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Abstract

Background: Host serine proteases are essential for the influenza virus life cycle because the viral haemagglutinin
is synthesized as a precursor which requires proteolytic maturation. Therefore, we studied the activity and
expression of serine proteases in lungs from mice infected with influenza and evaluated the effect of serine
protease inhibitors on virus replication both in cell culture and in infected mice.

Results: Two different inbred mouse strains were investigated: DBA/2J as a highly susceptible and C57BI/6J as a
more resistant strain to influenza virus infection. The serine proteases from lung homogenates of mice exhibited
pH optima of 10.00. Using the substrate Bz-Val-Gly-Arg-p-nitroanilide or in zymograms, the intensities of proteolysis
increased in homogenates from both mouse strains with time post infection (p.i) with the mouse-adapted
influenza virus A/Puerto Rico/8/34 (HIN1; PR8). In zymograms at day 7 p.i, proteolytic bands were stronger and
numerous in lung homogenates from DBA/2J than C57BI/6J mice. Real-time PCR results confirmed differential

expression of several lung proteases before and after infecting mice with the HIN1 virus. The most strongly up-
regulated proteases were Gzma, Tmprss4, Elane, Ctrl, Gzmc and Gzmb. Pretreatment of mouse and human lung cell
lines with the serine protease inhibitors AEBSF or pAB or a cocktail of both prior to infection with the HIN1 or the
A/Seal/Massachusetts/1/80 (H7N7; SC35M) virus resulted in a decrease in virus replication. Pretreatment of C57BI/6J
mice with either AEBSF or a cocktail of AEBSF and pAB prior to infection with the HINT virus significantly reduced
weight loss and led to a faster recovery of treated versus untreated mice while pAB alone exerted a very poor
effect. After infection with the H7N7 virus, the most significant reduction of weight loss was obtained upon
pretreatment with either the protease inhibitor cocktail or pAB. Furthermore, pretreatment of C57BL/6J mice with
AEBSF prior to infection resulted in a significant reduction in the levels of both the HIN1 and H7N7 nucleoproteins
in mice lungs and also a significant reduction in the levels of the HA transcript in the lungs of the HIN1- but not

the H7N7-infected mice.

Conclusion: Multiple serine protease activities might be implicated in mediating influenza infection. Blocking
influenza A virus infection in cultured lung epithelia and in mice by the used serine protease inhibitors may
provide an alternative approach for treatment of influenza infection.

Background

Hemagglutinin (HA) of influenza virus is responsible for
binding of virus particles to sialic acid-containing cell
surface receptors. It is synthesized as a precursor protein
HAO that needs to be cleaved by a host protease(s) into
HA1 and HA2 subunits to gain its fusion ability to host
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cell membrane and thereby initiate the infection process
[1-4]. The cleavage site of HAO of most avian and mam-
malian influenza viruses is monobasic and carries a sin-
gle arginine, rarely a single lysine amino acid. Cleavage
has been reported to occur extracellularly by trypsin
[5,6], trypsin-like proteases such as plasmin [7-9], tryp-
tase Clara from rat bronchiolar epithelial Clara cells,
mast cell tryptase from porcine lung [10] and an analo-
gous protease from chicken allantoic fluid to the blood
clotting factor Xa [11] or bacterial proteases [12,13].
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The transmembrane serine proteases TMPRSS2 (also
known as epitheliasin) and TMPRSS11D (also known as
human airway trypsin-like protease, HAT) were reported
to mediate HA cleavage of A/Memphis/14/96 (HIN1),
A/Mallard/Alberta/205/98 (H2N9) and A/Texas/6/96
(H3N2) [14]. Also, the involvement of the TMPRSS2
and TMPRSS4 in cleavage of the 1918 HIN1-HA was
reported [15]. HAT and TMPRSS2 are synthesized as
zymogens and require proteolytic cleavage at a highly
conserved arginine residue to become enzymatically
active and such cleavage was reported to occur autoca-
talytically [16,17]. The catalytic domains of the TMPRSS
were thought to be only linked to the membrane-bound
N-terminal chain of the enzyme by a disulfide bridge;
however, soluble forms of the HAT and TMPRSS2 were
also reported suggesting possible release of the catalytic
domains from the cell surface [16,18]. Upon doxycy-
cline-induced expression of HAT and TMPRSS?2 in
MDCK cells [19] and using both seasonal influenza
virus A/Memphis/14/96 (HIN1) and pandemic virus A/
Hamburg/5/2009 (HIN1), TMPRSS2 was found to
cleave HA within the cell, while, HAT does it at the cell
surface, thus, supporting cleavage of both newly synthe-
sized HA and incoming virions [17]. Both activities
could be blocked by appropriate peptide mimetic pro-
tease inhibitors [17].

In addition to the TMPRSS and HAT proteases that
originate from lung cells, other serine proteases were
reported to be expressed by infiltrating immune cells
under various pro-inflammatory, inflammatory, infection
and pathological circumstances [20-36]. These serine
proteases might also be implicated in HA cleavage since
they have the same catalytic triad present in the active
site of the HAT and TMPRSS.

In the present work, the activities of trypsin-like serine
proteases in lung homogenates from influenza-infected
mice were characterized. In addition, the levels of tran-
scripts encoding known serine proteases from either
lungs or immune infiltrates were quantified by real-time
PCR before and after infecting mice with the HIN1 sub-
type. Furthermore, the effects of specific serine protease
inhibitors on the replication of the HIN1 and H7N7
subtypes were demonstrated both in vitro and in vivo.

Results

Multiple serine protease activities can be detected in lung
homogenates from influenza virus-infected C57BI/6J and
DBA/2J) mice

For the analysis of protease activities, the substrate Bz-
Val-Gly-Arg-p-nitroanilide (p-NA) was used which
favors cleavage by trypsin-like serine proteases. Homo-
genates from lungs of uninfected and PR8 (H1N1)-
infected C57Bl/6] and DBA/2] mice revealed protease
activities with an optimum pH of 10.00 (Figure 1A).
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Figure 1 Quantification and visualization of serine protease
activities in lung homogenates from C57BI/6J and DBA/2J. Each
mouse was infected intra-nasally with 2 x 10° FFU of the HIN1 PR8
virus and lung homogenates were prepared at different days p.i. A)
The detected trypsin-like protease activity in lung homogenates
from infected C57BL/6J and DBA/2J mice (pooled from day 3, 4 and
6 p.) using the specific substrate Bz-Val-Gly-Arg-p-NA had an
alkaline pH optimum. Each data point represents the mean of three
individual measurements (+/- 1 SD) in pooled lung homogenates
from three individual mice. B) At the optimal pH 10.00, the serine
protease activities (mean values +/- 1 SD) in lung homogenates
from both mouse strains (n = 3 mice for each time point) showed a
gradual increase with time after infection with no significant
differences (P > 0.05) between lung homogenates from C578BI/6J
(black bars) and DBA/2J (white bars) mice. C) Zymograms showing
the molecular weights of proteolytic enzyme activities in lung
homogenates from uninfected (CD) or infected DBA/2J mice at days
1 (Dd1), 3 (Dd3) and 7 (Dd7) p.i., respectively, and uninfected (CB)
or infected C57BL/6J mice at days 1 (Bd1), 3 (Bd3) and 7 (Bd7) p.i.,
respectively.




Bahgat et al. Virology Journal 2011, 8:27
http://www.virologyj.com/content/8/1/27

These serine protease activities showed a gradual
increase with time after infection with PR8 but no sig-
nificant differences between the two mouse strains were
noted (Figure 1B). In zymograms (Figure 1C) which
were developed at the optimum of pH 10.00, serine pro-
tease activities in lung homogenates from both strains
showed a gradual increase with time p.i. At day 1, two
enzymatically active peptides were observed at molecu-
lar weights (MW) of about 97 & 66 kDa, and the inten-
sities of these bands markedly increased at day 3 p.i. in
lung homogenates from both mouse strains compared
to uninfected controls. However, the proteolytic activ-
ities were in general stronger in DBA/2] than C57Bl/6]
mice. At day 7 p.i., an additional proteolytic band at
MW of about 56 kDa was detected in both mice strains
and the intensity of all bands was stronger in DBA/2]
compared to C57BL/6] mice. Also, lung homogenates
from DBA/2] mice showed three additional faint activ-
ities at MW of 16, 24 and 38 kDa that were not evi-
denced in C57Bl/6].

The quantified serine protease activities from lung
homogenates of both mouse strains could be inhibited by
the serine protease-specific inhibitors AEBSF and pAB in
a concentration dependent pattern (Figures 2A, B). The
IC50 values for AEBSF and pAB for C57Bl/6] lung
extracts were 0.0327 and 0.536 mM, respectively, whereas
for DBA/2]J lung extracts the IC50 values were 0.053 and
0.582 mM, respectively.

Influenza infection is associated with expression of
several serine protease transcripts in mouse lungs
Relative quantification of transcripts of known serine
protease genes in the transcriptome of C57Bl/6] or
DBA/2] infected mouse lungs revealed that the most
strongly expressed proteases were Gzmb (granzyme B;
only in C57Bl/6] at day 6 p.i.), Gzma (granzyme A),
Tmprss4, Gzmc (granzyme C; only at days 1,3 p.i.),
Elane (neutrophil elastase) and Ctrl (chymotrypsin-like;
Table 1). The levels of transcripts encoding other pro-
teases were much less abundant (Table 1).

The expression levels of Tmprss2 were generally low
in both mouse strains before infection and at days 1 to
6 p.i., with slight but not significantly higher levels in
lungs from DBA/2] mice until day 3 p.i. In both mouse
strains, the levels of the Tmprss4 gene were significantly
higher than Tmprss2 (P < 0.05). Whereas the level of
Tmprss4 transcripts was not significantly higher in
DBA/2] compared to C57B1/6] mice before infection
(1.7 fold) and at day 1 p.i. (3.7 fold), comparable levels
were recorded in both mouse strains at day 3 p.i. After
day 3, the transcript level was significantly up-regulated
in C57B1/6] compared to DBA/2]. The levels of the
Tpsgl (tryptase gamma 1) transcript before infection
and at day 3 p.i. were not significantly higher in C57Bl/
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6] (1.6 and 2.8 fold respectively) compared to DBA/2]
mice, whereas at day 6 p.i., the levels were significantly
higher in C57Bl/6] compared to DBA/2] mice.

Before infection the levels of Gzma transcripts were
significantly higher in C57Bl/6] compared to DBA/2]
mice, at day 1 p.i. levels were significantly lower and
thereafter similar expression levels were found in both
strains. Expression of Gzmb transcript was significantly
higher in DBA/2] than C57Bl/6] mice before infection,
at days 1 and 2 p.i. It was gradually down-regulated in
DBA/2] mice but slightly increased in C57Bl/6], and
became strongly up-regulated compared to all other
proteases at day 6 p.i. The levels of Gzmc transcripts
were significantly higher in DBA/2J than C57Bl/6] mice
at days 1 and 3 p.i. whereas the opposite was observed
at day 6 p.i. The levels of the Gzmg (granzyme G) tran-
script were significantly higher in C57Bl/6] mice before
infection and at days 3 and 6 p.i. The same observation
was made for Gzmk at days 3 and 6 p.i.

Prior to infection, and at day 1 p.i. the expression
levels of the Mmpla (matrix metallopeptidase 1a) gene
were significantly higher in C57Bl/6] than DBA/2] mice.
This situation was reversed at day 6 p.i. Mmplb (matrix
metallopeptidase 1b) transcripts showed a higher level
in C57Bl/6] than DBA/2] mice and the difference was
significant before, at days 3 and 6 p.i. The levels of the
Mmp2 (matrix metallopeptidase 2) transcript were least
expressed in both mouse strains compared to other
Mmp genes. Mmp8 (matrix metallopeptidase 8) tran-
script levels were significantly higher DBA/2J than
C57Bl1/6] at day 3 p.i. Prior to infection and shortly
thereafter the Mmp9 (matrix metallopeptidase 9)
expression levels were significantly up-regulated in
C57Bl/6] compared to DBA/2] mice and the opposite
was recorded at day 3 p.i.

No significant differences were observed for the levels
of the Ctrl transcript between the two mouse strains.
Prior to infection, the levels of the Elane transcripts
were significantly higher in DBA/2] mice, were some-
what higher (1.3 fold) in C57Bl/6] at day 1 p.i and
became significantly higher at day 3 p.i. and comparable
levels were observed in both mouse strains at day 6 p.i.
While the levels of the Ctsd (cathepsin D; also known as
aspartyl proteinase) transcripts were significantly higher
in C57Bl/6] prior to infection and at day 6 p.i., compar-
able transcript levels were recorded in the lungs of both
strains at day 1 p.i. whereas at day 3 p.i. transcript levels
were higher in DBA/2] mice.

Serine protease inhibitors block influenza A viruses
propagation in cultured lung cell lines

Pretreatment of MLE15 cells with serial dilutions of the
serine protease inhibitors AEBSF (Figure 3A) or pAB
(Figure 3B) prior to infection with HIN1 resulted in a
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Figure 2 Specific inhibitors confirm the serine protease nature of measured activity. Each mouse was infected intra-nasally with 2 x 10
FFU of the HIN1 PR8 virus and lung homogenates were prepared at different days p.i. Serial dilutions of the inhibitors were added to extracts
(pooled from day 3, 4 and 6 p.i.) prior to incubation with the substrate and the protease activities were determined. The results are presented as
percent inhibition with reference to activities in untreated extracts. AEBSF (A) and pAB (B) reduced the protease activities in a concentration-
dependent manner. Each data point represents the mean of four individual measurements +/- 1 SD.

significant, concentration-dependent, decrease in the
levels of the virus nucleoprotein (NP) in supernatants
from treated cells compared to non-treated infected
cells at 24 hour p.i. These results indicate a drop in
virus entry and/or replication. Since individual inhibitors
showed efficacy to block HIN1 infection in MLE cells
serial dilutions of a cocktail of both pAB and AEBSF
was used to interfere with H7N7 infection. Treatment of
human A549 cells with increasing concentrations of the

AEBSF and pAB cocktail prior to infection with H7N7
(Figure 3C) also showed an inhibitory effect on the virus
NP production. These results showed that virus repro-
duction could be also inhibited in human cells lines by
the used serine protease inhibitors.

At 1 hour p.i. with the H7N7 virus, higher NP levels
were measured in the supernatant of the MLE15 cells
pretreated with high concentrations of the AEBSF and
PAB cocktail (Figure 3D) compared to cells treated with
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Table 1 Expression profiles of transcripts encoding lung proteases at various times after influenza infection of C57BL/
6J and DBA/2J mice with PR8 virus

Gene Relative quantification (2°9<")/Days post infection
Day 0 Day 1 Day 3 Day 6
B6 DBA P- B6 DBA P- B6 DBA P- B6 DBA P-
value value value value

Ctsd 0014 + 00054 + <0.05 00077 + 00068 + >0.05 0.0042 + 00082 + <0.05 00027 + 00016 + <0.05
0.0023 1.260E-06 0.00018 0.0005 0.00039 0.00028 0.00046 2.192E-08

Ctrl 0.1079 0.1705+ >0.05 0.1031 + 0.1359 + >0.05 0.1353 + 0.1403 + >0.05 0.1018 + 0.1029 £+  >0.05
0.0275 0.0581 0.0179 0.0166 0.054 0.03 0.0046 0.0161

Gzma 0.989 + 0.884 + <0.05 0.866 + 0973 + <0.05 09523 + 09874 £+ >0.05 09941 + 09537 + >0.05
0.0042 0.012 0.0271 0.0094 0.0213 0.0071 0.0016 0.0367

Gzmb 0.0108 + 00390 + <0.05 00095 + 00152+ >0.05 00129 + 0.0085 + >0.05 4761 £ 0.0285 + <0.05
0.0053 0.0139 0.0041 0.0062 0.0036 0.0023 0.0034 1671

Gzmc 0.0134 + 0.0059 + >0.05 0.004 + 02327 + <0.05 0.004 + 0258 + <0.05 0.108 + 00285+ <0.05
0.0004 0.0042 0.0002 00148 0.0012 00114 0.0393 0.0034

Gzmg 0.0066 + 00017 + <0.05 00017 + 00044 + >0.05 0.0036 + 00024 + <0.05 00052 + 00027 + >0.05
0.0007 8.538E-06 0.0009 0.0012 0.0002 0.0003 0.0016 0.0003

Gzmk 0.0079 + 00042 + >0.05 00036 + 00026 + >0.05 0004 + 0003 + <0.05 00097 + 00062 + <0.05
0.0021 0.0011 0.0006 0.0003 0.00043 0.00018 0.0009 0.0004

Mmp 0.0294 + 00057 + <0.05 001165+ 00067 + >0.05 00061 £ 0.0084 + >0.05 0.0062 + 00197 £+ <0.05

la 0.0047 8.380E-05 0.0025 0.0029 0.0004 0.0016 0.0021 0.0044

Mmp 0.0097 + 00056 + <0.05 00071 + 0.0055+ >0.05 00061 + 00035 + <0.05 0.005 + 0.003 + <0.05

b 0.0007 0.0002 0.0011 8.095E-05 0.0005 0.0007 0.0004 0.0008

Mmp 2 000012 + 0.0002 + >0.05 0.00016 = 0.00019 + >0.05 7.7 E-05+ 000011+ <0.05 0.00016 + 0.00011 = >0.05

7.071E-06 9441E-05 4.543E-05 1.790E-05 1.90E-05 1.579E-06 3.126E-05 1.331E-05

Mmp 8  0.00055 + 0.00021 £ >0.05 0.0003 + 0.00038 £ >0.05 0.00046 + 000176 £ <0.05 000122 + 000124 =+ >0.05
0.00026 3.525E-05 4.16E-05 0.00018 0.0002 6.903E-05 0.0005 0.0009

Mmp 9 000116 + 000036 + <0.05 0003 + 00013 + <0.05 000043 + 000172 + <0.05 0.0006 + 00008 + >0.05
0.0002 0.0004 8.889E-05 0.0001 0.00015 3.380E-05 0.0007 0.0005

Elane 0.1555 + 02328 + <0.05 02083 + 01490 + >0.05 03728 + 02061 + <0.05 01838 + 0.1706 + >0.05
0.0198 0.0349 0.023 0.040 0.0820 0.039 0.015 0.034

Tmprss2  0.02647 + 0.03916 £ >0.05 0.00682 + 0.03398 £ >0.05 0.00305 =+ 0.02584 £ >0.05 000521 £ 0.00232 £+ >0.05
0.0181 0.0344 0.01076 0.0273 0.00343 0.03484 0.00066 0.0017

Tmprss4  0.2649 + 04376 £+ >0.05 0.1990 + 07521 + >0.05 02988 + 03265+ >0.05 04279 + 003122 £ <0.05
0.1166 0.1963 0.2406 03214 0.08959 0.1309 0.0147 0.0139

Tpsgl 0.1033 + 006162 £ >0.05 004691 £+ 00441 £0. >0.05 0.1455 + 005375+ >0.05 000418 + 00281 £+ <0.05
0.0492 00117 0.05 0.05 0.0917 0.0187 0.0017 0.0089

Each relative quantification value represents the mean of three independent measurements using RNA from three individual C57BI/6J or DBA/2J mice at the
indicated time points post infection with the A/Puerto Rico/8/34 (H1N1; PR8) influenza virus. The difference in the levels of expression of various protease genes
among the 2 mouse strains was considered significant when P-value was < 0.05.

low concentrations. This observation suggests that the
used serine inhibitors may block the processing of HA
protein which is required for binding to the cellular
receptors and thus more viral particles can be found in
the supernatants. Alternatively, the inhibitors might
have additional unknown anti-influenza effects that are
independent of the HA cleavage.

Treatment of C57BI/6J mice with serine protease
inhibitors reduced weight loss and viral load
Pretreatment of C57Bl/6] mice with AEBSF (125 pg/25
ul/mouse) prior to infection with HINT virus resulted in
a less severe weight loss early after infection and a faster
recovery of treated mice compared to untreated control
groups (Figure 4A). A similar effect was obtained upon
pretreatment of C57Bl/6] mice with the serine protease

inhibitor cocktail (Figure 4C; 125 pg AEBSF, 400 pg
pAB/25 ul/mouse) prior to infection with the HIN1
virus. Although pretreatment of C57Bl/6] mice with 400
ug pAB/25 pl/mouse (Figure 4B) resulted in a slightly
faster recovery, the effect was very poor compared to
that obtained by AEBSF alone or with the protease inhi-
bitor cocktail. In contrary to its effectiveness against
PR8, AEBSF showed the lowest effect in terms of weight
loss reduction in C57Bl/6] mice infected with the H7N7
virus (Figure 4D). However, pretreatment of H7N7-
infected C57Bl/6] mice with pAB or with the serine pro-
tease inhibitor cocktail (Figure 4E &4F respectively)
resulted in a less severe weight loss early after infection
and a faster recovery of treated mice compared to
untreated control groups. Noteworthy, the weight recov-
ery obtained upon treating mice the inhibitor cocktail
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Figure 3 Addition of protease inhibitors reduced influenza virus propagation in mouse and human lung cell cultures. Mouse (MLE15)
or human (A549) cell lines were infected with the PR8 virus at a multiplicity of infection of 0.01 and the amount of the virus NP in the
supernatant was determined by NP-specific ELISA. Pretreatment of cultured MLE15 cells with serial dilutions of the serine protease inhibitors
AEBSF (A; 0.13-1 mM) or pAB (B; 1.5-0.09 mM) prior to infection resulted in a decrease of the released virus particles as measured by a decrease
in the amount of the viral NP in the supernatants at 24 hours p.. (n = 3 cell culture wells for each inhibitor concentration). The lowest NP levels
were recorded at the highest inhibitor concentration. A similar effect was observed upon pretreatment of A549 (n = 3 cell culture wells at each
concentration) with serial concentrations of a cocktail consisting of AEBSF and pAB (C; 125-31 ug/ml of both inhibitors) prior to infection with
H7N7 virus at a MOI 0.01. Pretreatment of MLE15 cells (n = 3 cell culture wells at each concentration) with the serine protease inhibitor cocktail
(125-31 pg/ml of both inhibitors) followed by incubation of cells with H7N7 for 1 hour and then collection of medium (D) revealed that wells
treated with higher cocktail inhibitor concentrations had higher NP titers in the supernatant than wells treated with lower concentrations
indicating inhibition of virus entry. Fach data point represents the mean of duplicate measurements of the virus NP titer in 3 individual culture
wells +/- 1 SD.
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Figure 4 Pretreatment of mice with serine protease inhibitors results in less severe weight loss after influenza infection. C57BL/6J mice
were pre-treated with protease inhibitors and then infected intra-nasally with 2 x 10° FFU of the HIN1 virus each. Body weight was measured at
each day p.i. and is presented as percent of original weight before infection (day 0). Pretreatment of C57BI/6J mice with AEBSF (A; 125 pg/25 pl/
mouse) or with the serine protease inhibitor cocktail (C; 125 ug AEBSF, 400 ug pAB/25 ul/mouse) prior to infection with HIN1 (n = 8 each
group) resulted in a significant reduction (P < 0.05) in the weight loss and faster recovery of treated mice compared to untreated infected
controls (n = 10). On the other hand, pretreatment of C57BI/6J mice with 400 ug pAB/25 pl/mouse (B; n = 8) resulted in a non significant
reduction in the weight loss of treated mice compared to untreated infected controls (n = 10). AEBSF showed the lowest effect in terms of
reduction of weight loss after pre-treatment of C57BI/6J mice (n = 6) infected with H7N7 virus (D). Treatment of C57BI/6J mice with the pAB (E;
n = 6) or with the serine protease inhibitor cocktail (F; n = 6) at the doses described above prior to infection with the H7N7 virus resulted in a
significantly (P < 0.05) reduced weight loss early after infection and a faster recovery of treated mice compared to untreated control groups (n =
6). The effect of weight loss reduction in mice treated with the inhibitor cocktail was even more pronounced after infection with the H7N7 virus
compared to infection with the HIN1 virus. Each data point represents the mean percent body weight value of the tested mice +/- 1 SD.
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prior to H7N7 infection was more prominent compared
to its effect in case of HIN1 infection.

The quantification of virus NP in lung homogenates
showed that virus reproduction decreased significantly
in the treated groups compared to untreated control
groups, both after HIN1 (Figure 5A) and H7N7
(Figure 5B) virus infections. Furthermore, treating
C57Bl/6] mice with AEBSF prior to infection with the
HINT1 virus caused a significant drop in the levels of the
HIN1-HA transcript compared to the untreated HIN1-
infected mice (Figure 5C). However, no difference was
observed in the levels of the H7N7-HA transcript
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between the AEBSF-treated H7N7-infected C57Bl1/6]
mice and the untreated H7N7-infected mice (Figure 5D)
that might explain the poor effect obtained by AEBSF in
terms of weight loss reduction in treated H7N7-infected
C57Bl/6] mice (Figure 4D).

Discussion

There is an urgent need for new anti-viral drugs to treat
influenza infections. Therefore, we characterized pro-
tease activities in the lungs of influenza A infected mice
and evaluated the effect of different protease inhibitors
to viral replication in vitro and in vivo. We showed that
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Figure 5 Pretreatment with serine protease inhibitors reduced viral propagation in infected C57BI/6J mice. C57BL/6J mice were pre-
treated with the AEBSF and then infected intra-nasally with 2 x 10° FFU of either the HINT or the H7N7 virus. Propagation of the two viruses in
the lungs was measured by determining virus NP by ELISA and HA mRNA by real-time PCR. Uninfected mice were used as controls for the NP
background signal (A, B). Pretreatment of C57BI/6J mice with AEBSF prior to infection with HIN1 (A; n = 3) or H7N7 (B; n = 3) showed
significant reduction (P < 0.05) in the levels of viral antigen at day 6 p.i compared to untreated infected mice (n = 3). All measurements were
carried out in triplicates for two successive measurements on two independent days. Analysis of RNA extracted from lungs of C57BI/6) mice that
were treated with AEBSF prior to infection with HINT (C) revealed a significant drop in the levels of viral HAT transcript by real-time PCR
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are represented.
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protease activities could be detected in mouse lungs and
that many protease genes are expressed before and after
infection.

The protease activities in extracts from mouse lungs
were studied by using the substrate Bz-Val-Gly-Arg-p-
NA. This substrate contains an alkaline amino acid
(arginine) in the P1 site upstream the PNA group that
mimics the alkaline residue(s) present in the cleavage
sites of the influenza A viruses HA protein and it also
favors cleavage by trypsin like proteases [5-13]. The sub-
strate cleavage assay and the zymograms gels showed
that multiple protease proteins were active in mouse
lungs of non-infected and infected C57Bl/6] and DBA/2]
mice. These activities increased during the course of a
virus infection. In infected DBA/2] mice, higher levels of
activities and more proteases could be detected which
may explain, in part, the higher susceptibility of DBA/2]
to mouse-adapted PR8 virus and to the highly patho-
genic H5N1 virus [37,38].

The involvement of numerous proteases in the process
of influenza infection was further confirmed by quantify-
ing the transcripts of known proteases in the lung tissue.
The most strongly expressed proteases were Gzmb (only
in C57Bl/6] at day 6 p.i.), Gzma, Tmprss4, Gzmc (only
at days 1, 3 p.i.), Elane and Ctrl. Whether these pro-
teases are directly involved in HA cleavage or may be
indirectly involved in activating zymogen(s) (pre- or
pro-enzymes) that are supporting HA cleavage will
require further studies. The significantly higher level of
transcription of Tmprss4 compared to Tmprss2 in both
mouse strains suggest that this protease might play a
major role in HA activation unlike its recently reported
secondary role by others [39]. The best way to show
which proteases are major players in influenza infection
will be to study susceptibility in knock out mice that are
deficient for individual protease genes. We are currently
planning such experiments.

Furthermore, our results demonstrated the potential of
two specific serine protease inhibitors, AEBSF [40] and
PAB [41] or a cocktail of both to block influenza A viral
replication both in vitro and in vivo. Although the func-
tion of serine protease inhibitors used in the present
work are new with respect to inhibition of influenza
virus replication and pathology, the approach of treating
influenza infections by enzyme inhibitors adds to the
observations already reported by others. Treatment of
mice with the protease inhibitors epsilon-aminocaproic
acid or aprotinin resulted in a faster clearance of both
A/PR/8/34 (HON1) and A/Aichi/2/68 (H3N2) in the
lungs, and also non-infectious virions with uncleaved
HA proteins were detected [42]. Administration of pro-
tease inhibitors gordox, contrycal and epsilon-aminoca-
pronic acid in animal experiments or in treatments of
children suffering from influenza exerted a marked
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antiviral and therapeutic effects. Virus particles in the
lungs decreased in less pathological lesions were found
[43]. Administration of the aerosolized proteinase inhibi-
tor aprotinin by inhalation to influenza infected mice for
30-40 min incubations per day (6 micrograms/mouse/
day) for 6 days allowed rescuing more than 50% of mice
infected with lethal doses [44]. The serine protease inhi-
bitor camostat was also effective in ameliorating influ-
enza A/Taiwan/1/86 virus pathology in mice and had
strong in vitro anti-influenza effects against amantadine-
resistant type A and type B viruses [45].

Both AEBSF and pAB are expected to block the activ-
ity of many proteases and it remains to be seen if the
effect on virus replication is restricted to the previously
reported proteases Tmprss2, Tmprss4 and HAT which
were shown to be directly involved in HA cleavage
[15-17] or whether other proteases are also involved.

It is also conceivable that the use of protease inhibi-
tors may exert additional indirect beneficial effects by
suppressing proteases that are released from infiltrating
immune cells. Such an inhibitory activity may suppress
a hyper-inflammatory response in severely influenza
infected individuals which has been described to be det-
rimental in humans and in animals. In this regard, direct
neutrophil depletion using specific monoclonal antibo-
dies increased the susceptibility of mice to infections
with various influenza viruses [46-48]. In contrast, in
mice infected with either the reconstructed virulent
1918 Spanish influenza pandemic HIN1 or highly
pathogenic H5N1 viruses, neutrophils and macrophages
predominated in the airways early after infection [49,50].
Therapeutic blockade of the neutrophil-attracting che-
mokine MIP-2 was associated with reduced neutrophil
recruitment and a milder lung pathology following
infection with mouse-adapted A/PR/8/34 virus (PRS,
HIN1), suggesting that dysregulated or excessive neu-
trophil responses might contribute to disease during
severe influenza infection [51]. The mRNA and protein
expression of the IL-1 receptor-associated kinase-M
(IRAK-M), an inhibitor of MyD88-dependent TLR sig-
naling, was upregulated within 2 days after intranasal
administration of PR8 [52]. The infection of IRAK-M
(-/-) knock out mice resulted in substantially increased
mortality compared with infected wild-type. The
increased mortality was associated with enhanced early
influx of neutrophils, high permeability edema, apoptosis
of lung epithelial cells, markedly increased expression of
inflammatory cytokines/chemokines, and release of neu-
trophil-derived enzymes, including myeloperoxidase and
neutrophil elastase and with significantly higher viral
titers in lungs and blood [52]. These results indicated
that IRAK-M is critical to prevent deleterious neutro-
phil-dependent lung injury during influenza infection of
the respiratory tract.
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In inflammatory lung diseases including asthma,
emphysema and chronic bronchitis, serine proteases,
including the Mmp8, 9 [29]Elane, cathepsin G [22] were
reported to interact with structural proteins of lung cells
leading to the release of neutrophil chemo-attractants
which result in the recruitment of neutrophils to the
site of inflammation. These effects could be reverted
using specific serine protease inhibitors. The proteases
involved in these processes are structurally related and
share the conserved catalytic triad, His57-Asp102-
Ser195 known for all serine proteases [23]. This activity
can be suppressed by the inhibitors which were used in
the present work.

Elane has a potent catalytic activity to hydrolyze elas-
tin which ensures elasticity of the lung tissue and pro-
teolytic resistance. Under physiological conditions,
organs are protected from this enzyme by endogenous
inhibitors, such as a1-protease inhibitor, a2-macroglo-
blin and secretory leukocyte protease inhibitor. How-
ever, in the course of a pathological condition, such as
acute lung injury (ALI), the balance between Elane and
its endogenous inhibitors is disturbed in favor of the
catalytic enzyme [24-26] leading to massive infiltration
of neutrophils into the lungs and subsequent tissue
injury. Thus, several Elane inhibitors, including peptidic
and nonpeptidic compounds, were used for treating ALI
associated with systemic inflammation [27,28].

Granzymes are a family of conserved serine proteases
stored within the cytotoxic granules of cytotoxic T-lym-
phocytes (CTL) [30]. There are five granzymes
expressed in humans (A, B, H, K, and M) and 11 in
mice (A, B, C, D, E, F, G, K, L, M, and N) [31]. Gzmb,
perforin mRNA, CD," and CDg" T cells levels are ele-
vated in the BAL fluid of patients with acute respiratory
inflammations mediating apoptosis of alveolar epithelial
cells and leading to disease progression [32,33]. Specific
inhibitors (in humans; protease inhibitor 9 and in mice
protease inhibitor 6) regulate the Gzmb activity and
minimize the enzyme-mediated apoptosis [34,35]. Influ-
enza-specific CTL expressing both Gzma and Gzmb
were reported to be dominant at early time points p.i. in
the infected respiratory tract, while, at later time points,
cells expressing only Gzmb represented the major T cell
population [36].

The treatment of C57Bl/6] mice with AEBSF prior to
infection with the HIN1 virus resulted in a significant
decrease both in the viral NP production and HA1 tran-
script levels suggesting that the reduction in the weight
loss was accompanied by significant drop in the viral
load. Although a significant decrease in the H7N7-NP
expression was achieved upon treating mice with
AEBSEF, the level of the HA7 transcript remained com-
parable to non-treated H7N7-infected mice that might
explain the poor effect obtained by AEBSF in terms of
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weight loss reduction in treated H7N7-infected C57Bl/6]
mice.

Noteworthy, the SC35M virus used in the present
work is a mouse adapted H7N7 strain that was derived
from the SC35. The later is a highly pathogenic H7N7
that was derived from the A_Seal Massachussetts_1_80
H7N7 by serial passages in chicken embryo cells,
thereby acquiring a multibasic (-RRRR-) HA7 cleavage
site [53] that is known to be cleaved by the subtilisin-
related furin [54,55] and became 100% lethal for chick-
ens. The SC35 was then passaged 11 times in mouse
lung yielding the mouse-adapted variant SC35M [56]
that carries a multibasic HA cleavage site that makes
SC35M more prone to cleavage by ubiquitous proteases
than the monobasic cleavage site of the PR8 virus. This
might be one of the reasons why HA7 transcript
remained high in the AEBSF treated mice. Another pos-
sible explanation could be that the activity of the subtili-
sin-related furin is efficiently abolished with polybasic
peptide inhibitors fused to cholromethylketone but only
partially inhibited by the AEBSF inhibitor (45%; [57,58]).
Thus, it has to be taken in consideration that the effi-
cacy of the protease inhibitors to block infection might
vary among various influenza subtypes depending on
the susceptibility of their HAs to be cleaved by host pro-
teases based on their cleavage site.

In contrast to SC35, which is low-pathogenic for mice,
SC35M is highly pathogenic for both mice and chickens.
SC35M and SC35 therefore provide a suitable system to
elucidate the molecular basis of host change and
enhanced virulence in mammals. SC35 and SC35M dif-
fer mainly by mutations in the polymerase proteins
(PB2, PB1, and PA) and in the NP. SC35M has a consid-
erably higher polymerase activity in mammalian cells
than SC35 [59] and this could be another possible rea-
son for the continuously high level of the HA7-RNA
even after treatment. Independent of their protease inhi-
bitory effect, the drop in the NP level although no dif-
ference in the quantified HA7-transcript might suggest
an additional inhibitory effect of AEBSF on the transla-
tion of viral RNA into protein and/or assembly of the
viral NP.

It is well known that proteases play crucial roles in
various host functions including metabolic, protein pro-
cessing, blood clotting, complement activation and
immune cell recruiting activities. Therefore, before the
clinical application of such a potential therapeutic
approach can be envisaged, more studies on the poten-
tial toxicity and unwanted side effects will be necessary.
It is, however, noteworthy that protease inhibitors are
being used in different clinical settings. For example, the
antiretroviral aspartyl protease inhibitors combination
lopinavir/ritonavir was approved for humans. Low rate
of virological failure and maintenance of susceptibility



Bahgat et al. Virology Journal 2011, 8:27
http://www.virologyj.com/content/8/1/27

to lopinavir/ritonavir treatment were reported in clinical
practice [60]. Another serine protease inhibitor that is
used in humans is telaprevir [61] that specifically targets
the HCV-NS3/4a serine protease.

Conclusion

Multiple lung serine proteases might be implicated in
mediating influenza infection in mice as demonstrated
by both the zymography and real time PCR results.
Blocking influenza A virus infection in cultured lung
epithelia and in mice by serine protease inhibitors pro-
vides a potential novel approach for treatment of influ-
enza infection.

Methods

Viruses, mouse strains and infection

Mouse-adapted influenza strains, A/Puerto Rico/8/34
(H1IN1; PR8) and A/Seal/Massachusetts/1/80 (H7N7;
SC35M), were propagated in the chorio-allantoic cavity
of 10-day-old embryonated hen eggs for 48 hours at
37°C. Inbred mouse strains C57BL/6] and DBA/2] were
obtained from Janvier, France. Mice were maintained
under specific pathogen free conditions and all experi-
ments were approved by an external committee accord-
ing to the German regulations and laws on animal
welfare. For infection experiments, mice were anesthe-
tized by intra-peritoneal injection with Ketamin (Bayer
Health Care; Leverkusen; Germany; 100 pg/gm body
weight)-Rompun (CP-Pharma; Burgdorf; Germany; 5 pg/
gm body weight). Each mouse received an infection
dose of 2 x 10 foci forming units (FFU; 37) of either of
the two virus strains intra-nasally in a total volume of
20 pl sterile phosphate buffered saline (1x PBS; Invitro-
gen; Darmstadt, Germany). Weight loss and survival of
infected mice was followed over a period of 14 days. In
addition to mice that were found dead, mice with a
weight loss of more than 30% of the starting bodyweight
were euthanized and considered dead.

Detection and inhibition of serine protease activities in
homogenates of lungs from infected mice

Lungs of control and infected mice were homogenized in
phosphate buffered saline 1x PBS containing 0.1% BSA
using the PolyTron 2100 homogenizer (KINEMATICA;
Littau/Lucerne, Switzerland). Debris was removed by
centrifugation for 10 min at 6000 g. The samples were
aliquoted and stored at -70°C till being used. Trypsin-like
serine protease activities were quantified in aliquots from
lung homogenates form both mice strains at various time
points post infection (p.i.) starting from day 1 as pre-
viously reported [62] using the specific substrate Bz-Val-
Gly-Arg-p-NA (Bachem; Bubendorf, Switzerland). This
substrate contains an alkaline amino acid (arginine) in
the P1 site upstream the p-NA group that favors
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proteolysis by trypsin like serine proteases at alkaline pH
[9,10] leading to release of yellow coloured p-Nitroaniline
which can be recorded by measuring the absorbance at
Amax 405 nm using a micro-well plate reader (TECAN-
SUNRISE, Austria). The intensity of the yellow colour is
directly proportional to the enzyme activity. To further
confirm the nature of the observed serine protease activ-
ities, inhibition assays were carried out using the specific
inhibitors 4-(2-aminoethyl)-benzolsulfonylfluorid-hydro-
chlorid (AEBSF-HCI; AppliChem, Darmstadt, Germany)
and p-aminobenzidine-HCI (pAB; Bachem; Bubendorf,
Switzerland) as previously described [62].

The molecular weights of the serine proteases in the
lung homogenates were characterized by electrophoresis
on SDS-polyacrylamide gels (SDS-PAGE) copolymerized
with gelatin [63], a technique known as zymography using
a Mini-Protean II electrophoresis chamber (Bio-Rad
Laboratories; Muenchen, Germany). After electrophoresis,
proteins were allowed to re-nature by removing the SDS.
This was accomplished by incubating the gel in 2.5% tri-
ton-X-100 in water with gentle shaking for 30 min and
with one change at room temperature. The gel was then
incubated overnight at 37°C with gentle shaking in 30 mM
tris-HCI, pH 9.5, containing 60 mM NaCl and 0.05%
NaNs3, subsequently stained with 0.5% Coomassie blue (in
10% acetic acid, 5% methanol) and de-stained using 60%
methanol. Proteolytic activities were evident as unstained
bands against the blue background of the gels.

Quantification of protease transcripts in lung tissue by
real time PCR

Total RNA was extracted from lungs of control and
infected mice using Trizol reagent according to the
manufacturer instructions (Invitrogen) and RNA con-
centration was quantified (NanoDrop 1000 spectrophot-
ometer; Thermo Scientific, Fisher Scientific, Germany).
A total of 1 pg RNA was used to prepare double
stranded ¢cDNA using SuperScript III reverse transcrip-
tase (Invitrogen) in presence of oligo dT (Invitrogen).
The sequences of the primers, names and accession
numbers of the target serine protease genes are listed in
Table 2. Relative quantification of the serine proteases
transcripts was carried out in 96 well plates (Roche,
Mannheim, Germany) using the SYBR Green I Master
kit (Roche) according to the manufacturer instructions
and the LightCycler 480 apparatus (Roche). Actb (beta
actin) and Gapdh (glyceraldehydes-3-phosphate dehy-
drogenase) were used as housekeeping genes for
normalization.

Inhibition of HIN1 and H7N7 entry into cultured lung
epithelia

In 6-well plates (Techno Plastic Products; Trasadingen,
Switzerland), Adenocarcinomic human alveolar basal
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Table 2 Nucleotide sequences of the sense and anti-sense primers as well as the annealing temperatures used in the

quantification of known protease genes by real-time RT-PCR

Protease Sense primer Anti-sense primer Annealing (°C)
Tmprss2 TGACTGCTGCTCACTGCTTT ATGGTTTGCATCTGGGAGAC 52
Tmprss4 AGGGGAGGATGAGGAACACT ATCTGGACGGATCTCCACTG 52
Tpsgl GGTCACACTGTCTCCCCACT ACTTTGGCCTCCTGAAGGTT 52
Ctsd TGATGGGAGCTGGTTTCAAT TCATCAGGGCATAGGACACA 50
Elane GGCTTTGACCCATCACAACT CGGCACATGTTAGTCACCAC 52
Ctrl CCCATTGCCTCAGCAACTAT CCAGCCTGTGACATAGCAGA 52
Mmp 1a CCTTCCTTTGCTGTTGCTTC CACCTGGGCTTCTTCATAGC 52
Mmp 1b GTGCTCTCCTTCCACAGAGG ATGGGAGAGTCCAAGGGAGT 52
Mmp 2 GAAACCGTGGATGATGCTTT CCATCAGCGTTCCCATACTT 50
Mmp 8 AACGGTCTTCAGGCTGCTTA GGGAACATGCTTGGTATGCT 52
Mmp 9 CGTCGTGATCCCCACTTACT AACACACAGGGTTTGCCTTC 52
Gzma TGATGTGAAACCAGGAACCA ATGCCTCGCAAAATACCATC 50
Gzmb GACCCAGCAAGTCATCCCTA CACACTCCCGATCCTTCTGT 54
Gzmc CCAGGGGATGAGTGCTATGT ATCCATCAGTTTGCCCGTAG 52
Gzmg CATTCCCCATCCAGCTTTTA GATCTGCGTGGTCTTGGAAT 50
Gzmk CCGTGGTTTTAGGAGCACAT CAGGGTATCAGAGGCGGTTA 52
Actb GTCCCTCACCCTCCCAAAAG GCTGCCTCAACACCTCAACCC 55
Gapdh GGTGAAGGTCGGTGTGAACG CTCGCTCCTGGAAGATGGTG 55

epithelial cells (A549; American Type Culture Collec-
tion, Manassas, USA) and mouse lung epithelial cells
(MLE15; ATCC) were grown at a density of 10°cells/
well in Dulbecco’s Modified Eagle Medium (DMEM-
GlutaMax; Invitrogen) supplemented with 10% fetal calf
serum (FCS), 1% penicillin/streptomycin and 1 mM
sodium pyruvate (all supplements were from Invitrogen)
at 37°C in 5% CO2 till semi-confluence. Medium was
removed, cells were washed twice with 1x PBS then
incubated at 37°C in 5% CO, with serially diluted
AEBSF or pAB or cocktail of both in complete medium
and control wells where cells were incubated with med-
ium containing no inhibitor were included. After 1 hour
(h) medium was removed, cells were washed from any
remaining traces of the inhibitors then infected with
either HIN1 or H7N7 influenza virus diluted in DMEM
containing 0.1% BSA to a multiplicity of infection 0.01
(i.e. 10* virus FFU/10° cells). After 1 h, medium from
individual wells was separately collected from individual
wells, cells were washed 2x with 1x PBS and incubated
overnight in complete DMEM-GlutaMax medium con-
taining the above mentioned supplements.

On the next day medium (containing newly released
viral particles) was separately collected from individual
wells. Collected medium 1 h or 1 day p.i. were briefly
centrifuged at 3000 g for 5 min to get rid of any cellular
debris; supernatants were aspirated into individual tubes
and subjected for quantification of influenza A virus NP
by enzyme linked immune sorbent assay (ELISA) as a
read out for the inhibition of viral entry and propaga-
tion. Extracellular free H3N8-NP was previously

detected by others in the culture medium of infected
MDCK cells by [64] who demonstrated that the amount
of NP correlates with the production of mature virions.
Thus, anti-NP-ELISA may be used to quantify virus
load both in the supernatant of infected cultured cells
and in the homogenates of lungs from infected mice.
For the ELISA assay [65], 100 pl of the collected super-
natants were applied onto micro-titer plates (Greiner
Bio-One; Frickenhausen, Germany) and plates were incu-
bated overnight at 37°C, then washed 3x with 1x PBS
containing 0.05% tween20 (PBST). Antigen-free sites
were blocked to avoid non-specific binding using PBST
containing 5% fetal calf serum (PBST-FCS; 200 pL/well),
incubated 1 h at 37°C and washed 3x with PBS-0.05%T.
Subsequently, 100 pl/well of diluted first antibody (anti-
influenza NP polyclonal goat antibody from Virostat;
Portland, USA, 1:500 in PBST-FCS) was added and plates
were incubated at 37°C for 2 h. After 3 washes, 100 pl/
well of the diluted secondary antibody (anti-goat-HRP
from KPL; Gaithersburg MD, USA, 1:500 in PBST-FCS)
was added and plates were incubated at 37°C for 2 h. For
visualization of the antigen-antibody binding reaction,
100 pl/well of the O-phenylenediamine substrate (Sigma,
St. Louis, Mo., USA) diluted in H,O, containing sub-
strate buffer (49.6 ml 0.1 M citric acid anhydrous, 50 ml
0.2 M dibasic sodium phosphate, pH 5.00) was added
and plates were left for 10 minutes at room temperature
until color development. Stopping solution (2 M HCI,
50 pl/well) was used to terminate the enzymatic reaction
and the changes in optical densities (OD) were recorded
at Amax 492 nm using a micro-well plate reader.
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Table 3 Nucleotide sequences of the sense and anti-sense primers as well as the annealing temperatures used in the
quantification of the viral HA1 and HA7 transcripts by real-time RT-PCR

Target Sense primer Anti-sense primer Annealing (°C)
HA1 CAGATGCAGACACAATATGT TAGTGGGGCTATTCC A 48
HA7 TCTGCCATTCCAAAACATCA GCAGTTCCTTCTCCTTGTGC 48

A higher titer of the NP in the collected medium at 1 h p.
i. reflects a more prominent effect of the inhibitor to
block viral entry. On the other hand, a lower NP titer in
the collected medium at 24 h p.i. indicated a more pro-
minent effect of the inhibitor to block viral propagation.

Treatment of mice with serine protease inhibitors

Two days prior to infection with HIN1 virus, individual
C57BL/6] mice received intra-nasal treatment with
either AEBSF (125 pg/25 pl/mouse) or cocktail serine
protease inhibitor (125 pug AEBSF, 400 pug pAB/25
ul/mouse). The control groups each received 25 pl ster-
ile H,O. Two days prior to infection with H7N7 virus,
individual C57BL/6] mice were treated intra-nasally with
cocktail serine protease inhibitor (125 pg AEBSF, 400 pg
pAB/25 pl/mouse) and also a control group of mice was
included as described above. On the third day, 20 min
post treatment all mice including control ones were
infected with either of the two influenza strains. The
protease inhibitor treatment was continued for 2 days
p.i. Weight loss and survival of infected mice were mon-
itored over a period of 14 days p.i.

Analysis of virus replication

At day 6 p.i., lungs were excised from individually trea-
ted and control mice and homogenized for quantifying
viral NP by ELISA assay as described above, and relative
quantification of either the HA1 or HA7 transcripts by
real time RT-PCR using specific primers (Table 3) was
performed as described above.

Statistical analysis

The calculations of the mean values, standard deviation
and significance were performed using the nonpara-
metric Mann Whitney U-test provided in the GraphPad
InStat statistics program. All graphs including percent
body weights, viral titers, enzyme activities and inhibi-
tion were plotted using the graphics program GraphPad
Prism version 4.
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