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Abstract

to environmental stress, and pathogen invasion.

miRNA were also common to ACMV infection.

resistance.

Background: Begomoviruses are single-stranded DNA viruses that cause economically important diseases of many
crops throughout the world and induce symptoms in plants, including enations, leaf curling and stunting, that
resemble developmental abnormalities. MicroRNAs (miRNAs) are small endogenous RNAs that are involved in a
variety of activities, including plant development, signal transduction and protein degradation, as well as response

Results: The present study was aimed at understanding the deregulation of miRNAs upon begomovirus infection.
Four distinct begomoviruses African cassava mosaic virus (ACMV), Cabbage leaf curl virus (CoLCuV), Tomato yellow
leaf curl virus (TYLCV) and Cotton leaf curl Multan virus/Cotton leaf curl betasatellite (CLCuV/CLCuMB), were used in
this study. Ten developmental miRNA were studied. N. benthamiana plants were inoculated with begomoviruses
and their miRNA profiles were analysed by northern blotting using specific miRNA probes. The levels of most
developmental miRNA were increased in N. benthamiana by TYLCV, CLCuMV/CLCuMB and CbLCuV infection with a
common pattern despite their diverse genomic components. However, the increased levels of individual miRNAs
differed for distinct begomoviruses, reflecting differences in severity of symptom phenotypes. Some of these

Conclusions: Our results have shown a common pattern of miRNAs accumulation upon begomovirus infection. It
was found that begomoviruses generally increase the accumulation of miRNA and thus result in the decreased

translation of genes involved in the development of plants. Identification of common miRNAs that are deregulated
upon begomovirus infection may provide novel targets for control strategies aimed at developing broad-spectrum

Background

MicroRNAs (miRNAs) are endogenous, approx. 22 nt
RNAs that can play important regulatory roles in ani-
mals and plants by targeting mRNA for cleavage or
translational repression [1]. miRNA are the second most
abundant class of RNA among short RNAs [2] that play
a very important role in multicellular organisms and
influence the output of many protein-coding genes. The
first miRNAs were discovered during a study of nema-
tode larval development. Two approximately 22 nt
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RNAs (the lin-4 and let-7 RNAs) control developmental
timing by binding to their respective mRNA targets pre-
venting their translation [3,4].

In mid-2002, four groups reported RNAs with miRNA
characteristics among the tiny RNAs present in Arabi-
dopsis [5-8]. An important difference between plant
and animal miRNAs is that the regulatory targets of
plant miRNAs can be predicted with a fair degree of
confidence, simply by identifying mRNAs with near per-
fect complementarity [9].

The discovery of miRNAs in plants is still an ongoing
process. Much focus has been directed toward miRNA
identification in Arabidopsis and rice, but many species
which are important economically or evolutionarily have
yet to be examined. Initial cloning of small RNAs from
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Arabidopsis and rice has revealed that plants are extre-
mely rich in endogenous small RNAs and that only a
small portion of cloned small RNAs correspond to miR-
NAs [6,10]. The majority of endogenous small RNA spe-
cies represent small interfering RNAs (siRNAs). The
difference between miRNAs and siRNAs lies in their
biogenesis. miRNAs originate from the processing of
single-stranded precursors that form a hairpin structure,
whereas siRNAs are generated from long double-
stranded RNAs (dsRNAs) or single-stranded RNAs that
form hairpin structures [6].

Plant miRNAs have a high degree of sequence com-
plementarity to their target mRNAs and direct the sli-
cing of the target mRNAs in the middle of the
complementary regions [10,11]. This has been demon-
strated by the detection of 3’ cleavage products that
have 5’ ends that start in the middle of the complemen-
tary regions. This is probably mediated by AGO1
[12,13]. However, plant miRNAs also regulate gene
expression by translational repression [14-17].

Geminiviruses are an important group of plant viruses
with small circular, single-stranded (ss) DNA genomes
that replicate in the nucleus of infected cells [18].
Viruses of the family Geminiviridae are divided into
four genera based on insect vectors and genome organi-
zation [19]. Whitefly-transmitted geminiviruses are clas-
sified in the genus Begomovirus and constitute the
largest genus that causes economically-important dis-
eases throughout the warmer parts of the world [19-21].
Begomoviruses originating from the New World are
invariably bipartite, with genomes consisting of two
ssDNA components, known as DNA A and DNA B, of
approximately equal size (~2.8 kb). Although a few
bipartite begomoviruses are known in the Old World,
the vast majority of begomoviruses are monopartite
with a genome that is a homolog of the DNA A compo-
nent of the bipartite viruses, and most of these interact
with ssDNA satellites [22]. Some begomoviruses, such
as Tomato yellow leaf curl virus (TYLCV), are mono-
partite while a DNA satellite resembling betasatellite
was found associated with Tomato leaf curl virus
(ToLCV) [23].

Plant virus infections can result in disease symptoms
that may include chlorosis and/or necrosis, curling, stunt-
ing and altered plant stature and morphology, presumably
caused by interference of the infection with developmental
processes [24]. In recent years, it has been proven experi-
mentally that short RNA (sRNA), and particularly miR-
NAs, play important roles in plant development and are
implicated in host-pathogen interactions [25,26].

Recent studies in plants and animals suggest that
viruses can suppress gene expression and use endogen-
ous RNA-silencing pathways to regulate host gene
expression, presumably to benefit virus replication
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[26-29]. However, the underlying mechanisms that con-
trol these activities remain unclear. Epstein-Barr virus
and other DNA viruses encode miRNAs that directly
down- or up-regulate host and/or viral mRNAs [28].

Several studies have demonstrated that viral suppres-
sors of RNA silencing can interfere with miRNA-
mediated regulation of host genes [30,31]. These studies
showed that viral proteins interfere with miRNA path-
ways, although it is unclear whether it is part of the
virus replication strategy or a side effect due to the
overlap of the siRNA and miRNA pathways.

Transgenic expression in plants of the AC4 protein
from ACMYV, a suppressor of post-transcriptional gene
silencing (PTGS) [32], was correlated with decreased
accumulation of host miRNAs and increased develop-
ment abnormalities in Arabidopsis thaliana [33].
Down- regulation of miRNA correlated with an up-reg-
ulation of target mRNA level. Another study showed
that infection of N. tabacum by plant RNA viruses
representative of the Tobamoviridae, Potyviridae, and
Potexviridae families altered accumulation of certain
miRNAs [34].

In the present study the accumulation of ten miRNAs
were studied as a result of the infection of four viruses
belonging to different types of begomovirus. African cas-
sava mosaic virus (ACMYV; representing a bipartite virus
from the Old World), Cabbage leaf curl virus (CbLCuV:
representing a bipartite virus from New World), Tomato
yellow leaf curl virus (TYLCV; representing a monopar-
tite virus) and Cotton leaf curl Multan virus/cotton leaf
curl Multan betasatellite (CLCuMV/CLCuMB: repre-
senting a betasatellite requiring monopartite virus) were
used in this study. The accumulation of miRNA as a
result of the infection of each virus was then compared
to assess the possible role of specific miRNAs in virus
pathogenicity.

Results

Virus infection

Potato virus X (PVX) infection of N. benthamiana
resulted in mild symptoms including mild vein yellow-
ing, very mild vein thickening and a faint mosaic that
appeared approx. 10 dpi. Additionally, at approx. 15 dpi,
N. benthamiana plants infected with PVX ceased to
show symptoms, indicative of recovery (Figure 1 panel
B). Infection of CLCuMV/CLCuMB resulted in down-
ward leaf curling, vein yellowing, stunting, vein swelling,
and the formation of small enations on the veins on the
undersides of leaves (Figure 1 panels C and D).
N. benthamiana plants infected with CbLCuV showed
mild symptoms after 16 dpi that include mild leaf cur-
ling and deformed leaves at the margins (Figure 1 panel
G). TYLCV infection in N. benthamiana resulted in a
stunted growth, severe downward leaf curling and vein
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approx. 21 dpi.

Figure 1 Photographs of a healthy N. benthamiana plant (panel A), and N. benthamiana plants infected with PVX (panel B),
CLCuMV/CLCuMB (panels C and D), ACMV (panels E and F) CbLCuV (panel G) and TYLCV (panels H and I). Photographs were taken at

yellowing (Figure 1 panels H and I). The presence of
each virus was confirmed by PCR using specific primers
designed to the replication-associated gene of each virus
(data not shown).

Effects of virus infection on miR156 levels

Upon infection of N. benthamiana by ACMV and CbLCuV
the level of miR156 decreases as compared to N. benthami-
ana while the infection of TYLCV and CLCuMV resulted
in an increased accumulation of miR156 (Figure 2). PVX
infection, which was used in this study as a control and a
representative RNA virus, resulted in an increased accumu-
lation of miR156 when compared with un-inoculated
N. benthamiana plant (Figure 2).

- miR159

Infections of all begomoviruses under study resulted in
an increase in the accumulation of miR159 when com-
pared with healthy N. benthamiana plants. The highest
increase was observed in case of the infection of

CbLCuV (Figure 2). PVX infection also resulted in ele-
vated level of miR159 as compared to healthy control
(Figure 2).

- miR160

Infections of CbLCuV, TYLCV and CLCuMYV resulted
in a slight increase while ACMYV resulted in decrease in
the levels of miR160 when compared with healthy con-
trol plants (Figure 2). PVX infection also resulted in a
slight decrease in the level of miR160 (Figure 2).
-miR164

N. benthamiana plants infected with ACMV, CLCuMV,
CbLCuV and TYLCV showed an increase in the level of
miR164 when compared with un-inoculated healthy
plant. A maximum increase was observed in the infection
of CbLCuV (Figure 2). Infection of PVX also resulted in
an increase accumulation of miR164 (Figure 2).

-miR165 and miR166

Infection of N. benthamiana plants with ACMYV,
CLCuMYV, CbLCuV and TYLCV resulted in an increase
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Figure 2 Effects of virus infection on the levels of selected miRNAs. Northern blot analysis to detect the accumulation of miR156, miR159,
miR160, miR164, miR165, miR166, miR167, miR168, miR169 and miR170 after infection with begomoviruses and PVX. Shown below each blot is
the rRNA band of the ethidium bromide stained agarose gel that was used to normalize the data for loading. The bar graphs show the average
(with standard error) levels calculated for each miRNA levels for N. benthamiana plants infected with ACMV, CLCuMV/CLCuMB, CbLCuV, TYLCV
and PVX. The relative levels of miRNA for virus infected plants were calculated by taking the levels in healthy N. benthamiana as 1.0. All samples
were taken at 21 dpi.
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in the accumulation of miR165/166 when compared with
the healthy control plants. The highest increase was
observed in plants infected with CLCuMV (Figure 2).
Infection of PVX also resulted in an increase in the
accumulation of miR165/166 when compared with
healthy N. benthamiana plants (Figure 2). However, this
increase in accumulation of miR165/166 was less than
for the begomovirus infection.

-miRNA 167

Infection with ACMV, CLCuMV, CbLCuV and TYLCV
showed an increase in the accumulation of miR167
when compared with healthy control. Plants inoculated
with PVX showed an increase in the level of miR167
though the increase was less than that caused by
ACMYV, CLCuMV and CbLCuV infections (Figure 2).

- miR168

Infection of N. benthamiana plants ACMV, CbLCuV,
CLCuMV and TYLCV showed an increase in level of
miR168 when compared with healthy plants. Infection
of PVX also resulted in increased accumulation of
miR167 which was comparable with ACMV and
CLCuMV infections. A significant increase was observed
for CbLCuV and TYLCYV infections (Figure 2).

-miR 169 and miR170

Infection of ACMV does not alter the level of miR169
significantly in N. benthamiana plants however, a slight
decrease was observed when compared with healthy
control plants (Figure 2). A slight increase in miR169
was observed in case of the infection of CLCuMYV,
CbLCuV and TYLCV (Figure 2). PVX infection in
N. benthamiana also resulted in an increase in level of
miR169 (Figure 2). A heat diagram summarizing the
miRNA profiles in response to infection with the
selected begomoviruses is given in Figure 3.

Discussion

Recent studies of both animal and plant viruses have
shown that viruses alter the RNA silencing pathway to
regulate host gene expression [35,36]. One of the limita-
tions at present is that the mechanisms controlling such
activities are unclear. However, a generally accepted
concept is that RNA silencing is a natural defense
response of plants against invading viruses. To counter
RNA silencing viruses encode certain proteins that can
block the RNAi pathway and are referred to as suppres-
sor of gene silencing [36,37]. It has been demonstrated
that viral suppressors of RNA silencing can interact/
interfere with the miRNA pathway [30,31], although it
remains unclear whether these interactions are the part
of the survival strategy of viruses or just side effects
(collateral damage) of their infection cycle. In the work
presented here the interaction begomoviruses ACMV,
CLCuMYV and its associated CLCuMB, TYLCV and
CbLCuV with selected host miRNAs was studied. With
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Figure 3 A heat diagram summarizing the levels of miRNAs
detected in N. benthamiana upon virus infection. The signal of
each band was quantified using imaj J and normalized with
ethidium bromide stained RNA. The levels of miRNAs in

N. benthamiana were taken as 100 and rest of the miRNA levels
were calculated relative to that and color scheme is given which is
also shown.
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the exception of CbLCuV, these viruses are well charac-
terized as far as suppressors of gene silencing are con-
cerned. TrAP and AC4 encoded by ACMV [32], the V2
protein encoded by TYLCV [38], the TrAP, C4 and V2
proteins of CLCuMV and BC1 encoded CLCuMB have
been shown to have suppressor of gene silencing activity
(Amin et al., manuscript in preparation).

miR156 has been shown to act on SQUAMOSA PRO-
MOTER BINDING PROTEIN (SPL), which is believed
to be a transcription factor [39,40]. The accumulation of
miR156 upon infection by selected begomovirus showed
that these viruses can be divided into two groups. Infec-
tions by the bipartite viruses (ACMV and CbLCuV) lead
to a decrease in miR156 while infections by the mono-
partite viruses (CLCuMV and TYLCV) lead to an
increase. It has been shown that SPL3 is a target of
miR156 and constitutive expression of miR156 results in
a prolonged juvenile vegetative phase and delayed flow-
ering [40].

miR159 was identified independently by two groups
[8,41] and is thought to target mRNAs coding for MYB
proteins which are known to bind to the promoter of
the floral meristem identity gene LEAFY (LFY; [9]). The
LFY genes play an important role during the transition
from the vegetative to the reproductive phase, as it is
both necessary and sufficient for the initiation of indivi-
dual flowers [42]. LFY is extensively expressed during
the vegetative phase of plant growth [43]. Thus, the
reduction in the expression of the LFY gene plays an
important role in the transition from the vegetative
phase to the sexual phase. A uniform pattern of up-reg-
ulation was observed for the accumulation of miR159 as
a result of the infection of begomoviruses. These find-
ings are in line with the recent findings where it was
shown that upon infection of Tomato leaf curl New
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Delhi virus (ToLCNDYV) the level of miR159 was
increased. In the same studies it was also shown that
the symptom development may also be due to the upre-
gulation of this miRNA [44].

TYLCV REn interacts with at least two host-encoded
proteins, PCNA and the RBR that play an important
role in altering the cell cycle [45]. A major function of
RBR proteins is to control the expression of many genes
required for cell cycle progression, by regulating the
activity of E2F transcription factors [46]. The study here
has shown a further way that REn may influence the
cell-cycle of the host, by up-regulating miR159. CbLCuV
has been shown to alter expression of cell cycle-asso-
ciated genes, preferentially activating genes expressed
during the S and G2 phases as well as inhibiting genes
active in G1 and M phases. A limited set of core cell
cycle genes associated with cell cycle reentry, late G1, S,
and early G2 had increased RNA levels, while core cell
cycle genes linked to early G1 and late G2 had reduced
transcripts [47].

miR160 is encoded on chromosome 2 in Arabidopsis
[8] and targets mRNAs coding for auxin response factor
(ARF) proteins [9,31]. ARFs are a major class of tran-
scription activators and repressors that facilitate the
auxin signal by binding to specific cis-elements in
the upstream regions of auxin-inducible genes [48]. The
study presented here has shown a basic difference in the
infection patterns of OW bipartite and monopartite
viruses. ACMYV infection resulted in decreased accumula-
tion of miR159, whereas for the OW monopartite virus
infection resulted in the increased accumulation of
miR160. The major role in these interaction could be
of BC1 in case CLCuMV/CLCuMB and TrAP/V2 of
TYLCV because the phenotypes produced by V2 of
TYLCV and BC1, when expressed from the PVX vector
in N. benthamiana, produced virus-like symptoms
[49,50]. These symptoms suggest that the auxin response
has been disturbed. The finding that CLCuMV/CLCuMB,
TYLCV and CbLCuV infections of N. benthamiana
resulted in an increase in the levels of miR160 also sug-
gest a general behavior of begomoviruses infection in
reducing the response to auxin in infected plants,
although this was not the case for ACMV. This sugges-
tion will need further experimental confirmation. Earlier
studies with the Curtovirus BCTV showed that infection
reduces auxin levels, but the authors were unable to
show a correlation between reduced auxin and visible
symptoms [51].

The miRNA miR164 negatively regulates several genes
that encode NAC-like transcription factors [7,31,52,53].
These genes include CUP-SHAPED COTYLEDON 1
(CUC1) and CUC2, which are expressed in, and are
necessary for, the formation of boundaries between mer-
istems and emerging organ primordia [54-56]. Failure to
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establish organ boundaries leads to severe developmen-
tal consequences [57]. Infections of all four begomo-
viruses resulted in an increased accumulation of
miR164, suggesting that the viruses down regulate the
NAC-like transcription factors. This effect upon miR164
may be one of the contributing factors to the induction
of disease symptoms for these viruses. We have
observed that with the exception of CLCuMYV, there is a
significant increase in the levels of miR164 upon PVX-
mediated expression of the TrAP genes of all viruses
under study (Amin et al, unpublished data). Therefore,
TrAP might be the gene responsible for this interaction
of viruses with miR164. It has been shown that the
TrAPs of TOLCNDV, Papaya leaf curl virus (PaLCuV)
and CLCuKoV can counter a HR induced by NSP
(ToLCNDV) or V2 (PaLCuV and CLCuKoV [58,59].
Virus up-regulation of miR164 may provide a possible
explanation of this phenomenon. A recent study has
shown that oxygen responsive elements 1 (ORE1), which
is a NAC-like transcription factor, positively regulates
aging-induced cell death in Arabidopsis thaliana leaves.
OREL expression is up-regulated concurrently with leaf
aging by ethylene insensitive 2 (EIN2) but is negatively
regulated by miR164. miR164 expression gradually
decreases with aging through negative regulation by
EIN2, which leads to the up-regulation of ORE1 expres-
sion [60] and thus to the cell death. Up-regulation of
miR164 thus will counter the cell death, and thus possi-
bly also HR associated cell death due to NSP and V2.

A uniform pattern of up-regulation was observed with
relation to the accumulation of miRNA165/166. miR165
is found on chromosome 1 in Arabidopsis and regulates
HD-ZIPIII transcription factor genes, PHABULOSA
(PHB) and PHAVOLUTA (PHV; [9]). It has been shown
in Arabidopsis that the establishment of leaf polarity
requires the generation and perception of positional
information along the radial axis of the plant [61]. The
results presented here also showed that in general, bego-
movirus infection resulted in increased accumulation of
miR165/166. The genes which upon inoculation pro-
duced virus like symptoms may be involved in this
interaction. It has been earlier reports that transgenic
Arabidopsis expressing the TYLCCNB BC1 exhibited
virus-like symptoms. These morphological changes were
paralleled by a reduction in miR165/166 levels and an
increase in PHB and PHV transcript levels. Two factors,
ASYMMETRIC LEAVES 1 (AS1) and ASYMMETRIC
LEAVES 2 (AS2), are known to regulate leaf develop-
ment as an AS1/AS2 complex [62]. BC1 is able to par-
tially complement as2 mutation. We also observed
significant decrease in the levels of miR165/166 upon
PVX-mediated expression of CLCuMB BC1 (Amin et
al., unpublished data), CLCuMV/CLCuMB infection led
to an increased accumulation.
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The results show that begomovirus infection generally
increases the accumulation of miR167. It has been
shown that miR167 targets ARF 6 and ARF8 [9,63].
ARF proteins regulate embryogenesis, root development
and floral organ formation [63-67]. ARF6 and ARF8 reg-
ulate flower maturation [68]. Infection of plants with
some begomoviruses, as well as constitutive expression
of some of their genes in plants results in severe devel-
opmental defects. For example, transgenic expression of
ACMV AC4 in Arabidopsis resulted in stunted plants
with severe developmental defects, such as narrow
rosette leaves and lack of development of reproductive
tissue [33]. Similarly the transgenic expression of BC1 in
N. benthamiana as well as expression on fC1 from
PVX resulted in severely twisted plants [49,69,70]. Thus,
the results presented here suggest a possible mechanism
for the induction of these virus-like symptoms.

With the exception of CbLCuV, infection of N.
benthamiana plants with all viruses under study resulted
in a slightly increased accumulation in the levels of both
miR169 and miR170 which suggests that begomovirus
infection does not significantly affect the levels of these
miRNAs. It has been shown that miR169 and related
miRNAs are strongly dependent on P or N status in
Arabidopsis and rapeseed (Brassica napus) phloem sap,
flagging them as candidate systemic signaling molecules
[71].

The study presented here has shown that, in general,
begomovirus infection (assuming that the four viruses
originating from distinct classes of begomoviruses [NW,
OW, bipartite, monopartite and betasatellite requiring]
are representative) increases the accumulation of miR-
NAs. This finding is in agreement with an earlier study
of RNA viruses from three distinct families (Tobamoviri-
dae, Potyviridae, and Potexviridae) that examined a
similar range of miRNAs [34]. However, it is difficult to
reconcile the presence for all these viruses (both the
begomoviruses and the RNA viruses) of proteins that
apparently bind (and presumably inactivate/down-regu-
late) miRNAs with a system that ultimately leads to
miRNA up-regulation.

Methods

Virus Infections

Agroinoculable infectious clones of begomovirus isolates
CLCuMV-His[PK:Mul] (AJ496461), ACMV-[CM:DO3:98]
(DNA-A, AY211885; DNA-B, AF112353), CbLCuV-
[US:Flo:96] (DNA-A, U65529; DNA-B, U65530) and
TYLCV-MIA[ES:72:97] (AF071228) were used to infect
N. benthamiana plants. Three leaves per plants were
inoculated. Samples were collected at 21 dpi. The whole
experiment was done on two independent biological
replicates.
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miRNA Analysis

Total RNA was isolated from leaves using TRIzol
reagent (Invitrogen, Carlsbad, CA), 1/5 volume of 5x
RNA loading dye (95% deionized formamide, 0.025%
bromophenol blue, 0.025%Xylene cyanol FF, 5 mM
EDTA (pHS), 0.025% formaldehyde; 20 pl of 10 mg/ml
ethidium bromide was added per 2 ml of dye) was
added to 30 pg of total RNA. After heating that at 65°C
for 5 min, sample was placed on ice for 2 min before
loading it to TBE gel (15%TBE; 7 M urea). Gel was run
in 1x TBE buffer at 150-180 volts for 2 to 2.5 hours.
After removing gel from the cassette it was photo-
graphed under UV trans-illumination and details of the
samples were documented.

RNA was transferred to Hybond N+ (Amersham) by a
semi-dry blotting system (Bio-Rad) at 10-12 volts for
45-60 min. The membrane was air dried, UV cross-
linked and stored at 4°C between two sheets of wet
Whatman filter paper.

Oligonucleotide primers complementary to Arabidopsis
miRNAs (miR156, miR159, miR160, miR164, miR165,
miR166, miR167, miR168, miR169 and miR170) were
end-labeled using a DIG olig-labeling kit according to
manufacturer instructions (Roche, USA). The sequences
of oligo-nucleotides used for end labeling are listed in
Table 1. Blot was hybridized with probe at 42°C for
12-16 hours. Washing was done with 2XSSC, 1% SDS
and 1x SSC, 0.1%SDS for 30 min each. The blot was
developed by using the CDP-Star method according to
the manufacturer instruction (Roche) and image was
taken on X-ray film (hyper film, Amersham, UK).

The intensity of bands was quantified by using soft-
ware Image]. Data from these analyses were used to
normalize the intensity of each band, based on rRNA
loaded in each well. For virus infection the values for
the miRNA species in non-infected N. benthamiana
plants were set at 1 and other data calculated relative to
this value. The data shown in Figure 2 is the average of

Table 1 Name and sequence of oligonucletides used for
end labeling

miRNA Sequence

miR156 5-TGACAGAAGAGAGTGAGCAC-3'
miR159 5'-TTTGGATTGAAGGGAGCTCTA-3"
miR160 5'-TGCCTGGCTCCCTGTATGCCA-3'
miR164 5'-TGGAGAAGCAGGGCACGTGCA-3’
miR165 5'-TCGGACCAGGCTTCATCCCCC-3'
miR166 5'-TCGGACCAGGCTTCATTCCCC-3’
miR167 5'-TGAAGCTGCCAGCATGATCTA-3'
miR168 5'-TCGCTTGGTGCAGGTCGGGAA-3’
miR169 5'-CAGCCAAGGATGACTTGCCGA-3’
miR170 5'-TGATTGAGCCGTGTCAATATC-3"
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two independent biological replicates along with stan-
dard deviation (SD).

Experimental design

A group of 15 N. benthamiana plants were agro-infil-
trated with infectious clones of ACMV, CLCuMV/
CLCuMB, CbLCuV and TYLCV in two independent
experiments. Potato virus X (PVX) was used as refer-
ence for virus infection with an RNA genome. All plants
were kept in the same green house for duration of each
experiment.

Acknowledgements

RWB is supported by the Higher Education Commission (HEC), Government
of Pakistan, under the ‘Foreign Faculty Hiring Program’. Funding for the
work came from a grant under the Pak-US Linkage Scheme. The authors are
grateful for the support of NIBGE and ILTAB (DDPSC) in conducting this
study.

Author details

'Agricultural Biotechnology Division, National Institute for Biotechnology and
Genetic Engineering (NIBGE), P O Box 577, Jhang Road, Faisalabad, Pakistan,

ILTAB, Donald. “Donald Danforth Plant Science Center, St. Louis, MO 63132,

USA.

Authors’ contributions

IA, BP performed the experiments. IA, RWB, SM and CMF conceived the
study and wrote the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 4 January 2011 Accepted: 29 March 2011
Published: 29 March 2011

References

1. Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function.
Cell 2004, 116:281-297.

2. Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell 2009,
136:669-687.

3. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell 1993,
75:843-854.

4. Pasquinelli AE, Ruvkun G: Control and developmental timing by
microRNAs and their targets. Annu Rev Cell Dev Biol 2002, 18:495-513.

5. Llave C, Kasschau KD, Rector MA, Carrington JC: Endogenous and
silencing-associated small RNAs in plants. Plant Cell 2002, 14:1605-1619.

6.  Mette MF, Kanno T, Aufsatz W, Jakowitsch J, van der Winden J, Matzke MA,
Matzke AJM: Endogenous viral sequences and their potential
contribution to heritable virus resistance in plants. EMBO J 2002,
21:461-469.

7. Park W, Li J, Song R, Messing J, Chen X: CARPEL FACTORY, a Dicer
homolog, and HENT, a novel protein, act in microRNA metabolism in
Arabidopsis thaliana. Curr Biol 2002, 12:1484-1495.

8. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in
plants. Genes Dev 2002, 16:1616-1626.

9. Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel DP: Prediction of
plant microRNA targets. Cell 2002, 110:513-520.

10.  Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like
mRNA targets directed by a class of Arabidopsis miRNA. Science 2002,
297:2053-2056.

11. Tang G, Reinhart BJ, Bartel DP, Zamore PD: A biochemical framework for
RNA silencing in plants. Genes Dev 2003, 17:49-63.

12. Baumberger N, Baulcombe DC: Arabidopsis ARGONAUTET is an RNA slicer
that selectively recruits microRNAs and short interfering RNAs. Proc Natl
Acad Sci USA 2005, 102:11928-11933.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.
36.

37.

38.

39.

Page 8 of 9

Qi Y, Denli AM, Hannon GJ: Biochemical specialization within Arabidopsis
RNA silencing pathways. Mol Cell 2005, 19:421-428.

Aukerman MJ, Sakai H: Regulation of flowering time and floral organ
identity by a microRNA and its APETALA2-like target genes. Plant Cell
2003, 15:2730-2741.

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D:
Specific effects of microRNAs on the plant transcriptome. Dev Cell 2005,
8:517-527.

Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP: A family of
microRNAs present in plants and animals. Plant Cell 2006, 18:3355-3369.
Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P:
The miRNA156/157 recognition element in the 3" UTR of the Arabidopsis
SBP box gene SPL3 prevents early flowering by translational inhibition
in seedlings. Plant J 2007, 49:683-693.

Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D:
Geminviruses: models for plant DNA replication, transcription, and cell
cycle regulation. Crit Rev Plant Sci 1999, 18:71-106.

Stanley J, Bisaro DM, Briddon RW, Brown JK, Faugquet CM, Harrison BD,
Rybicki EP, Stenger DC: Geminiviridae. In Virus Taxonomy, Vilith Report of
the ICTV. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball
LA. London: Elsevier/Academic Press; 2005:301-326.

Varma A, Malathi VG: Emerging geminivirus problems: A serious threat to
crop production. Ann Appl Biol 2003, 142:145-164.

Mansoor S, Briddon RW, Zafar Y, Stanley J: Geminivirus disease complexes:
an emerging threat. Trends Plant Sci 2003, 8:128-134.

Nawaz-ul-Rehman MS, Fauquet CM: Evolution of geminiviruses and their
satellites. FEBS Lett 2009, 583:1825-1832.

Dry I, Krake LR, Rigden JE, Rezaian MA: A novel subviral agent associated
with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci,
USA 1997, 94:7088--7093.

Zaitlin M, Hull R: Plant Virus-Host Interaction. Annu Rev Plant Physio 1987,
38:291-315.

Finnegan EJ, Matzke MA: The small RNA world. J Cell Sci 2003,
116:4689-4693.

Voinnet O: Non-cell autonomous RNA silencing: insights from viral
infections. FEBS Lett 2005, 579:5858.

Dunoyer P, Voinnet O: The complex interplay between plant viruses and
host RNA-silencing pathways. Curr Opin Plant Biol 2005, 8:415.

Pfeffer S, Voinnet O: Viruses, microRNAs and cancer. Oncogene 2006,
25:6211-6219.

Roth BM, Pruss GJ, Vance VB: Plant viral suppressors of RNA silencing.
Virus Res 2004, 102:97-108.

Chapman EJ, Prokhnevsky Al, Gopinath K, Dolja W, Carrington JC: Viral RNA
silencing suppressors inhibit the microRNA pathway at an intermediate
step. Genes Dev 2004, 18:1179-1186.

Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC
P1/HC-Pro, a viral suppressor of RNA silencing, interferes with
Arabidopsis development and miRNA function. Dev Cell 2003, 4:205-217.
Vanitharani R, Chellappan P, Pita JS, Fauquet CM: Differential roles of AC2
and AC4 of cassava geminiviruses in mediating synergism and
suppression of posttranscriptional gene silencing. J Virol 2004,
78:9487-9498.

Chellappan P, Vanitharani R, Fauquet CM: MicroRNA-binding viral protein
interferes with Arabidopsis development. Proc Natl Acad Sci USA 2005,
102:10381-10386.

Bazzini AA, Hopp HE, Beachy RN, Asurmendi S: Infection and
coaccumulation of tobacco mosaic virus proteins alter microRNA levels,
correlating with symptom and plant development. Proc Natl Acad Sci USA
2007, 104:12157-12162.

Baulcombe D: RNA silencing. Trends Biochem Sci 2005, 30:290-293.
Voinnet O: Induction and suppression of RNA silencing: insights from
viral infections. Nature Genet 2005, 6:206-221.

Voinnet O: RNA silencing as a plant immune system against viruses.
Trends Genet 2001, 17:449-459.

Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y: Suppressor of RNA
silencing encoded by Tomato yellow leaf curl virus-lsrael. Virology 2007,
358:159-165.

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L,
Pineda O, Ratcliffe OJ, Samaha RR: Arabidopsis transcription factors:
genome-wide comparative analysis among eukaryotes. Science 2000,
290:2105-2110.


http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19239888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8252621?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8252621?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12142272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12142272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12119378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12119378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12101121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12101121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12202040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12202040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12242443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12242443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12514099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12514099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16061187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16061187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15809034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17189346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17217458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17217458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17217458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12663223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12663223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14600255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16242131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16242131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15939663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15939663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17028601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15068885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12586064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12586064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16006510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16006510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17615233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17615233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17615233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15950871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11485817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11118137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11118137?dopt=Abstract

Amin et al. Virology Journal 2011, 8:143
http://www.virologyj.com/content/8/1/143

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

Wu G, Poethig RS: Temporal regulation of shoot development in
Arabidopsis thaliana by miR156 and its target SPL3. Development 2006,
133:3539-3547.

Mette MF, van der Winden J, Matzke M, Matzke AJ: Short RNAs can
identify new candidate transposable element families in Arabidopsis.
Plant Physiol 2002, 130:6-9.

Parcy F, Bomblies K, Weigel D: Interaction of LEAFY, AGAMOUS and
TERMINAL FLOWERT1 in maintaining floral meristem identity in
Arabidopsis. Development 2002, 129:2519-2527.

Blazquez MA, Soowal LN, Lee |, Weigel D: LEAFY expression and flower
initiation in Arabidopsis. Development 1997, 124:3835-3844.

Naqvi AR, Hag QM, Mukherjee SK: MicroRNA profiling of Tomato leaf curl
New Delhi virus (TOLCNDV) infected tomato leaves indicates that
deregulation of mir159/319 and mir172 might be linked with leaf curl
disease. Virol J 2010, 7:281.

Settlage SB, See RG, Hanley-Bowdoin L: Geminivirus C3 protein: replication
enhancement and protein interactions. J Virol 2005, 79:9885-9895.

Sabelli PA, Larkins BA: Regulation and function of retinoblastoma-related
plant genes. Plant Sci 2009, 177:540-548.

Ascencio-lbanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R,
Hanley-Bowdoin L: Global analysis of Arabidopsis gene expression
uncovers a complex array of changes impacting pathogen response and
cell cycle during geminivirus infection. Plant Physiol 2008, 148:436-454.
Guilfoyle TJ, Hagen G: Auxin response factors. J Plant Growth Regul 2001,
10:281-291.

Qazi J, Amin |, Mansoor S, Igbal MJ, Briddon RW: Contribution of the
satellite encoded gene BC1 to cotton leaf curl disease symptoms. Virus
Res 2007, 128:135-139.

Selth LA, Randles JW, Rezaian MA: Host responses to transient expression
of individual genes encoded by Tomato leaf curl virus. Mol Plant Microbe
In 2004, 17:27-33.

Smith SH, McCall SR, Harris JH: Alterations in the auxin levels of resistant
and susceptible hosts induced by curly top virus. Phytopathology 1968,
58:1669-1670.

Baker CC, Sieber P, Wellmer F, Meyerowitz EM: The early extra petals1
mutant uncovers a role for microRNA miR164c in regulating petal
number in Arabidopsis. Curr Biol 2005, 15:303-315.

Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the
transcription factor NACT to downregulate auxin signals for Arabidopsis
lateral root development. Plant Cell 2005, 17:1376-1386.

Aida M, Ishida T, Tasaka M: Shoot apical meristem and cotyledon
formation during Arabidopsis embryogenesis: interaction among the
CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes.
Development 1999, 126:1563-1570.

Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM:
Patterns of auxin transport and gene expression during primordium
development revealed by live imaging of the Arabidopsis inflorescence
meristem. Curr Biol 2005, 15:1899-1911.

Takada S, Hibara K, Ishida T, Tasaka M: The CUP-SHAPED COTYLEDON1
gene of Arabidopsis regulates shoot apical meristem formation.
Development 2001, 128:1127-1135.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ
separation in Arabidopsis: an analysis of the cup-shaped cotyledon
mutant. Plant Cell 1997, 9:841-857.

Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW: The hypersensitive
response to Tomato leaf curl New Delhi virus nuclear shuttle protein is
inhibited by transcriptional activator protein. Mol Plant Microbe In 2007,
20:1581-1588.

Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S: The hypersensitive
response induced by the V2 protein of a monopartite begomovirus is
countered by the C2 protein. Mol Plant Pathol 2010, 11:245-254.

Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG:
Trifurcate feed-forward regulation of age-dependent cell death involving
miR164 in Arabidopsis. Science 2009, 323:1053-1057.

Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD,

Barton MK, Bartel DP: MicroRNA control of PHABULOSA in leaf
development: importance of pairing to the microRNA 5’ region. EMBO J
2004, 23:3356-3364.

Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H: Genetic
interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for
leaf morphogenesis. Plant Cell Physiol 2006, 47:853-863.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Page 9 of 9

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY: Control of root cap
formation by microRNA-targeted auxin response factors in Arabidopsis.
Plant Cell 2005, 17:2204-2216.

Hardtke CS, Berleth T: The Arabidopsis gene MONOPTEROS encodes a
transcription factor mediating embryo axis formation and vascular
development. EMBO J 1998, 17:1405-1411.

Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB,
Hagen G, Guilfoyle TJ, Berleth T: Overlapping and non-redundant
functions of the Arabidopsis auxin response factors MONOPTEROS and
NONPHOTOTROPIC HYPOCOTYL 4. Development 2004, 131:1089-1100.
Mallory AC, Bartel DP, Bartel B: MicroRNA-directed regulation of
Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper
development and modulates expression of early auxin response genes.
Plant Cell 2005, 17:1360-1375.

Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC:
ETTIN patterns the Arabidopsis floral meristem and reproductive organs.
Development 1997, 124:4481-4491.

Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G,
Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW: Auxin response
factors ARF6 and ARF8 promote jasmonic acid production and flower
maturation. Development 2005, 132:4107-4118.

Saeed M, Behjatania SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA: A
Single complementrary-sense transcript of a geminiviral DNA { satellite
is determinant of pathogenicity. Mol Plant Microbe In 2005, 18:7-14.
Saunders K, Norman A, Gucciardo S, Stanley J: The DNA B satellite
component associated with ageratum yellow vein disease encodes an
essential pathogenicity protein (BC1). Virology 2004, 324:37-47.

Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D,
Scheible WR: Identification of nutrient-responsive Arabidopsis and
rapeseed microRNAs by comprehensive real-time polymerase chain
reaction profiling and small RNA sequencing. Plant Physiol 2009,
150:1541-1555.

doi:10.1186/1743-422X-8-143

Cite this article as: Amin et al: A common set of developmental
miRNAs are upregulated in Nicotiana benthamiana by

diverse begomoviruses. Virology Journal 2011 8:143.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/16914499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16914499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12226481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12226481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11973282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11973282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11973282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20973960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20973960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20973960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20973960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18650403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18650403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18650403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17482706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17482706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10079219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10079219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10079219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16271866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16271866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16271866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11245578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11245578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9212461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9212461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9212461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20447273?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20447273?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20447273?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19229035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19229035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15282547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15282547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16699177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16699177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16699177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16006581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16006581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9482737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9482737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9482737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14973283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14973283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14973283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15829600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9409666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15183051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15183051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15183051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465578?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Virus infection
	Effects of virus infection on miR156 levels
	- miR159
	- miR160
	-miR164
	-miR165 and miR166
	-miRNA 167
	- miR168
	-miR 169 and miR170


	Discussion
	Methods
	Virus Infections
	miRNA Analysis
	Experimental design

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

