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Defective interfering virus protects elderly mice
from influenza
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Abstract

Background: We have identified and characterised a defective-interfering (DI) influenza A virus particles containing
a highly deleted segment 1 RNA that has broad-spectrum antiviral activity. In young adult mice it exerts protection
against several different subtypes of influenza A virus (defined here as homologous or genetically compatible
protection) and against a paramyxovirus and an influenza B virus (heterologous or genetically unrelated
protection). Homologous protection is mediated by replication competition between the deleted and full-length
genomes, and heterologous protection occurs through stimulation of innate immunity, especially interferon type I.

Methods: A single dose of the protective DI virus was administered intranasally to elderly mice at -7, -1 and +1
days relative to intranasal challenge with influenza A virus.

Results: A single dose of the DI virus given 1 or 7 days protected elderly mice, reducing a severe, sometimes fatal
disease to a subclinical or mild infection. In contrast, all members of control groups treated with inactivated DI
virus before challenge became extremely ill and most died. Despite the subclinical/mild nature of their infection,
protected mice developed solid immunity to a second infectious challenge.

Conclusions: The defective interfering virus is effective in preventing severe influenza A in elderly mice and may
offer a new approach to protection of the human population.
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Background
As a result of improved standards in the home, work-
place, nutrition, and healthcare, the elderly are becom-
ing an ever increasing proportion of the world’s
population. Yet because of waning immune competence
and social factors, such as increased risk of infection in
the communities in which many of them live, the elderly
are vulnerable to a variety of infections, and particularly
those that cause respiratory disease [1-4]. Elderly people
exhibit a range of immune deficiencies that can be man-
ifested in many facets of the immune response including
T cell activation, CD4+ and/or CD8+ T cell activity,
cytotoxic T cell activity, IL-2 secretion, antibody pro-
duction and/or avidity, dendritic cells and type I inter-
feron production [2,5-15]
Many of the causative agents of the most important

respiratory diseases are viral, and amongst these influ-
enza viruses and human respiratory syncytial virus

(HRSV) are pre-eminent [16,17]. These agents are highly
contagious and cause outbreaks in domestic commu-
nities with a high level of morbidity and often mortality.
Since 1977 two subtypes of influenza A virus (H1N1
and H3N2) and an influenza B virus have been responsi-
ble for seasonal influenza. Pandemic 2009 H1N1 influ-
enza entered the mix in April 2009 and appears to have
replaced seasonal H1N1 virus. The surface haemaggluti-
nin and neuraminidase antigens of these viruses evolve
continuously so that immunity gained from infection
becomes redundant after approximately 4 years, leaving
individuals susceptible to further infection [18]. Thus
the seasonal vaccine has to be formulated to match as
far as possible the influenza A and B virus strains that
are forecast to be circulating in 6 months’ time. Efficacy
of the vaccine depends, inter alia, on immune compe-
tence which declines in old age, and on providing the
vaccination several weeks before the virus is encoun-
tered to allow the immune response time to mature
[19-21]. However, a recent meta-analysis has questioned* Correspondence: n.j.dimmock@warwick.ac.uk
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the efficacy of influenza vaccines in the over-65s [22].
The influenza antivirals Tamiflu and Relenza that are
now available are most effective when given before or as
soon as possible after infection, but solid evidence for
their usefulness and safety in the elderly has not been
found [23]. Resistance to Tamiflu, the more widely used
antiviral, is already widespread in seasonal H1N1 virus
[24-26].
In attempting to tackle respiratory disease we have

pioneered a novel approach that exploits a naturally
occurring influenza A antiviral that is made by the virus
itself. This is a specific defective-interfering (DI) virus
that confers protection from infection in vivo. Its active
principle is a highly deleted version of the viral genomic
RNA which acts to inhibit productive infection [27-31].
Influenza (Orthomyxoviridae) DI viruses were the first
to be recognised [32], and have been studied extensively
[30,33]. However analysis is difficult as natural DI pre-
parations contain many different DI sequences. In part
this is because its single-stranded, negative sense RNA
genome exists as 8 discrete segments and DI RNAs can
probably arise from any segment. While they are formed
mainly from the three largest virion RNAs, any one vir-
ion RNA can give rise to many different DI RNA
sequences through variably located central deletions
[34,35]. We solved this heterogeneity problem by produ-
cing cloned viruses that contain one major species of DI
RNA, and have characterized one DI virus, containing
the 244 DI RNA derived from virion segment 1 of A/
Puerto Rico/8/34 (PR8, H1N1), that is particularly active
in protecting mice from a variety of different influenza
A virus subtypes [36]. We call DI viruses that have
demonstrable in vivo activity ‘protecting viruses’ [37].
Our protecting 244 RNA is encapsidated into authentic
influenza virus particles, and these target the protecting
RNA to cells that can be potentially infected by influ-
enza virus.
Thus far we have established the efficacy of protecting

virus by infecting young adult mice (approximately 5
weeks-old) representing several different inbred strains.
Here we have investigated the antiviral efficacy of pro-
tecting virus in elderly (18-month-old) mice. Such ani-
mals have a range of age-related immune deficiencies
that parallel those found in people [6,10,12,38-44]. The
data show that elderly mice are not only protected
against a strong influenza type A challenge but also
develop immunity to reinfection with the same chal-
lenge virus.

Methods
Viruses
Protecting virus 244/PR8 originally arose spontaneously
after transfection of 293T cells with an infectious set of
A/PR/8/34 plasmids [36]. 244/PR8 was amplified

sequentially in MDCK cells and embryonated chicken’s
eggs, and purified by differential centrifugation through
sucrose. Preparations were standardized at 2 × 105

HAU/ml and stored in liquid nitrogen. DI RNA 244
comprises 395 nucleotides and is derived from segment
1 RNA of PR8 by a single central deletion. Segment 1
encodes PB2, a component of the virion polymerase.
244 DI RNA comprises nucleotides 1-244 and 2191-
2341 of the A/PR8 minus-sense segment 1 RNA, and
retains the original termini and sequences essential for
replication and encapsidation. Analysis by RT-PCR with
primers specific for genome segment 1 showed that the
244 RNA was the major defective RNA present. Helper
virus infectivity was eliminated by irradiating with UV
for 40 seconds at 253.7 nm. This had little effect on the
DI RNA because of its small UV-target size (395 nt)
compared with the infectious viral genome (13,600 nt).
Longer UV irradiation (8 minutes) destroys the protect-
ing RNA but does not affect viral HA or neuraminidase
(NA) activities [36], and provides a control for possible
immune system-stimulation by antigen or receptor-
blocking by the virus proteins [36]. The challenge virus,
influenza A/WSN/40, was grown in embryonated chick-
en’s eggs. The infectivity of clarified allantoic fluid was
titrated in MDCK cells as focus-forming units (FFU).
The dose required to cause disease in elderly mice was
4.3 × 103 FFU.

Mice
We used inbred C3H/He-mg mice of both sexes which
had once been part of a colony breeding programme.
These were approximately 18 months of age with a
mean weight of 45 g (range 36-52 g) at the time of
inoculation. Compared with young adults they had
increased body fat and thinner fur, were more poorly
groomed, and considerably reduced activity levels,
demonstrating the general demeanour of an elderly ani-
mal. Males were housed individually and most of the
females as pairs, all in opaque plastic containers with a
transparent lid. They thrived best in relatively small
cages (35 × 14 × 13 cm) and were provided with food
and water ad lib, paper bedding and cardboard tubes
for recreation. Mice were treated with just one dose of
protecting virus at the start of the study period. All
inoculations were given as an intranasal drop to both
nares under light ether anaesthesia. The dose of protect-
ing virus comprised 12 μg virus protein. This relatively
large dose [36] was chosen as insufficient elderly mice
were available to permit titration. Individual mice were
assessed clinically according to a scheme where each
mouse is assigned a value from 1 to 5 according to
increasing severity of disease, where 1 is well and 5 is
dead, as detailed previously, and by mean group weight,
on a daily basis [36]. All experiments were approved by
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the University of Warwick Ethics Committee and con-
form to the licence requirements of the UK Home
Office.

Results
Protection by protecting virus 1 day before infectious
challenge
Mice were inoculated intranasally with a single dose of
DI virus one day before intranasal infection with WSN.
Figure 1a shows the clinical picture: mice given protect-
ing virus alone or diluent (mock infected, data not
shown) remained completely well. Those given UV-inac-
tivated protecting virus before the infectious challenge
became ill on day 5, progressing to serious disease that

peaked on days 7-8. Most (67% or 4/6) were dead by
day 8. In contrast, mice treated with active 244/PR8
before infection were all protected. Sixty percent (3/5)
were protected completely, while 2/5 developed a mild
illness, peaking on day 9 and from which they recovered
completely. Comparison between the groups treated
with active or inactive DI virus showed a highly signifi-
cant statistical difference in the severity of disease (p =
0.0043) with a one tailed Mann-Whitney U test. Figure
1b shows that body weight in both 244/PR8 alone con-
trols oscillated around the zero mark, as did mock
infected controls (not shown). This contrasts with
young adults where there is a steady weight gain. Mice
given inactivated 244/PR8 before challenge lost weight

Figure 1 A single dose of influenza A virus 244/PR8 given 1 day before infection protects elderly (18-month-old) mice from influenza,
and these mice are then immune to further challenge. Mice were anaesthetized and inoculated intranasally on day -1 with 244/PR8 or
inactivated 244/PR8 (solid arrow), and were infected on day 0 (open arrow) with influenza A/WSN (panels a, b). Mice that had survived WSN
challenge through treatment with protecting virus in a, b were challenged with a second high dose of WSN 3 weeks after the first infection
(panels c, d) to establish their immune status. These mice were inoculated intranasally (open arrow) with a 500-fold higher dose of WSN than
used in (a, b). (a, c) mean clinical disease assessment; (b, d) percentage weight change. ■, 12 μg 244/PR8 followed by WSN (n = 5); ▲, 12 μg
inactivated 244/PR8 followed by WSN (n = 6); ●, 12 μg 244/PR8 followed by diluent (n = 2); ◆, naïve 5-week-old mice given only the high dose
WSN challenge (n = 5). Mice were assessed clinically and weighed daily. Weights are not presented after 2 or more mice died. The percentage
of mice surviving at the end of the study is in parenthesis. Data are representative of two separate experiments.
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at least 3 days ahead of clinical disease. Mice treated
with 244/PR8 before infection showed only a small and
transient weight loss, peaking at a maximum of 7%
weight loss on days 9-10. They then regained the weight
they had lost.
Having successfully protected elderly mice from acute

influenza, we then determined their immune status.
Animals that had received the active protecting virus
and had survived the initial challenge infection were
given a second WSN challenge at 3 weeks after the first
infection to determine their immune status. This WSN
dose (2.1 × 106 FFU/mouse) was 500-fold greater than
the first dose and is high enough to overcome protec-
tion afforded by the initial 244/PR8 treatment. Thus any
resulting protection is probably due to acquired immu-
nity. Figure 1 (panels c and d) show that mice protected
from the initial WSN challenge by administration of
244/PR8 (from Figure 1 (panels a and b)) showed no
sign of clinical disease on rechallenge, whereas mice
from the same experiment given 244/PR8 alone as a
first treatment were all dead 6 days after challenge
(Figure 1c). A virus control of naïve 5-week-old mice
was also included to verify the potency of the challenge
virus and these all died. Clearly 244/PR8 on its own did
not stimulate a protective immunity. Since 244/PR8 can-
not protect against this high dose of WSN, we conclude
that protected mice had developed an adaptive immune
response. Weight change data (Figure 1d) corroborated
the clinical data with the 244/PR8-protected mice from
Figure 1 (panels a and b) showing no significant weight
change.

Protection by protecting virus given 7 days before, and 1
day after, infectious challenge
Mice were given a single intranasal dose of 244/PR8 at 7
days and 1 day prior to infection with WSN, and at 1
day after infection. Controls received the same dose of
inactivated 244/PR8. Figure 2 (panels a and b) show that
groups given inactivated 244/PR8 and WSN in the var-
ious timed combinations or WSN alone all became ser-
iously ill, lost a major amount of weight, and suffered
40% death. In contrast, 80% (4/5) mice given 244/PR8 at
7 days before infection were completely protected with
no significant weight loss. The non-protected mouse
showed no delay in the onset of illness and no ameliora-
tion of clinical signs, suggesting that it may not have
received a full dose of 244/PR8. The positive control
group given 244/PR8 1 day before WSN were solidly
protected (as in Figure 1 (panels a and b)) with only
delayed slight, short lived clinical signs on days 7 and 8
in 2 of 5 mice, consistent with the data in Figure 1
panels a and b (data not shown). Comparison between
the groups treated with active or inactive DI virus
showed a highly significant statistical difference in the

severity of disease (p = 0.0278) with a one tailed Mann-
Whitney U test. 244/PR8 given one day after infection
did not protect (p = 0.3452 comparing active and inac-
tive DI treated mice and p = 0.4206 comparing active
DI treated mice with infected untreated mice). Surviving
mice were challenged with the very high dose of WSN
as above to determine their immune status. Figure 2
(panels c and d) show that mice that survived the first
infection through treatment with 244/PR8 at 1 day
before infection were all solidly protected, as were most
(75% or 3/4) of the group that originally received 244/
PR8 at 7 days before infection. However, in such elderly
mice it is expected that some mortality is associated
with the age of the animals rather than infection. Age-
matched control mice lost weight, became ill and died.

Discussion and conclusions
We have previously shown that protecting virus pre-
vents influenza in young adult mice. Protecting virus
has two different modes of action. The observed cross-
influenza A subtype antiviral activity of DI virus 244/
PR8, coupled with its replication dependence on infec-
tious virus and the common genetic system of all influ-
enza A viruses, suggest that it acts at the level of
genome competition [36]. Thus, it is likely that protect-
ing virus can act against all influenza A viruses regard-
less of antigenicity, and indeed protecting virus prevents
acute influenza A disease in SCID mice that have no
adaptive immune response (submitted for publication).
In addition, knock-out mice that have no functioning
interferon type I response are also protected showing
that this response is not essential for protection against
challenge with homologous influenza A virus [45]. How-
ever, protecting virus stimulates interferon type I, and
we believe this is responsible for heterologous protection
in vivo from infection with pneumonia virus of mice
(PVM), the acknowledged model for HRSV infection,
and also influenza B virus. The importance of interferon
type I in combatting these infections is shown by exten-
sive reduction in protection against PVM and influenza
B in mice lacking the interferon type I receptor [45]. In
view of the potential role of the immune system in the
mode of action of the protecting virus it is important to
assess the efficacy of protecting virus in older mice
which have a range of immune deficiencies reflecting
those seen in the high risk elderly human population.
The data above demonstrate that a single dose of pro-

phylactic 244/PR8 given up to 7 days prior to infection
was highly effective in protecting elderly mice from a
severe influenza challenge, and that most of the surviving
mice were immune to reinfection. Protection at both levels
operates despite the multiplicity of age-related immune
deficiencies found in such elderly mice (see above). How-
ever, a single dose post-infection treatment was less
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effective than in young adult mice [36] suggesting that
elderly mice are less able to respond to this type of ther-
apy. We have not yet explored the nature of the resistance
to reinfection in elderly mice, but parallel experiments
show that treatment of young adult mice with protecting
virus prevents the presentation of any sign of disease, but
permits a reduced level of productive influenza lung infec-
tion. The residual level of virus replication is sufficient to
elicit an immune response which can protect against sub-
sequent challenge with an antigenically related virus [36].
It seems likely therefore that there is also enough infection
in elderly mice treated with protecting virus to stimulate a
virus-specific B cell- and T cell-mediated immunity. In
conclusion, both elderly and young adult mice are capable
of benefitting from treatment with protecting virus.

Parallels with the elderly immunodeficient people suggest
that protecting virus might be a useful additional weapon
in the war against influenza.
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Figure 2 244/PR8 given 7 days before infection protects elderly mice from influenza, and these mice are then immune to further
challenge. The experiment was set up as in Figure 1. Mice were treated intranasally with 244/PR8 at 7 days and 1 day before infection, and at
1 day after infection (solid arrows, panels a, b). Mice were infected with WSN on day 0 (open arrows). The immune status of survivors is
investigated in panels c and d with a high dose WSN challenge. (a, c) show the mean clinical disease assessment, and (b, d) show the
percentage weight change. Other information as in Figure 1. In panels a, b: ■, 12 μg 244/PR8 given 7 days before WSN (n = 5); □, 12 μg
inactivated 244/PR8 given 7 days before WSN (n = 5); ◆, 12 μg 244/PR8 given 1 day after WSN (n = 5); ◊, 12 μg inactivated 244/PR8 given 1 day
after WSN (n = 5); ▲, WSN only (n = 5); ●, 244/PR8 only (n = 2). In panels c, d: ■, 12 μg 244/PR8 given 7 days before WSN from (a, b) and
rechallenged with WSN (n = 4); —, 12 μg 244/PR8 given 1 day before WSN from (a, b) (not shown) and rechallenged with WSN (n = 5); ●, saline
inoculated controls only from (a, b) (not shown) challenged with WSN (n = 2); ○, non-infected controls (n = 2). The dagger in panels (b) and (c)
indicates the death of a single mouse.
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