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Abstract

infection.

Background: Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious
disease of cloven-hoofed animals. RNAI triggered by small RNA molecules, including siRNAs and miRNAs, offers a
new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered
miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of
vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined.

Results: Four pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for
construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were
able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which
was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes,
the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and
FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR
plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV.

Conclusion: Our results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV
replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV

Background

Foot-and-mouth disease (FMD) is an economically
important and highly contagious disease of cloven-
hoofed animals, most notably of cattle, pigs and sheep,
as well as several wild-life species [1,2]. The ability of
FMD virus (FMDV) to spread rapidly in susceptible ani-
mals makes FMD a disease that is serious enough to be
monitored by the World Organization for Animal
Health (OIE). FMDYV is the prototype member of the
Aphthovirus genus of the family Picornaviridae. The
virus is antigenically highly variable and consists of
seven serotypes (A, O, C, Asial, SAT1, SAT2, and
SAT3) and multiple subtypes [3]. FMDYV contains a
positive-sense, single-stranded RNA genome of 8,500
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nucleotides (nt) with a 50 nt terminus covalently bound
to a small viral polypeptide VPg (3B), and a 30 nt poly
(A) tail [4]. The genome contains a long open reading
frame (ORF) translated into a single polypeptide that
can be cleaved into four structural proteins (VP4, VP2,
VP3, and VP1), and 10 non-structural proteins (L, 2A,
2B, 2C, 3A, 3Bl1, 3B2, 3B3, 3C, and 3D) [3,5]. Of parti-
cular importance to viral replication is the 3D gene
encoding the RNA-dependent RNA polymerase (RDRP).
In a mechanism catalyzed by two bivalent metal ions,
the 3D enzyme elongates a primer to copy the viral
RNA template (plus strand). The newly synthesized
minus strand folds back on itself to generate a template-
primer structure, which is elongated by the 3D gene
product to form covalently linked dimeric RNA mole-
cules [6,7]. Due to its significance in viral replication,
the 3D gene was employed as an RNAI target in this
study.
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RNA interference (RNAi) is an evolutionarily con-
served mechanism of sequence-specific post-transcrip-
tional gene silencing triggered by double-stranded RNA
(dsRNA). In the process, the cellular complex Dicer
cleaves a dsRNA molecule to generate discrete 21-23 nt
small interfering RNAs (siRNAs) or microRNAs (miR-
NAs), which guide the RNAi-induced silencing complex
(RISC) to cleave the target mRNAs [8-10]. Because of the
high rapidity and specificity of the RNAi effect, this
method may complement and improve the traditional
tools available to control important animal pathogens. In
the past, siRNAs have been widely studied for their effects
on FMDV [11-16]. Recently, artificial miRNA has been
developed [17,18]. It has been demonstrated that expres-
sion of miRNA vectors is more effective and less toxic
than regular siRNA vectors [19-21]. In order to explore a
new approach to inhibit FMDYV, here we report on vector-
delivered miRNA molecules that were studied for their
inhibitory effects on FMDV replication. Our results show
for the first time that vector-delivered miRNAs are able to
efficiently inhibit FMDV replication. This study provides
not only an experimental basis for the development of a
new anti-FMDYV strategy, but also for a new approach to
study FMDV infection and replication.

Methods

Cell culture and viruses

Baby hamster kidney (BHK-21) cells were grown in
Dulbecco’s Modified Eagle’s Medium (DMEM, GIBCO,
Invitrogen Corporation, USA) supplemented with 10%
heat-inactivated fetal bovine serum (FBS). The cultures
were maintained at 37 °C in a 5% CO, humidified
incubator. FMDYV isolates of strain O/CHA/99 (Gen-
Bank accession number AF506822) [22] were used for
viral challenge. FMDYV titers were determined in BHK-
21 cells, and 50% tissue culture infective dose
(TCIDso) was calculated using the Reed-Muench
method [23].

Selection of target sequences

The 3D gene is highly conserved among different
FMDYV serotypes and consists of 1410 nucleotides and
encoding a 470-amino-acid protein with a molecular
mass of 55 kDa [3]. The reference sequences of the 3D
regions of the FMDV genome were obtained from the
National Center for Biotechnology Information (NCBI)
and compared with that of O/CHA/99 by the Laser-
gene analysis software package (DNASTAR, USA).
Four pairs of oligonucleotides (3D657, 3D715, 3D983
and 3D1311) encoding 3D-specific miRNA of FMDV
were designed using the miRNA design algorithm
(http://rnaidesigner.invitrogen.com/rnaiexpress/, Table 1).
Sequence alignment showed that all four were located
in the conserved regions of the 3D gene of different
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FMDV isolates and thus were selected for correspond-
ing pre-miRNA oligonucleotide synthesis (Figure 1A).

Construction of miRNA expression plasmids
Complementary single-stranded DNA oligos (top and
bottom strands) encoding four pre-miRNAs were
synthesized, annealed, and ligated into pcDNA6.2-GW -
miR vectors (Invitrogen, USA), a Pol II miR RNAi
expression vector containing specific miR-155 flanking
sequences (Figure 1B). The ligation mixture was then
transformed into competent E. coli DH5a. cells following
the manufacturer’s protocol. Plasmid DNAs were iso-
lated and purified with Plasmid Miniprep Kit (TaKaRa,
Japan). The pcDNA6.2-GW-miR-negative control plas-
mid contains an insert that can form a hairpin structure,
which is processed into mature miRNA, but is predicted
not to target any known vertebrate gene. Their corre-
sponding sequences are separately shown in Table 1.
The sequences of the inserts were checked by DNA
sequencing (TaKaRa, Japan).

Construction of reporter plasmid

To provide a reporting system for detecting miRNA func-
tion, the recombinant plasmid p3D-GEFP, containing the
whole length of 3D gene, was constructed as follows:
BHK-21 cells infected with FMDV (O/CHA/99) were
lysed by repeated freeze-thaw cycles. Cell debris was
removed by centrifugation for 10 min at 4000 rpm. The
RNA was extracted from 350 pL of the clarified infected
cell culture supernatant using Mini RNeasy Kit (Qiagen,
Germany) as per recommendation of the manufacturer.
Reverse transcription (RT) was carried out using Avian
Myeloblastosis Virus (AMV) reverse transcriptase
(TaKaRa, Japan) and an antisense Xbal-adapter primer,
3DR. The reaction mixture was incubated at 42°C for 1 h.
Additional incubation at 95°C for 5 min inactivated the
enzyme. The PCR amplification of 3D cDNA fragments
was carried out using the primer 3DR and a sense Kpnl-
adapter primer, 3DF. The PCR products were then cloned
into the unique site of Kpnl and Xbal of the pcDNA3.1-
CT-GFP vector (Invitrogen, USA). Competent Escherichia
coli TOP 10 cells were transformed with the vector by
heat shock. The sequences of the inserts were checked by
restriction enzyme digestion and DNA sequencing
(TaKaRa, Japan). To monitor fusion protein expression as
an indicator of interference by miRNAs candidates, the
constructed plasmid p3D-GFP was only transfected into
BHK-21 cells using Lipofectamine 2000 (Invitrogen, USA)
per the manufacturer’s protocol, and the transfected cells
were then examined by fluorescence microscopy.

Silencing effect of miRNAs on reporter gene expression
Vector-delivered miRNAs were initially tested for
sequence-specificity for the target 3D gene by employing
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Table 1 Inserted sequences in miRNA-expressing plasmids

Name Inserted sequence (5’-3) Position in 3D gene

3D657 Top strand TGCTGAATCTTTGCCAATCAACGTCAGTTTTGGCCACTGACTGACTGACGTTGTGGCAAAGATT 657-678
Bottom strand  CCTGAATCTTTGCCACAACGTCAGTCAGTCAGTGGCCAAAACTGACGTTGATTGGCAAAGATTC

3D715 Top strand TGCTGATCAAAGGCCGAATAGTCCACGTTTTGGCCACTGACTGACGTGGACTACGGCCTTTGAT 715-736
Bottom strand  CCTGATCAAAGGCCGTAGTCCACGTCAGTCAGTGGCCAAAACGTGGACTATTCGGCCTTTGATC

3D983 Top strand TGCTGAGATCATGGTGTAAGTGTCCAGTTTTGGCCACTGACTGACTGGACACTCACCATGATCT 983-1004
Bottom strand  CCTGAGATCATGGTGAGTGTCCAGTCAGTCAGTGGCCAAAACTGGACACTTACACCATGATCTC

3D1311 Top strand TGCTGTCAAAGAGACGCCGGTACTCGGTTTTGGCCACTGACTGACCGAGTACCCGTCTCTTTGA 1311-1332
Bottom strand  CCTGTCAAAGAGACGGGTACTCGGTCAGTCAGTGGCCAAAACCGAGTACCGGCGTCTCTTTGAC

Negative control  Top strand TGCTGAAATGTACTGCGCGTGGAGACGTTTTGGCCACTGACTGACGTCTCCACGCAGTACATTT NO

Bottom strand ~ CCTGAAATGTACTGCGTGGAGACGTCAGTCAGTGGCCAAAACGTCTCCACGCGCAGTACATTTC

Bold and underlined letters represent sense sequences of pre-miRNAs derived from the 3D gene.

Structural proteins Non-structural proteins

L | Pl | P2 | P3 |

5/ UTR L [vPafvP2| VP3| VPI2a| 2B | 2C |3A |3B| 3C

Tt

miR3D%7: TGATGTTGATTGGCAAAGATT
miR3D7%;; GTGGACTATTCGGCCTTTGAT
miR3D%3: TGGACTCTTACACCATGATCT
miR3D!31: CGAGTACCGGCGTCTCTTTGA

A
Pemv 5'miR flanking 3' miR flanking
| attB1 region ’ | region attB2  TK pA
Pre-miRNA

coding insert

B

Figure 1 Schematic presentations of miRNA targeting sequences and miRNA expression cassette. (A) The FMDV genome contains a
unique open reading frame. The black arrows underneath indicate the sites targeted by miRNAs. (B) Pre-miRNA oligonucleotides corresponding
to each of the target sequences in 3D was inserted under the control of Pcmv and a transcriptional termination signal (TK pA). As a result, the
pre-miRNA forms an intramolecular stem-loop structure similar to the structure of endogenous pre-miRNA that is processed by the endogenous
Dicer enzyme into a 22 nt mature miRNA.
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a transient transfection of a reporter plasmid p3D-GFP
expressing 3D. BHK-21 cells were seeded into 24-well
cell culture plates without antibiotics for about 24 h
before transfection at a cell confluence of approximately
80-90% and co-transfected in triplicate with Lipofecta-
mine 2000 and Opti-MEM I Reduced Serum Medium
(Invitrogen, USA) in the presence of 0.2 pug of reporter
plasmid p3D-GFP and 0.5 pg of each miRNA expression
plasmid. At 24 and 48 h after transfection, cells were
examined under a fluorescence microscope and photo-
graphed using a video camera.

Inhibitory effect of miRNAs on FMDV replication

To detect the inhibitory effect of vector-delivered miR-
NAs on FMDYV replication, BHK-21 cells were cultured
in 24-well cell culture plates and transfected with
miRNA-expressing plasmids in triplicate. After incuba-
tion for an additional 24 h, the transfection complex
was removed and cells were washed twice with DMEM.
A viral suspension titrated at 10°*° TCIDs, per 0.1 ml
was used for viral challenge. The transfected cells in one
well of the 24-well plates were then infected with 500 pl
of 100 TCIDs5, of FMDV. After 1 h of absorption, the
inoculum was removed and the cells were washed twice
with DMEM. The infection then proceeded in DMEM
without FBS. At 24 h and 48 h after infection, cell cul-
tures were harvested by three freeze-thaw cycles and
stored at -80°C, until virus titer values were measured
according to the TCID5, method.

To quantitatively detect the gene silencing effects of
the vector-delivered miRNAs, total RNA was extracted
from plasmid-transfected and virus-infected BHK-21 cell
cultures with Mini RNeasy Kit (Qiagen, Germany) and
subjected to real-time RT-PCR analysis. Real-time RT-
PCR data were analyzed using the comparative CT
method (AACT) [24,25]. Hamster GAPDH from BHK-
21 cells was chosen as a reference gene for internal con-
trol. Differences between the CT values of the target
gene (3D) and the internal control (ACT = CTyget—
CTinternal control) Were calculated to normalize the differ-
ences in the amount of total cDNA added to each reac-
tion and the efficiency of the real-time RT-PCR. The
negative control (pNC-miR) was used as a reference for
each comparison. Differences between the ACT of each
3D-specfic miRNA expression plasmid and reference
Sample (AACT = (CTtarget_CTinternal control) 3D-specfic
miRNA plasmid_(CTtarget_CTinternal control)pNC—miR) were
calculated. Real-time PCR was performed with a
Mx3000P real-time PCR system (Stratagene, USA) using
a SYBR™ Premix Ex Taq™ kit (TaKaRa, Japan) as fol-
lows: After treatment with RNase-free DNase I, 2 pg of
each total RNA sample was reverse-transcribed with Pri-
merScript RT Enzyme Mix I, Oligo dTg primer and
random primers. The real-time PCR was carried out in
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triplicate in a total volume of 50 ul containing 25 pl of
SYBR premix Ex Taq™, 1.0 pl of ROX Reference Dye,
10 pmol each of the Forward and Reverse Primers
(Table 2) and 4 pl of the cDNA sample. Cycling condi-
tions for the real-time PCR were: 10 sec at 95°C for pre-
denaturation, 40 cycles of 5 sec at 95°C and 34 sec at
60°C, followed by 1 cycle of 15 sec at 95°C, 1 h at 60°C
and 15 sec at 95°C for the dissociation stage. The fluor-
escence output for each cycle was measured upon the
completion of the entire run. The expression level of
the target gene could be calculated by 272" and the
value stood for an n-fold difference relative to the nega-
tive sample. To confirm the specific amplification, melt-
curve analysis of the RT-PCR products was performed
according to the manufacturer’s protocol (Stratagene,
USA).

Results

Identification of miRNA-expression plasmids and reporter
plasmid

The pre-miRNA oligonucleotides were cloned into vec-
tor pcDNA6.2-GW-miR as recommended by the manu-
facturer’s protocol, resulting in four 3D-specific miRNA
expression plasmids (p3D657-miR, p3D715-miR,
p3D983-miR, and p3D1311-miR) and a negative control
miRNA expression plasmid (pNC-miR). The recombi-
nant plasmids were confirmed as positive by DNA
sequencing. Mutant sequences in these inserted oligonu-
cleotides were excluded from this experiment. The pre-
dicted structures of the vector-delivered pre-miRNAs
incorporated into the murine miR-155 backbone are
shown in Figure 2. To construct reporter plasmids, the
RT-PCR products were recovered from an agarose gel
and digested with Xbal/Kpnl, then cloned into the
Xbal/KpnlI-digested pcDNA3.1-CT-GFP vector, desig-
nated as p3D-GFP. The reporter plasmid was confirmed
as positive by restriction enzyme digestion, PCR, and
sequence analysis. Sequence analysis showed that the
amplified 3D ¢cDNA was 100% identical to FMDV O/
CHA/99 isolates (GenBank accession number
AF506822) [22]. The plasmids used for transfection
were purified using the QIAGEN plasmid Midi Kit (Qia-
gen, Germany). After p3D-GFP transfection (24-48 h),
typical fluorescence-positive cells were observed by
fluorescence microscopy (data not shown), showing that
the transient expression systems transfected with p3D-
GFP were suitable as an indicator to test the efficiency
of inhibition by miRNAs.

Silencing effects of reporter gene expression by miRNAs

When BHK-21 cells were co-transfected with miRNA
expression and reporter (p3D-GFP) plasmids, four
miRNA expression plasmids were able to significantly
silence the expression of the reporter plasmid, resulting
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Table 2 Primer sequences

Primer Sequence Target gene Size Purpose

3DF 5-TGCGGTACCATGGGGTTGATTGTCGACACCA-3' 3D 1.4kb Gene cloning

3DR 5-GAGTCTAGATGCGTCACCGCACACGGCGTTC-3'

3D1F 5'-ACTGGGTTTTACAAACCTGTGA-3' 3D 107bp Real-time PCR

3D1R 5-GCGAGTCCTGCCACGGA-3

GHF 5-GGCAAGTTCAAAGGCACAGTC-3' GAPDH 115bp Real-time PCR

GHR 5-CACCAGCATCACCCCATTT-3

in a remarkable reduction in GFP signal relative to the
control samples that were co-transfected with miRNA
expression plasmids and blank plasmid, pcDNA3.1-CT-
GFP. The negative control construct (pNC-miR) showed
no significant reduction of GFP expression (Figure 3).
Compared to the p3D675-miR and p3D1311-miR plas-
mids, the plasmids, p3D715-miR and p3D983-miR,
showed more reduction of GFP expression in BHK-21
cells.

Effective inhibition of FMDV replication by miRNAs

BHK-21 cells were transfected with miRNA expression
plasmids, and then infected with 100 ul TCIDsq of
FMDV O/CHA/99. Transfected BHK-21 cells are fibro-
blastic, grow in a monolayer, and have a well-defined ten-
dency towards parallel orientation. Viral infection causes
a marked cytopathic effect (CPE) ending in total cellular
detachment, isolation, and destruction, which can be
observed by microscopy. Microscopic examination
revealed that the CPE on infected cells was delayed when
the BHK-21 cells were transfected with miRNA-expres-
sing plasmids, whereas cells transfected with the negative
control plasmid (pNC-miR) showed an extensive CPE
within 24 h after infection. Viral titers decreased from
10°TCIDs5, in pNC-miR transfected cells to 10*2, 10**,
10*2 and 10*°TCIDs, in p3D675-miR, p3D715-miR,
p3D983-miR and p3D1311-miR transfected cells 24 h
after infection, respectively (Figure 4). In addition to the
examination of the yield of progeny virus, we also tested
the silencing effect of FMDYV replication on the viral
RNA load. Melt-curve analysis confirmed specific ampli-
fication of real-time RT-PCR products. Using cDNA
templates, the efficiency of the PCR reactions for
GAPDH and 3D were shown to be similar, permitting
the relative abundance of the integrated mRNA to be
estimated. Real-time RT-PCR products were analyzed on
3% agarose gel. The cDNA fragments with the expected
size for GAPDH and 3D were amplified and no primer
dimers were detected. To confirm their specificity, the
real-time RT-PCR products were sequenced and showed
100% identity with the reference gene. Real-time RT-PCR
analyses showed that the expression of FMDV 3D was
inhibited 46.3, 82.1, 68.1 and 41.5% by p3D675-miR,
p3D715-miR, p3D983-miR and p3D1311-miR

transfection 24 h after infection, respectively, compared
with the levels of viral RNA in pNC-miR transfected cells
(Figure 5). At 48 h after infection, four miRNA expres-
sion plasmids still had marked inhibitory effects on the
replication of FMDYV, although the effect of inhibition
was not as good as 24 h after infection. Effective inhibi-
tion was greater in cells transfected with p3D715-miR
and p3D983-miR (Figures 4 and 5).

Discussion

RNAI triggered by small RNA molecules, including siR-
NAs and miRNAs, offers a new approach for controlling
viral infections [26-28]. siRNAs, derived by processing
long double-stranded RNAs, are often of exogenous ori-
gin, degrade mRNAs bearing full complementary
sequences, and are currently being extensively evaluated
as potential antiviral tools. In contrast, miRNAs, which
are endogenously encoded and derived by processing of
long hairpin RNA precursors, can either cleave mRNAs
bearing full complementary sequences or inhibit transla-
tion of mRNAs bearing partial complementary
sequences [29,30]. It is believed that miRNAs are essen-
tial regulators of various processes, such as cellular dif-
ferentiation, proliferation, development, apoptosis and
pathogen-host interactions [30-32]. The antiviral poten-
tial of siRNAs has been comprehensively discussed in
numerous reviews [26,28,33,34]. Thus far, there is no
report available for FMDV inhibition by vector-delivered
miRNA, though miRNA is believed to have more poten-
tial than siRNA/shRNA [35,36]. In the present study, we
systematically evaluated the effects of miRNA-based
RNAi on FMDV expression and replication in BHK-21
cells. Our results showed that miRNA-based RNAi
could inhibit FMDV 3D protein expression and FMDV
replication in vitro. This study is the first report to
apply vector-delivered miRNA to inhibit FMDV
replication.

Several researchers have shown that siRNA/shRNA
targeting the 3D gene could efficiently inhibit FMDV repli-
cation. Moreover, according to their reports, viral inhibition
triggered by siRNA/shRNA and targeting the 3D gene
seems more efficient compared to other genes within
the same genome [11,14,37]. Here we demonstrated that
plasmid-based miRNAs designed against the FMDV 3D



Du et al. Virology Journal 2011, 8:292
http://www.virologyj.com/content/8/1/292

Page 6 of 10

UG AU i UuGGCC
CUGAAUCUUUGCCA CAACGUCAGUU \
T L a
ACUUAGAAACGGU « - GUUGCAGUCAG /
AG UCAGUC

<
<}

miR-3D675

uG AA g UuGGCC
CUGAUCAAAGGCCG UAGUCCACGUU \
LELEEE T T A
JACUAGUUUCCGGC » « AUCAGGUGCAG /

AG UCAGUC

&
<«

miR-3D715

»

uG UA
CUGAGAUCAUGGUG  AGUGUCCAGUU

\
LT TEETTH A
/

UuGGCC

miR-3D983
GACUCUAGUACCAC « « UCACAGGUCAG

AG UCAGUC

<&
<

UG cC i
CUGUCAAAGAGACG GGUACUCGGUU \
P TTEETLT A
GACAGUUUCUCUGC » « CCAUGAGCCAG /

AG UCAGUC

<&
<«

UuGGCC

miR-3D1311

UG GC i
CUGAAAUGUACUGC GUGGAGACGUU \
LETEEEEEEEE FEEETEETTD A
CUUUACAUGACG * * CACCUCUGCAG
AG P UCAGUC
) L -

internal loop cerminal 1
erminal loop

UuGGCC

miR-NC

Figure 2 Predicted structures of vector-delivered pre-miRNAs. Up-underlined arrows indicate 21 nucleotide antisense target sequences.
Down-underlined arrows indicate sense target sequences with 2 nt removed to create an internal loop.

J

gene could strongly inhibit virus replication in the infected
BHK-21 cells. Together with the results from previous stu-
dies, we are convinced that the 3D gene could be a good
target for intervention in FMDV replication. It remains to

be tested whether genes other than 3D could be miRNA
targets. It has been shown that siRNAs against VP1, 2B, 3C
and 5’UTR were highly effective inhibiting viral replication
[11,13,15,37]. In our experiment, only four sequences of 3D
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pcDNA3.1-CT-GFP

pNC-miR

p3D657-miR

p3D715-miR

p3D983-miR

p3D1311-miR

Figure 3 Fluorescence micrographs of cells cotransfected with each miRNA expression plasmid and the reporter plasmid p3D-GFP. As
controls for nonspecific effects, cells were cotransfected with pcDNA3.1-CT-GFP and each miRNA expression plasmid. At 24 h after transfection,
representative fields were photographed.

were tested; therefore, we cannot exclude the significance ~ miRNA backbone under control of Pol II promoter
of other genes of FMDV as effective targets for inhibition. (CMV), we were able to intracellularly express miRNAs

By incorporating sequences encoding miRNAs specific  in cells transfected with miRNA plasmids coding pre-
to the 3D gene of FMDV into a murine miR-155 pre- miRNAs. Theoretically, this type of vector provides
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Figure 4 Decrease of virus yield in BHK-21 cells transfected with the miRNA expression plasmids. BHK-21 cells transfected with each
miRNA expression plasmid were infected with FMDV O/CHA/99. Cell cultures were collected at 24 h and 48 h after infection, and the virus titer
(TCID50) was determined three times on BHK-21 cells. Error bars indicate standard deviations.
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unique benefits in designing antiviral therapies
[17,18,36]. This strategy allows multiple miRNAs to be
expressed coordinately from a single precursor RNA
and processed into individual miRNAs [17,38]. It
remains to be investigated whether combining different
miRNA-3D targets can improve the inhibitory effect
beyond what we observed with miRNA-3D alone. To
facilitate effective miRNA selection, the reporter vector

p3D-EGEFP was used to estimate gene silencing effects in
transfected BHK-21 cells. Fluorescence microscopy
showed dissimilar, but significant, decreases in GFP-
positive cell numbers by co-transfection with all four
3D-specific miRNA expression vectors, but not by the
control miRNA expression vector, indicating the high
confidence of the web-based tool for miRNA prediction
and the specificity of the gene silencing effects of the
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Figure 5 Quantitative analysis of the silencing effects of vector-delivered miRNAs on FMDV replication. BHK-21 cells were transfected
first with each miRNA expression plasmid and then infected with FMDV O/CHA/99. Total RNAs were extracted at 24 h and 48 h after infection
for real-time quantitative RT-PCR analysis of viral gene expression using 3D-specific primers. Hamster GAPDH gene served as the internal
reference. The data shown represent the mean value for three separate experiments; standard deviations indicated by error bars.
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vector-delivered miRNAs. The efficiency of gene silen-
cing varied between miRNAs targeted to different
regions of the 3D gene. At present, there is no informa-
tion available about the mechanisms that determine the
gene-silencing efficiency of a given miRNA. Further
work needs to be completed to test the relationship
between miRNA silencing efficiency and targeted genes.

Conclusion

Our results indicate that vector-delivered miRNAs tar-
geting the 3D gene effectively inhibits FMDV replication
in vitro. This finding provides evidence that miRNAs
could be used as a potential tool against FMDV infec-
tion. Further studies are required to determine whether
the technology offers protection against FMDV infection
in vivo. However, this work represents a significant
advancement, describing another approach to trigger
anti-FMDV pathways through actions of miRNAs.
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