LS reagent (Invitrogen Life
Technologies, USA), according to the manufacturer’s
instructions. A full length cDNA was synthesised using
reverse primer P-15R (nucleotide position; nt 15198-
15222), based on reference strain HRSV A2 genome
sequence. Briefly, 5 ul of RNA was mixed with 1ul of 10
mM dNTPs, 1 pl of 20 uM reverse primer P-15R and 3 pl
RNase free water. Mixture was heated to 65°C for 5 min-
utes and incubated on ice for 1 min followed by addition
of 4ul of 5X RT buffer, 200U of Superscript III reverse
transcriptase (Invitrogen, USA), 40U of RNase-OUT
RNase Inhibitor (Invitrogen, USA), 2 pl of 25 mM MgCl,
and 2 pl of 0.1 mM DTT. The reaction was incubated at
50°C for 50 min and then heated at 85°C for 5 min to ter-
minate the reaction. 1 pl of RNase H was added per reac-
tion tube and incubated at 37°C for 20 min.

The viral genome was amplified as 15 overlapping
PCR fragments covering the full length of this cDNA.
Each of forward primer had M13/pUC (-20) primer and
reverse primer having M13R-pUC(-26) primer sequence
incorporated at its 5’ end (Additional file 1 Table S1).
Briefly, 1 ul cDNA was added to PCR mixture contain-
ing 39.75 pl of distilled water, 5ul of 10X PCR buffer,
1.25ul of 10 mM dNTPs, 1 pl each of 20 puM forward
and reverse primer and 1U of pfu Ultra II fusion HS
DNA polymerase (Stratagene, USA). Initial denaturation
at 95°C for 1 min was followed by 40 cycles of PCR
with each cycle of denaturation for 20 sec at 95°C,
annealing for 20 sec at 55°C and elongation for 45 sec
at 72°C, with a final extension cycle of 5 min at 72°C.
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The PCR products were separated by electrophoresis
using 1% agarose gel and visualized using 1X GelRed
(Biotium, CA).

DNA sequencing

PCR products were purified and nucleotide sequencing was
performed on both forward and reverse strands of each
fragment using ABI Big Dye Terminator v3.1 Reaction kit
(Applied Biosystems, USA) and analysed using ABI
3730XL DNA Sequencer (Applied Biosystems, USA). As in
every PCR product, the 5’ end of forward strand had M13/
pUC (-20) primer sequence and the 5’end of its reverse
strand had M13R-pUC(-26) primer sequence, thus sequen-
cing of the forward and reverse strands of all the PCR frag-
ments was carried out using M13/pUC (-20) primer and
M13R-pUC(-26) primer respectively. In addition, a set of
internal forward and reverse sequencing primers were
designed and used for each fragment to obtain complete 2
fold sequencing coverage (primer sequences available on
request). The 3’ end terminal region of genome was
sequenced with help of reverse primer RSVSTART- (pri-
mer binding position nt 341- 322, which is in the NS1
gene), which moves towards 3’ end of genome till nucleo-
tide 1 (start of genome). While the 5" end of the genome
was sequenced with help of primer RSVEND (primer bind-
ing position nt 14917-14938, in the L gene), which covered
the sequence till 5" end of the genome. (primer sequences
available on request). The strategy of amplification and
sequencing was first standardized using RSVA2 lab strain
before its adaptation for clinical strains. The fourteen
HRSVA genome sequences have been deposited into Gen-
Bank [Accession numbers GU591758- GU591771].

Phylogenetic analysis

The nucleotide sequences were mapped to HRSVA2
reference strain using Seqscape software 2.5 (Applied
Biosystems, USA) and resultant consensus sequences
were used for phylogenetic analysis using MEGA 4.0.2
and CLUSTAL W software. The published complete
nucleotide sequences of all the four cultured HRSV A
strains: A2 (GenBank accession numbers M74568), RSS-
2 (NC_001803), Long (AY911262), Line 19 (FJ614813)
and one HRSV B reference strain 9320 (AY353550)
were downloaded from NCBI GenBank for comparison.
Phylogenetic tree was estimated by Neighbor-joining
(NJ) method[31]. The evolutionary distances were com-
puted using the Maximum Composite Likelihood
method [32]. The statistical robustness and reliability of
the branching order within the phylogenetic tree were
confirmed through a bootstrap analysis using 1,000
replicates for the NJ tree [32,33]. EMBOSS Transeq
(EMBOSS EBI), an online bioinformatics translation tool
was used for translation of the nucleotide sequences of
genes to protein sequences.
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Immunofluorescence microscopy

Cells were labeled as described previously [34]. Briefly,
cells on 13 mm glass cover slips were generally fixed
with 3% paraformaldehyde in PBS for 30 min at 4°C,
permeabilised using 0.1% saponin, and then labeled with
primary antibodies anti-RSV (Novocastra; Anti-RSV
composite antibody preparation, which recognizes the
N, P, M2-1 and F proteins,) and a secondary antibody
conjugated to FITC. The stained cells were mounted on
slides using Citifluor™ and visualized using a Nikon
eclipse 80i fluorescence microscope.

Results and Discussion

1. Strategy developed for HRSVA whole genome
amplification and nucleotide sequencing

Although complete genomic sequence has been
reported for RSVA2, RSS, long and Line 19 virus iso-
lates [25,27-30], the viruses were passaged in tissue
culture prior to sequencing the vVRNA. In this current
report we present the first complete genetic characteri-
sation of HRSVA clinical strains, obtained directly
from patient specimens without prior passage of the
viruses in tissue culture. This avoided the acquisition
of genetic changes due to tissue culture adaptation,
and enabled us to detect subtle sequence variations in
the VRNA of these viruses, changes that could in prin-
ciple be confused with genetic changes that arise from
tissue culture adaptations. We adopted a simple
approach for sequencing of vRNA in clinical specimens
that circumvented the need for prior growth in tissue
culture. A major advantage of this methodology is that
complete vVRNA sequence information can be obtained
from clinical specimens even when the vRNA is low (e.
g due to low viral load), and in cases where the virus
strains can’t be recovered even by growth in tissue
culture.

The genome wide sequence analysis was conducted
on fourteen primary HRSVA strains isolated from hos-
pitalized children with severe HRSV infection (referred
to as RSV-1 to RSV-14). The strategy for the nucleo-
tide sequencing of the vVRNA generated 15 overlapping
PCR products, which covered the entire virus genome
length This experimental strategy enabled us to pro-
duce high concentration of specific DNA products for
all the fifteen fragments from each of the clinical
strains. (Figure 1A). A full genome length single
stranded cDNA representing the vVRNA was synthe-
sized by using reverse primer (P-15R) that binds at the
5’end of the vVRNA till the last nucleotide of genome.
This ¢cDNA was sufficient for formation of all the fif-
teen PCR fragments using fragment specific primers
(Figure 1B). As the first forward primer (P-1F) binds
to the first nucleotide of the genome and the fifteenth
reverse primer (P-15R) binds till the last nucleotide at
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Figure 1 Schematic representation of HRSVA whole genome amplification of HRSV-1 by Reverse transcriptase (RT)-PCR. A. The viral
genes with leader at 5 end and trailer at 3" end are schematically presented in the 15,222 bases HRSVA2 genome. The thin lines given below
represents the approximate size of each of the fifteen amplified fragments (F) and the position of the respective fragments on the genome. The
lines are to the approximate scale. B. All the PCR amplified fragments were run by electrophoresis on 1% agarose gel in TAE buffer and
visualized by gel red. The fragments are numbered from F1-F15 and their positions on gel are indicated by arrows. Negative control (NC) is the
PCR reaction with water in place of sample. The DNA ladder (L) has highest band position at 3 Kbp and lowest band at 100 bp. The size of
fifteen fragments is as F 1 = 1215 bp, F2 = 1343 bp, F3 = 1417 bp, F4 =
= 1435 bp, F10 = 1328 bp, F11 = 1403 bp, F12 = 1360 bp, F13 = 1200 bp, F14 = 1334 bp, F15 = 1168 bp.

1301 bp, F5 = 1373 bp, F6 = 1328 bp, F7 = 1324 bp, F8 = 1392 bp, F9

3Kb
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500b

100bp

the 5’end of the vVRNA, the full genome was amplified
with help of fifteen primer sets. Each fragment was
designed to have approximately 300 base pair overlap
with adjacent fragments for better genome sequence
coverage. Presence of M13 forward and reverse primer
sequence in each PCR product helped the sequencing
of all fifteen fragments in both the forward and reverse
directions using these two primers only. Internal
sequencing primers were used to sequence small
sequencing gaps following sequencing of PCR frag-
ments. The 3’ end of genome could be completely
sequenced using the reverse orientation primer
RSVSTART and likewise 5’ end was sequenced using a
forward orientation primer RSVEND nucleotide posi-
tion are with reference to A2 strain). RSVSTART
binds to region in NS1 gene and sequence in reverse
direction to cover till nucleotide 1 (start of genome),
RSVEND primer binds in the L gene and covers the
genome sequence till last nucleotide of genome. The
methodology was initially evaluated using the well
characterised HRSV A2 laboratory strain, and there-
after successfully applied to fourteen clinical strains.

2. Primary clinical strains: Phylogenetic analysis and
characterization of viral genome

The length of the vVRNA from the clinical strains ranged
from 15,210 to 15222 nucleotides, with RSV-2 and RSV-
7 having the shortest and longest VRNA respectively
(Table 1). The viral genome length of primary isolates is
variable, similar to that reported in the prototype strains
[25-30], with only one clinical strain (RSV-7) having the
same size VRNA as the RSV A2 isolate. The variations
were attributed mainly to deletions observed in the non-
translated regions, mainly between P-M and F-M2 (Fig-
ure 2).

We observed a generally high level of sequence con-
servation among the clinical strains examined in this
study, and between the clinical strains and several RSV
prototype strains. This suggested that selection pressure
is towards conservation and/or that the genomic struc-
ture of HRSV may be relatively constrained. Phyloge-
netic analysis showed that the «clinical strains
represented a distinct lineage within HRSV A group,
separate from the previously published cultured strains
(Figure 3). The transition bias (R), which is an important
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Table 1 Comparison of the genome length (nucleotides) [ I )
of the fourteen HRSVA clinical strains and transition bias me starct eat
(R) in clinical strains with reference to strain RSV-1
(Clinical reference strain) W
RSV A Genome % Nucleotide Transition Bias 3 m Mot
Length Variability (R)
RSV -1 15212 — Ref strain (RSV-1)
RSV-2 15,210 142 24 P AcTTACMAAAA P e T RSv-1, RSV-2, RSV-3, Rov-B, RSV-12, RSV-
RSV-3 15,218 236 23 LGAMMGGG.-  RSW-4, RSV- 6, RSV-7, Rsv-9, Rsv-10,
RSV-4 15,219 214 24 Em Rsv-s
RSV-5 15,214 0.6 2.1
RSV-6 15,220 172 12
RSV-7 15,222 142 14  ———
RSV-8 15212 195 19 e A e s
RSV-9 15,219 115 1.8
RSV-10 15,218 238 22
RSV-11 15,215 33 2.1
RSV-12 15,211 3.1 28
RSV-13 15,215 29 27
RSV-14 15,218 1.88 19
Lab adapted reference strain
RSV A2 15222 3.30 29
RSS 15191 267 24
Long 15226 3.56 29
Line 15191 3.58 29
19*
"RSVA2 (lab adapted strain) is passaged several times in cell culture, thus may TONET SRR BN O ACTOATRCCARATIAACTCRCTATT TS ARAAR- TTAGART
have numerous culture mediated mutations. Therefore, RSV-1, a strain ACALT. L AGeneteiin e i Te Gt s = GLALLCe

RSV-3,RSV-4,RSV-6,

obtained from a hospitalized RSVA patient is used as a reference strain for
comparative analysis of RSVA strains from clinical source and published
reference strains. * Nucleotide sequence for 5" and 3’ ends of Line 19 is not
available.

parameter of genetic sequence evolution, ranged
between 1.2 and 2.8 for the clinical strains, also sug- AT A T AGa . R

12, rsv-14

gested comparatively lower evolution selection rate.

3. Comparison of protein sequences encoded by the
clinical strains with prototype and published strains Tan
All genetic sequences from the clinical and prototype
strains were translated in silico, and the resulting pre-
dicted protein sequences were compared.

3.1 Integral membrane proteins

The clinical strains showed a higher sequence variation
in the G protein, which is consistent with a recent study
suggesting selection pressure on G protein based on e
Bayesian method implemented in the HyPhy program
[35]. The clinical strains exhibited between 2.0 and 6.4%

L GGGACA  AGTTATTTAAAA
AnAT

Figure 2 Nucleotide alignment and comparative analysis of the
Gene Junction (Gene Start - Intergenic Region -Gene End) in

variation in the amino acid sequence, and this variation strains from hospitalized patients. Genes identification is denoted
was located mainly in the ectodomain region (Table 2, before their corresponding GS and GE. Similarly corresponding
Additional file 2 Figure S1). Bio-informatics analysis has intergenic region positions have also been denoted. An overlap

identified 29 amino acid positions in the G protein that instead of intergenic region is present between M2-L genes.
*Clinical strains having difference in the sequences are shown in the

are under pOSltl'Ve selection Pressure [35]: C.omparlson table. Thus rest of the sequences matched RSV-1.
of the G protein sequence in the 14 clinical strains \ J
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Figure 3 Phylogenetic relationship of 14 clinical strains of
HRSVA from patients and 4 representative strains from the
Genbank based on whole genome nucleotide sequence.
Hospitalized patient strains have been indicated with prefix RSV. The
reference strains are indicated by their Genbank accession number.
The evolutionary history was inferred using the Neighbour-Joining
method. The bootstrap values below 80% are not shown. The scale
bar indicates 1% nucleotide sequence divergence. The HRSVB type
(Accession number AY353550) has been used as the root.

Table 2 Amino acid variability (%) identified in individual
proteins of HRSVA: Comparison between hospitalized
strains

Strain HRSVA Proteins (% Amino acid variability)

NST NS2 N P M SH G F L M2-1 M2-2
RSV-1!
RSV-2 07 24 025 0 O O 54 121 027 025 0
RSV-3 0 0 025 04 0 0 54 174 106 033 088
RSV-4 0 0 05 0 0 0 234 191 101 033 044
RSV-5 0 0 04 0 0 33 191 018 025 0
RSV-6 0 0 0 0 0 0 27 191 069 033 055
RSV-7 0 0 05 0 0 0 27 174 02 033 044
RSV-8 0 0 0 0 0 0 201 139 046 025 0
RSV-9 0 0 0 0 0 0 234 121 054 038 0
RSV-10 0 0 025 04 0 0 201 15 108 038 033
RSV-11 07 24 05 0 0 0 64 209 115 038 044
RSV-12 0 0 05 04 0 0 54 191 138 055 055
RSV-13 0 0 05 04 0 0 64 261 147 060 055

RSV-14 0 0 05 0

o
o

57 261 055 055 044

HRSVA2 (lab adapted strain) is passaged several times in cell culture, thus
may have numerous culture mediated mutations. Therefore, RSV-1, a strain
obtained from a hospitalized RSVA patient is used as a reference strain for
comparative analysis of the proteins of RSVA strains from clinical source.
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indicated the presence of 14 of these sites, at L-215-P,
P-222-S, V-225-A, P-226-F, T-227-S, P-256-L, F-265-L,
S-269-T, T-274-P, 1-279-V, L-286-P, P-289-S, P-290-L,
§-293-P. Amino acid variation observed at five of these
sites (position 274, 279, 286, 290 and 293) differed in
the most of the clinical strains compared to the four
cultured reference strains (Table 3). Antigenic epitopes
have been identified in the G protein [36-38] and we
noted a degree of amino acid sequence variation at
these sites. The following amino acid changes in the G
protein of the clinical strains; T-244-R (in RSV-2, RSV-
13, ) and F-265-L (in RSV-2, RSV-3, RSV-5, RSV-9,
RSV-11, RSV-13, RSV-14) may be associated with loss
of these antigenic epitopes.

The G protein plays an important role in attachment of
the virus to the host cell [11], along with several cellular
factors which have been proposed to mediate HRSV
attachment [39,40]. At least two interactions between
the G protein and cellular factors have been described,
and the properties of the G proteins that mediate these
interactions are conserved in the clinical strains. The G
protein, amino acid motif 182-186, which is proposed to
have structural similarity to CX3C chemokine fractalk-
ine [40], is completely conserved in all the primary
strains. Similarly the heparin binding site and the
cysteine rich central domain in the G protein [41] were
completely conserved in all the clinical strains.

The F protein exhibited a relatively higher sequence
conservation [Additional file 3 Figure S2], which pre-
sumably reflects its importance in mediating virus entry,
and sequence variation was highest in the signal
sequence, transmembrane and cytoplasmic domains.
The essential features of the F protein were largely con-
served in the clinical strains, including the two furin
cleavage sites and the potential N-linked glycosylation
sites. These furin cleavage sites have been proposed to
generate a short 27 amino acid glycopeptide in virus-
infected cells [42], and among the clinical strains we
observed a relatively high degree of sequence variation
in the putative glycopeptides. The biological significance
of this in humans is currently unclear, although the cor-
responding glycopeptide in the closely related bovine
RSV exhibits tachykinin activity [43]. Several neutraliz-
ing antibody epitope sites have been identified, including
7C2 (aa221-236), 47F (aa262-268) and RS-348 (aa205-
225) [44] and these are completely conserved in all clini-
cal strains. Of sequences related to cytotoxic T-lympho-
cyte (CTL) epitopes, a single substitution was observed
at F-547-L, which has been reported in the HLA Cw*12
CTL epitope [45].

The recently characterized cell cultured Line 19 strain
is suggest to be highly mucogenic [28], and is found to
have six unique amino acid differences in the F protein
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Table 3 Comparative analysis of G protein amino acid positions under positive selection pressure in primary strains
compared with prototype strains

Amino acid Prototype Strains Primary Clinical

215L RSS LONG L-19 RSV-1, RSV-2

215P A2 RSV-3 to RSV-14

222P RSS LONG L-19 RSV-1, RSV-2, RSV-11

2225 A2 RSV-3 to RSV-10, RSV-12 to RSV-14

225V A2 RSS LONG L-19 RSV-1, RSV-3 to RSV-10

225A RSV-2, RSV-11

226P A2 RSS LONG L-19 RSV-1 to RSV-10,RSV-12 to RSV-14

226F RSV-11

227T A2 RSS LONG L-19 RSV-1, RSV-3 to RSV-14

2275 RSV-2

256P A2 RSS LONG L-19 RSV-1, RSV-3, RSV-4, RSV-6 to RSV-10, RSV-12, RSV-14
256L RSV-2, RSV-5, RSV-11

256Q RSV-13

265F A2 LONG L-19 RSV-1, RSV-4, RSV-6 to RSV-8, RSV-10, RSV-12
265L RSS RSV-2, RSV-3, RSV-5, RSV-9, RSV-11, RSV-13, RSV-14
269S A2 RSS LONG L-19 RSV-1, RSV-2, RSV-4 to RSV-12

269T RSV-3, RSV-13, RSV-14

2747 RSV-1, RSV-2, RSV-4 to RSV-6, RSV-8 to RSV-10
274p A2 RSS RSV-3, RSV-11 to RSV-14

274L LONG L-19

274S RSV-7

279 RSV-1 to RSV-10

279V A2 RSS LONG L-19 RSV-11 to RSV-14

286L RSS RSV-1 to RSV-10

286P A2 LONG L-19 RSV-11

289P A2 RSS LONG L-19 RSV-1, RSV-2

2895 RSV-3, RSV-12 to RSV-14

290P RSS RSV-1, RSV-2, RSV-4 to RSV-11

290L RSV-3, RSV-12 to RSV-14

290S A2 LONG L-19

293S RSS RSV-1 to RSV-14(All clinical strains)

293P A2 LONG L-19

when compared with the F protein sequence in HRSV
A2 and long type [28]. However, neither of these differ-
ences were observed in the F protein sequence of the
clinical strains, thus the clinical relevance of these F
protein sites is uncertain. Palivizumab (PZ) is the huma-
nized murine monoclonal Ab (mAb) widely used for
prophylaxis against RSV infection in high risk infants
and children that binds to the F protein at aa422-438
[46]. A panel of resistant mutations in the F gene in the
binding site, F212, MP4, MS312, MS412 MS512 have
been identified against PZ in vitro and in vivo studies
[47-49]. Also, a number of mutations have been identi-
fied in the coding regions for the binding sites on the F
protein for MAb19, RHZ19 and ch101F, other potent

mAbs, with clinical potential [49,50]. There were no
sequence variation at these sites in the clinical strains
examined in our study.

The SH membrane protein was completely conserved
in all the clinical strains. While the sequence conserva-
tion of the SH has been previously reported, suggesting
that it may be clinically relevant [51], and the SH pro-
tein is dispensable for virus replication in tissue culture
[52]. Our own studies employing siRNA to inhibit SH
gene expression (Ng and Sugrue, unpublished observa-
tions) support this observation.

3.2 Polymerase associated proteins
The L, P, N and M2-1 genes which encode the polymer-
ase and associated proteins also showed very low
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sequence variability. Alignment of deduced L protein
sequence of our strains with other published sequences
on NCBI BLAST revealed that presence of asparagine or
tyrosine at position 148 and glycine at 174 are exclusive
to our clinical strains The variation at aal48 led to
replacement of negatively charged amino acid with that
having neutral side chain and at aal74, it changed the
polar negatively charged amino acid with non polar neu-
tral. These substitutions are located before domain I of
L protein, proposed as nucleotide binding domain
[53,54]. There were few amino acid variations in the N,
L and P proteins. Two substitutions identified in the N
protein of clinical strains, L-64-V was identified in seven
(RSV-1, RSV-2 RSV-3 RSV-5 RSV-6 RSV-7 RSV-9) and
R-84-K in five (RSV-8, RSV-11 to RSV-14). Although
the overall sequence of the L protein was comparatively
conserved among the clinical strains, we observed that
M-59-1, L-81-1, I-2016-V differed from that in the A2,
Long and Line 19. Two exclusive differences found pre-
dominantly among our clinical strains were at D-148-N/
Y and V/D-174-G in strains RSV-1, RSV-2, RSV-4 to
RSV-10, RSV-14 and strains RSV-1 to RSV-9, RSV-14
respectively. (Table 4; Additional file 4 Figure S3). With
the exception of a single amino acid difference at A-73-
V/T in RSV-3, RSV-10, RSV-11, RSV-12 RSV-13, the P
protein remained conserved in all the clinical strains.
The M protein showed 100% conservation in all the
clinical strains examined (Table 2).

The transcription elongation factor M2-1 is highly
conserved among the clinical strains, along with the Cys
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(3)-His(1) motif that is important for its functionality
[55,56]. While amino acid variability was extremely low
for the M2-1 protein (between 0.25-0.6%) among clinical
strains, exclusive substitutions I-87-L in RSV-12 to RSV-
14 and N-117-T/S in RSV-8, RSV-10, RSV-11-14 were
observed (Table 4; Additional file 5 Figure S4). M2-2 is
proposed to shift the balance from vRNA transcription
to VRNA replication [57,58]. We noted a degree of M2-
2 protein sequence variation between the clinical strains
and those reported for several HRSV prototype viruses.
In addition, the absence of the first start codon in 71%
of the clinical strains suggested the expression of shorter
M2-2 protein.

Interestingly, the M2-2 protein sequence showed a
relatively large number of sequence variations when
compared with prototype cultured viruses. We observed
a 11.11% difference in the M2-2 protein sequence of all
the clinical strains as compared to the reference strain
(Table 4). The substitution M-1-T effectively removed
the first start codon, and thus M2-2 is predicted to be
88 aa rather than 90 aa in length in 10 clinical strains
due to availability of second start codon for the protein
(Additional file 6 Figure S5). As the M2-2 protein plays
a role in VRNA replication, the functional significance of
the sequence variations in the M2-2 protein in RSV
VRNA replication will require further examination.

In four clinical strains nucleotide substitutions have
been observed at five different positions in M2-L gene
overlap sequence, while changes at only two of positions
were reported earlier by Moudy et al [59]. Moreover,

Table 4 Nucleotide changes leading to amino acid substitutions in F, L, M2-1 and M2-2 proteins exclusively in primary

clinical HRSVA strains as compared to reference strains

Protein Nucleotide change in Primary strains Amino acid substitution - Position Primary strains having substitution
F CTC/CIT — 11T L-15-F RSV-1, RSV-2,RSV-7 to RSV-10
L GAC — AAC/TAC D-148-N/Y RSV-1, RSV-2, RSV-4 to
GTC/GAC — GGC V/D-174-G RSV-10, RSV-14
RSV-1 to RSV-9, RSV-14
M2-1 ATA — CTA 1-87-L RSV-12 to RSV-14
AAA — AGT N-117-S RSV-8, RSV-10, RSV-11
M2-2% ATG — ACG M-1-T RSV-1, RSV-2, RSV-5, RSV-8 to RSV-14
ACT — AAT T-18-N RSV-1, RSV-2, RSV-5, RSV-7 to RSV-14
AGA — AAT/AGT R-25-N/S RSV-1, RSV-2, RSV-5, RSV-8 to RSV-14
TTC — ATC F-39- RSV-12 to RSV-14
CCA — CAA P-44-Q RSV-1, RSV-2, RSV-4, RSV-5, RSV-8 to RSV-14
ATG — ATA/ACG M-48-1/T RSV-1, RSV-2, RSV-5, RSV-7 to RSV-14
CCA - CAG P-51-Q RSV-12 to RSV-14
ACA — CCA T-54-P RSV-1, RSV-2, RSV-4 to RSV-14
ACA — GCA T-68-A RSV-1 to RSV-14
ATT — ACT 1-69-T RSV-3 to RSV-10, RSV-14
ATT — ACT 1-79-T RSV-1 to RSV-6, RSV-8, RSV-9, RSV-12 to RSV-14
GAG — GAT E-80-D RSV-1 to RSV-14

*In the deduced M2-2 protein sequence, the RSS strain had difference at only 1-48-T.
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nucleotide change A-26-G observed in RSV-12 and RSV-
13 led to changes of amino acid N-6-S in L protein.

The M genes nucleotide sequence was completely
conserved in the clinical strains, which is consistent
with the importance of the M protein, both as a major
structural protein, and a regulator of virus polymerase
activity [9]. 3.3 Non-structural proteins:

Both the NS1 and NS2 proteins were highly con-
served, with only one amino acid substitution L-105-I in
the NS1 protein of RSV-2, RSV-11, and three subsitu-
tions in the NS2 protein (D-7-G, N-8-T, K-38-R) pre-
sent in the same clinical strains (RSV-2, RSV-11). The
NS1 and NS2 proteins showed little sequence variation,
underlining the essential roles these proteins play in
evading the host innate immune response [60]. Recently
siRNA targeting the NS1 protein has been proposed as
an effective therapeutic strategy [61], and the conserved
nature of the NS1 nucleotide sequence suggests that
these siRNA molecules will also be effective against a
range of RSV strains in the severe clinical scenario.

4. Sequence analysis of the non-transcribed gene junction
and extragenic regions

The non translated regions of the vVRNA are likely to
play important roles in the regulation of virus genes
expression [62]. The nucleotide sequence of the leader
region was highly conserved, with only a single A to G
nucleotide substitution at nt29 in the strains RSV-2,
RSV-11. All the clinical strains had Cytosine at nt4 in
the leader sequence, which is important in the context
of virus replication [63]. Although we noted an overall
conservation in the trailer sequence, some regions of
increased sequence variation were apparent. Moreover,
the length of trailer region varied between 153-162 nt
among the clinical strains. The sequence for the pro-
posed polymerase binding site (nt 1-11 of leader) [64] is
completely conserved among all clinical strains. While
GS sequences were well conserved among all clinical
strains, the GE sequences showed a higher degree of
variation. The GS sequences were conserved in the first
9 genes, and only the GS sequence preceding the L gene
showed some variation. A subsitution in the GS
sequeunce (to U or A) at ntl was reported to signifi-
cantly reduce transcription levels [65], but the functional
significance of G to C found in the GS region of L poly-
merase gene is uncertain (Figure 2). The GE was con-
served for 8 genes. The GE sequence of the N gene had
a change at nt 7 and nt 13 in RSV-2, RSV-14, the M
gene had one nucleotide shorter in RSV-2, RSV-5, and
RSV-12, while in 78% of clinical strains there was a sub-
stitution at nt4 in GE sequence of the G. The changes
in GE sequence of the G gene such as substitution at
nt4 and shorter central region have been associated with
altered the transcription termination efficiency [66,67].

Page 9 of 13

By comparison with the GS and GE regions, the IG
regions showed a higher degree of sequence variation.
The IG sequence of the P-M gene junction varied in
length between 3-9 nts, while that of the G-F and the F-
M2 gene junctions also exhibited greater sequence varia-
tion amongst clinical strains. Although the significance
of this sequence variation among the clinical strains is
uncertain, in vitro studies have demonstrated that the
IG region can play important role in regulating virus
gene transcription [68]. It is therefore possible that
these sequence variations may lead to altered viral gene
expression characteristics among the different clinical
strains.

4. Biological properties of the clinical isolates

HRSV remains largely cell-associated, and infection
occurs by direct cell to cell contact [34]. In cells infected
with the prototype HRSV isolate A2, two distinct virus
structures are formed during the virus replication cycle;
the virus filaments (VF) and inclusion bodies (IB). The
VF are membrane-bound structures that are 150-200
nm thick and can be up to 4 um in length. They form
at the sites of virus assembly and are the mature pro-
geny viruses [34]. The inclusion bodies form in the cyto-
plasm of infected cells and can be several pm in
diameter, consisting of RNP complexes, together with
several essential cellular factors. These structures have
been extensively examined using laboratory HRSV iso-
lates (e.g. HRSV A2), and we examined HEp2 cells
infected with the RSV clinical strains. Most of the RSV
strains described in this study could not be recovered
using tissue culture, which may be due to differences in
the level of infectious virus particles in the starting clini-
cal material. This is difficult to estimate using molecular
techniques (e.g. qPCR), which only assesses the levels of
VvRNA copies, and does not distinguish between infec-
tious and non-infectious virions. However, we were able
to recover three clinical strains; RSV-4, RSV-8 and RSV-
13 from infected HEp2 cells. This was confirmed by
labeling of cells infected with the clinical strains using
the anti-RSV and anti-mouse IgG conjugated to FITC as
described previously [34], which allows visualisation of
both the virus filaments and inclusion bodies. In each
case infection with the clinical isolates could only be
detected between 2 and 4 days post infection, and the
stained cells appeared either singly or in small clusters
(Figure 4A; white arrowhead). This was considerably
slower compared to HRSV A2 (Figure 4A), where large
numbers of infected cells and extensive syncytia could
be detected by day 2 (Figure 4A; highlighted by white
box). This is consistent with recent observations sug-
gesting slower replication kinetics of clinical HRSV
strains compared to laboratory prototype isolates [69]
Examination of the stained cells revealed the presence



Kumaria et al. Virology Journal 2011, 8:372
http://www.virologyj.com/content/8/1/372

Page 10 of 13

Figure 4 Immunofluorescence examination of cells infected with the HRSV clinical strains. (A) Differential infection levels were observed
with clinical isolates as compared to lab strain RSVA2. More HEp 2 cells were seen infected with RSVA2, when compared with clinical isolate
RSV-8 and RSV-13 between 2 and 4 days post infection. (B). Clinical isolates (b) RSV-13, (c) RSV-8 and (d) RSV-6 also produced similar structures
like (@) RSVA2. HEp2 cells were infected with RSVA2 and clincial isolates were stained with anti-RSV antibodies and visualized by
immunofluorescence using secondary antibodies conjugated to FITC. Examination of the stained cells at a focal plane showing mainly the i)
interior and ii) surface of infected cells are shown in each case. The presence of large cytoplasmic inclusion bodies highlighted by white arrow
and presence of structures that resembled the VF are highlighted by star.

of large cytoplasmic inclusion bodies (Figure 4B; high-
lighted by white arrow), as well as structures that
resembled the VF (Figure 4B; highlighted by *). This
suggests that the clinical strains produce structures simi-
lar to that observed in HRSV A2 infected cells. Several
cellular factors have been identified within inclusion
bodies and virus filaments using RSV prototype strains,
and these cellular factors have been implicated in
aspects of the HRSV replication cycle e.g. virus particle
assembly [70]. The formation of similar structures in
cells infected with the clinical strains suggests a similar
mechanism in both HRSV A2 and the clinical strains
during virus replication, and supports a clinical role
these structures during HRSV infection.

Conclusions

We report the complete genetic characterisation of four-
teen clinical HRSV strains that were sequenced directly
from clinical material obtained from severely ill children.
In general a high degree of nucleotide sequence conser-
vation was observed, both between the different clinical
strains, and between the clinical and prototype strains.

This was consistent with a low evolution rate for HRSV.
Analysis of the protein coding regions of the HRSV gen-
omes indicated that the G protein showed the greatest
sequence variation between the clinical stains. Although
the F protein showed a small degree of sequence varia-
tion, the essential features of the F protein (e.g. protease
cleavage site) were conserved, together with several
important antigenic epitopes. The protein coding region
of the M and SH genes were entirely conserved, while
all other virus genes showed small degrees of sequence
variation. In some clinical strains the M2-2 gene showed
an alternative translational start site, which would be
expected to give rise to a smaller M2-2 protein lacking
the first two amino acids. Analysis of the non-translated
regions between the clinical strains indicated that leader
and trailer regions region were highly conserved,
although a small degree of sequence variation at specific
regions in the trailer region was noted. The gene start
regions showed a high degree of sequence conservation,
while the gene end sequences were conserved for 8
genes. In contrast the intergenic regions showed a sig-
nificantly higher degree of sequence variation between
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the different clinical strains. In tissue culture cells the
clinical strains grew much slower than the prototype
HRSV A2 stain. However, the formation of inclusion
bodies and virus filaments were observed in HEp 2 cells
infected with either the prototype A2 stain or clinical
strains, suggesting a clinical relevance for these virus-
induced structures.

Additional material

Additional file 1: Table S1: Oligonucleotide primers used for reverse
transcriptase-polymerase chain reaction (RT-PCR) amplification of HRSVA
clinical strains and HRSVA2 strains

Additional file 2: Figure S1: Amino acid sequence alignment and
comparative analysis of glycoprotein between primary HRSVA strains and
prototype cultured strains. The domain name with amino acid position is
indicated above the sequence alignment.

Additional file 3: Figure S2: Amino acid sequence alignment and
comparative analysis of fusion protein between primary HRSVA strains
and prototype cultured strains. The domain name with amino acid
position is indicated above the sequence alignment. All the glycosylation
sites are given in bold and underlined.

Additional file 4: Figure S3: Amino acid alignment and comparative
analysis of L-protein between primary HRSVA strains and prototype
cultured strains.

Additional file 5: Figure S4: Amino acid alignment and comparative
analysis of M2-1 protein between primary HRSVA strains and prototype
cultured strains.

Additional file 6: Figure S5: Amino acid alignment and comparative
analysis of M2-2 protein between primary HRSVA strains and prototype
cultured strains.
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