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Selection of target sequences as well as
sequence identity determine the outcome of
RNAi approach for resistance against cotton leaf
curl geminivirus complex
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Abstract

Cotton leaf curl disease is caused by a geminivirus complex that involves multiple distinct begomoviruses and a
disease-specific DNA satellite, cotton leaf curl Multan betasatellite (CLCuMB), which is essential to induce disease
symptoms. Here we have investigated the use of RNA interference (RNAI) for obtaining resistance against one of
the viruses, Cotton leaf curl Multan virus (CLCuMV), associated with the disease. Three hairpin RNAi constructs were
produced containing either complementary-sense genes essential for replication/pathogenicity or non-coding
regulatory sequences of CLCuMV. In transient assays all three RNAi constructs significantly reduced the replication
of the virus in inoculated tissues. However, only one of the constructs, that targeting the overlapping genes
involved in virus replication and pathogenicity (the replication-associated protein (Rep), the transcriptional activator
protein and the replication enhancer protein) was able to prevent systemic movement of the virus, although the
other constructs significantly reduced the levels of virus in systemic tissues. In the presence of CLCuMB, however, a
small number of plants co-inoculated with even the most efficient RNAi construct developed symptoms of virus
infection, suggesting that the betasatellite may compromise resistance. Further analyses, using Rep gene sequences
of distinct begomoviruses expressed from a PVX vector as the target, are consistent with the idea that the success
of the RNAI approach depends on sequence identity to the target virus. The results show that selection of both
the target sequence, as well as the levels of identity between the construct and target sequence, determine the

outcome of RNAi-based resistance against geminivirus complexes.

Introduction

Cotton leaf curl is a serious disease of cotton and sev-
eral other malvaceous plant species that is transmitted
by the whitefly Bemisia tabaci [1]. The disease is, at this
time, endemic throughout Pakistan and western India
[2,3]. Affected cotton plants exhibit a range of symp-
toms that include leaf curling, stunted growth and a
poor yield of cotton fibre [1,4]. Additionally, affected
plants may develop leaf-like outgrowths from the veins
on the underside of leaves. The disease is caused by a
geminivirus complex that involves several distinct bego-
moviruses (genus Begomovirus, family Geminiviridae)
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that interact with a disease-specific DNA satellite, Cot-
ton leaf curl Multan betasatellite (CLCuMB) [3,5-7].

The geminiviruses are a rapidly emerging group of
plant viruses, which can be attributed to various fac-
tors, including increased insect vector populations, the
presence of alternate hosts and recombination among
viruses [8,9]. Geminiviruses are plant-infecting viruses
with circular single-stranded (ss)DNA genomes of 2.5-
5.6 kb [10]. Whitefly-transmitted geminiviruses are
classified in the genus Begomovirus which encompasses
many of the agriculturally most destructive gemini-
viruses. All begomoviruses native to the New World
have bipartite genomes, with components known as
DNA A and DNA B. In the Old World, although a few
bipartite begomoviruses have been identified, the
majority of begomoviruses have genomes consisting of
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a single component, homologous to the DNA A com-
ponent of the bipartite viruses [11,12]. A small number
of truly monopartite begomoviruses have been charac-
terized, such as Tomato leaf curl virus and Tomato yel-
low leaf curl Sardinia virus (TYLCSV) [13,14].
However, the majority of monopartite begomoviruses
are associated with addition ssDNA components,
known as betasatellites and alphasaltellites [15]. The
betasatellites are symptom modulating satellites which,
in some cases, are required by their helper begomo-
viruses to systemically infect the plants from which
they were isolated; this is the case for the begomo-
viruses that cause CLCuD, such as Cotton leaf curl
Multan virus (CLCuMYV), which require CLCuMB to
efficiently infect cotton and induce bona fide disease
symptoms [7,16]. The betasatellites encode a single
protein which is a pathogenicity (symptom) determi-
nant and a suppressor of RNA interference (RNAI)-
based host defenses [17-19]. The alphasatellites are
associated with the majority of begomovirus-betasatel-
lite complexes, including that which causes CLCuD
[20-22]. They are not essential but recent results sug-
gest that they may be involved in overcoming host
defenses [23].

The genomes of monopartite begomoviruses encode
six proteins with genes in the virion and complemen-
tary-sense separated by a non-coding intergenic (IR)
region that contains control sequences as well as the
virion-sense origin of replication [24]. The genes in the
virion-sense encode the V2 protein, which is involved in
virus movement and is a suppressor of RNAi, and the
coat protein, the only structural protein of geminiviruses
that is required to form the characteristic geminate par-
ticles, for movement in plants and interacts with the
whitefly vector for transmission plant-to-plant. In the
complementary-sense the genes encode the replication
associated protein (Rep; the only virus encoded protein
required for viral DNA replication, which is a rolling-
circle replication-initiator protein), the transcriptional
activator protein (TrAP; involved in the up-regulation of
late (virion-sense) genes, modulating host gene expres-
sion and may be a suppressor of RNAI), the replication-
enhancer protein (REn; interacts with and enhances Rep
activity) and the C4 protein (a suppressor of RNAI that
may be involved in virus movement).

The control of CLCuD, as is the case for most gemini-
virus diseases, is mainly based on control of the vector
using insecticides and the cultivation of resistant crop
varieties [8]. Resistant cotton cultivars were introduced
in the mid to late 1990 s that were developed by conven-
tional breeding/selection. After initially showing promise
in the control of CLCuD, the virus complex ultimately
overcame the resistance [25], although the precise
changes in the complex responsible remain unclear. Both
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the virus and the betasatellite associated with resistance
breaking have been shown to be recombinant [3,5] and
efforts continue to identify the precise molecular basis
for their ability to overcome host resistance in cotton.
Thus, alternate strategies are required to prevent losses
due to the disease. Among the possible strategies, those
based on RNAi have shown some promise [26].

RNAIi is a ubiquitous phenomenon in eukaryotic
organisms that is triggered by double-stranded RNA
(dsRNA) that plays important roles in diverse biological
processes. The key features of RNA silencing include
the production of 21-25 nucleotide small interfering
RNAs (siRNA) by enzymes known as Dicers and the
formation of RNA-induced silencing complexes (RISCs)
which contain Argonaute proteins that directly carry out
gene silencing at the transcriptional or posttranscrip-
tional levels [27]. RNA silencing can be activated by
introducing transgenes, RNA viruses or DNA sequences
that are homologous to expressed genes. This phenom-
enon has been utilized as a tool to study various mole-
cular processes in the cell, chromosome organization,
functions of genes and for obtaining resistance to
viruses in plants and animals. As a counter defense
viruses have evolved “suppressor” proteins, which are
able to prevent or counter RNAi [28].

Several studies investigating the use of RNAi for
obtaining resistance against geminiviruses have been
reported, with different levels of success (reviewed by
[29,30]). However, there are only two reports investigat-
ing the use of RNAI against a begomovirus-betasatellite
complex [31,32]. Here RNAI has been investigated as a
means of obtaining resistance against one of the viruses
causing CLCuD.

The Study

Production of RNAi constructs

Three hairpin gene constructs targeting CLCuMV were
produced. These were based on sequences of the Rep
and C4 genes (CLCRNAIiRepC4/pFGC), the Rep, TrAP
and REn genes (CLCRNAiRepTrAPREn/pFGC), and on
the IR (CLCRNAIIR/pFGC). The primers for PCR-
mediated amplification of the respective sequences were
designed to the published sequence of CLCuMV
(AJ496287) and are given in Table 1. The positions of
the sequences used in the constructs are shown relative
to the genome map of CLCuMYV in Figure 1. The ampli-
fied DNA fragments were cloned in sense and antisense
orientations in the pFGC5941 dsRNA binary vector [33]
using restriction endonuclease recognition sequences
included in the primers (Table 1).

Transient infectivity assays
Agrobacterium tumefaciens strain GV3101 cultures har-
bouring the pFGC5941 constructs were co-infiltrated to
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Table 1 Primers used for amplification of virus sequences for the production of hairpin RNAi constructs

Construct Primer Sequence*
orientation

CLCRNAiRepC4/pFGC  AC1-4 SF - GTTCCATGGCCCAAACTTCAAGTTCTTC Ascl+Ncol

ACT-4 SR CAGGGCGCGCCCATCAGTTGTCTCCAAT

AC1-4 CAAGGATCCCCCCAAACGTTTTAAAGTAC

ASF TTCTCTAGAACTTGATCGAAAGAAGAAGG

AC1-4

ASR
CLCRNAIRepTrAPREn/  AC123 SF CCCCTCGAGGCTACGTTGAAGATTAGGAT  Xhol+Ascl
pFGC AC123 SR TTCGGCGCGCCTCCTGGTCCCAACAGCAGT

CLCRNAIIR/pFGC

AC123 TTCTCTAGAAATCCTGGTCCCAACAGCAGT
ASF CCCCCCGGGGCTACGTTGAAGATTAGGAT
AC123

ASR

IR SF TGACTCGAGTCAATTGGAGACAACTGAT
IR SR GTTCCATGGTGAAACTTAGTGCGCAAG
IR ASF GTTGGATCCTGAAACTTAGTGCGCAAG
IR ASR TGATCTAGATCAATTGGAGACAACTGAT

Xhol+Ncol

Cloning sites in sense

Cloning sites in antisense
orientation

BamHI+Xbal

Xbal+Smal

BamHI+Xbal

* The restriction sites included in primers are underlined.

young N. benthamiana plants with partial, direct-repeat
constructs of CLCuMV and CLCuMB [6]. Replication of
the virus was detected by Southern hybridization at 15
days post-infiltration in systemic leaves. A radioactively-
labeled, full-length CLCuMV probe was used for hybri-
dization at 65°C overnight followed by two washes with
2x SSC/0.5% SDS and 1x SSC/0.5% SDS at 65°C, as
described previously [6].

Resistance to homologous Rep gene sequences

The resistance to heterologous virus sequences imparted
by construct CLCRNAiRepTrAPREn/pFGC was assessed
by co-inoculation with Potato virus X (PVX) vector con-
structs expressing the Rep gene sequences of heterolo-
gous begomoviruses. The production of PVX vector
(pgR107; [34]) constructs for the expression of the Rep
genes of CLCuMYV, African cassava mosaic virus
(ACMYV) and Cabbage leaf curl virus (CaLCuV) have
been described previously (Imran Amin, Basavaprabhu
L. Patil, Rob W. Briddon, Shahid Mansoor and Claude
M. Fauquet.

Comparison of phenotypes produced in response to
transient expression of genes encoded by four distinct
begomoviruses in Nicotiana benthamiana and their cor-
relation with the levels of developmental miRNAs, sub-
mitted). A. tumefaciens strain GV3101 cultures
harbouring the CLCRNAiRepTrAPREn/pFGC construct
and the PVX vector constructs were co-infiltrated to N.
benthamiana plants as described above.

Results

RNAi constructs for CLCUMV in transient assays
CLCuMV is infectious to N. benthamiana and induces
mild symptoms in the absence of the betasatellite but
induces severe, CLCuD-like symptoms when co-inocu-
lated with CLCuMB [6,7]. The three hairpin RNAi

constructs were co-agroinfiltrated with a partial direct
repeat construct of CLCuMYV in N. benthamiana plants.
For each construct 10 plants were used for agroinfiltra-
tion. Additionally 15 plants of the same age, grown
under the same conditions were inoculated with only
CLCuMV. The experiment was repeated three times. All
control plants inoculated with only CLCuMV developed
typical leaf curl symptoms in systemic leaves, emerging
subsequent to inoculation, within 16 days of inoculation.
N. benthamiana plants co-infiltrated with RNAi con-
structs and CLCuMV did not exhibit symptoms of
infection, even after 45 days (Figure 2A and 2B). This
shows that the RNAIi constructs targeting different
regions of the virus were able to prevent symptomatic
infection.

Virus replication in inoculated and systemic leaves,
which developed subsequent to infiltration, was investi-
gated by Southern blot hybridization. Inoculation of
CLCuMYV with all three constructs led to a preponder-
ance of linear (lin) and open circular (oc) virus replica-
tion forms in the inoculated tissues (Figure 3A). This
contrasts with plants inoculated with only CLCuMV in
which the single-stranded and supercoiled forms were
also detected in significant quantities, which is normal
of geminivirus replication. There was a noticeably lower
accumulation of lin form for co-inoculation with the
CLCRNAIiRepTrAPREn/pFGC constructs than the other
two constructs. However, in one of the samples analyzed
that was co-inoculated with CLCuMV and CLCRNAIR-
epTrAPREn/pFGC scDNA (Figure 3A, lane 4) was
detected with significantly reduced levels of the lin
form. Analysis of the systemic leaves, developing subse-
quent to inoculation, no viral DNA could be detected in
plants co-inoculated with the CLCRNAiRepTrAPREn/
pFGC, indicating that this construct efficiently prevent
spread of the virus from inoculated. For the other two
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Figure 1 Sequences of Cotton leaf curl Multan virus (CLCuUMV)
used to produce hairpin constructs. The sequences used to
produce hairpin constructs are highlighted in red on the genome
map of CLCUMV. The virus-encoded genes and their orientation are
indicated as arrows. The genes encode the V2 protein, the coat
protein (CP), the replication-associated protein (Rep), the
transcriptional activator protein (TrAP), the replication enhancer
protein (REn) and the C4 protein. The origin of virion-sense DNA
replication is indicated by the black dot at position zero. Sequence |
consisted of the overlapping Rep and C4 gene sequences which
was used to produce construct CLCRNAiIRepC4/pFGC. Sequence |l
consisted of the overlapping Rep, TrAP and REn gene sequences
and was used to produce construct CLCRNAiIRepTrAPREN/pFGC.
Sequence lIl contained sequence derived from the intergenic region
and was used to make construct CLCRNAIIR/pFGC.

constructs virus replication in systemic leaves was
detected in several plants (Figure 3B, lanes 8, 9, 13
and15). However, the levels of virus were significantly
less than in a systemic leaf from plant inoculated with
only CLCuMV (Figure 3B, lane 16). Thus, only con-
struct CLCRNAiRepTrAPREn/pFGC appeared able to
prevent systemic infection whereas the other two con-
structs reduced the levels of infectivity and, when sys-
temic spread did occur, the amount of virus replication.

The presence of a betasatellite may compromise RNAI-
mediated virus resistance

CLCuMB is essential for the development of bona fide
disease symptoms in cotton. The satellite encodes an
essential pathogenicity determinant that has suppressor
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of RNA silencing activity [18,19,35]. To investigate
whether the presence of a betasatellite may change the
outcome of resistance by RNAi the three pFGC5941
constructs were co-agroinfiltrated with constructs for
the infectivity of CLCuMV and CLCuMB to N.
benthamiana plants. The symptoms in control plants,
inoculated with only CLCuMV and CLCuMB, appeared
within 12-15 days after agroinfiltration. However, co-
inoculation of CLCuMV and CLCuMB with
CLCRNAiRepC4/pFGC or CLCRNAIIR/pFGC failed to
inhibit virus replication and symptoms appeared in all
plants within 12 days after agroinfiltration (results not
shown). This shows that these two constructs were not
effective in controlling CLCuMYV in the presence of
CLCuMB. In contrast, for co-inoculation with
CLCRNAIiRepTrAPREn/pFGC, only 2 out of 10 plants
inoculated developed symptoms at 20 days after inocula-
tion and the remainder of the plants remained asympto-
matic, thus showing the silencing efficiency of the
construct even in the presence of CLCuMB (Figure 2).

Transient resistance assays with PVX expressing Rep
protein of heterologous begomoviruses

In investigate whether the CLCRNAiRepTrAPREn/
pFGC RNAI construct containing sequences derived
from CLCuMYV would provide resistance against hetero-
logous viruses, the construct was co-inoculated with a
PVX vector expressing the Rep genes of Cabbage leaf
curl virus (CabLCV) or African cassava mosaic virus
(ACMV); two begomoviruses only distantly related to
CLCuMYV whose Rep genes show 82% and 86% nucleo-
tide sequence identity, respectively, to the Rep gene of
CLCuMV.

Inoculation of N. benthamiana plants with PVX
expressing the Rep genes of CLCuMV (PVX/CLCuMV-
Rep) and ACMV (PVX/ACMV-Rep) induced severe
necrosis of inoculated tissues (Figure 4 panels A and E,
respectively), whereas the necrosis induced by PVX
expressing the CabLCuV Rep gene (PVX/CabLCuV-
Rep) induced a somewhat milder necrosis (Figure 4
panel C). Symptoms of systemic infection appeared on
leaves developing subsequent to inoculation at 10-15
days post-inoculation. This consisted of leaf curl and
necrosis for all three PVX constructs, although the
symptoms were milder for the CabLCuV Rep than the
other two Rep expressing PVX constructs (results not
shown).

Co-inoculation of PVX/CLCuMV-Rep with
CLCRNAIiRepTrAPREn/pFGC did not lead to necrosis
of the inoculated tissue. In contrast, inoculation of
CLCRNAIiRepTrAPREn/pFGC with either PVX/ACMV-
Rep or PVX/CabLCuV-Rep did lead to necrosis of
inoculated tissues (Figure 4 panels F and D, respec-
tively). However, for all three PVV constructs,
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Figure 2 Transient resistance assays with construct CLCRNAiRepTrAPREn/pFGC in Nicotiana benthamiana. Plants were inoculated with
CLCUMV (A), CLCuMV and CLCRNAIiRepTrAPREN/pFGC (B), CLCuMV and CLCuMB (C) or CLCuMV, CLCuMB and CLCRNAiRepTrAPREN/pFGC (D). A
healthy N. benthamiana plant is shown for comparison (E). Photographs were taken at 15 days post inoculation.

co-inoculation with CLCRNAiRepTrAPREn/pFGC did
not ultimately prevent systemic infection and symptoms
appearing on leaves developing subsequent to
inoculation.

Discussion

Although natural host-plant resistance remains the most
desirable and easily introduced means of reducing losses
to phytopathogenic viruses, for geminiviruses the lack of
suitable genetic sources of resistance (germplasm) in
many cases means that this is not an option. This is
unfortunately the case for cotton in Pakistan, which is
the main foreign exchange earner of the country, where
an epidemic of CLCuD in the 1990 s led to massive

losses [1]. Host-plant resistance introgressed into com-
mercial cotton during the 1990 s [36] was rapidly over-
come by a resistance breaking strain [25] and all
commercial/cultivated cotton varieties available at this
time are susceptible [37]. There is thus the need for
alternative sources of resistance which can complement
host plant resistance.

The study here was initiated to determine which
sequences of the genome of a monopartite begomovirus
are the most efficient at delivering RNAi-mediated resis-
tance and what effects the presence of a betasatellite
might have on the outcome of RNAi-mediated resis-
tance. The results show that, although all three con-
structs spanning the complementary-sense sequences of
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Figure 3 Southern blot analysis of inoculated Nicotiana
benthamiana plants. Southern blots of nucleic acids extracted
from the inoculated leaves (panel A) and leaves developing
subsequent to inoculation (panel B) were probed with a full-length
CLCuMV probe. Samples resulted from plants co inoculated with
CLCuMV and either CLCRNAIRepTrAPREN/pFGC (lanes 1 to 5),
CLCRNAiRepC4/pFGC (lanes 6 to 10) or CLCRNAIIR/pFGC (lanes 11
to 15). The sample in lane 16 was extracted from a symptomatic
plant inoculated with only CLCuMV. The positions of single-stranded
(ss), super-coiled (sc), linear (lin) and open-circular (oc) viral DNA
forms are indicated with arrows.

the genome are able to prevent symptoms in N.
benthamiana by CLCuMV, only one (CLCRNAiRep-
TrAPREn/pFGC) was able prevent systemic infection.
The reason for the superior performance of the
CLCRNAIiRepTrAPREn/pFGC construct is possibly that

Figure 4 Transient resistance assays with PVX expressing the
Rep genes of heterologous viruses in Nicotiana benthamiana.
Plants were inoculated with PVX/CLCuMV-Rep (panel A), PVX/
CLCuMV-Rep and CLCRNAiRepTrAPREN/pFGC (panel B), PVX/
CabLCuV-Rep (panel C), PVX/CabLCuV-Rep and
CLCRNAIiRepTrAPREN/pFGC (panel D), PVYX/ACMV-Rep (panel E) or
PVX/ACMV-Rep and CLCRNAiRepTrAPREN/pFGC (panel F). Panels G
and H show a N. benthamiana plant inoculated with the PVX vector
lacking an insert and a healthy, non-inoculated N. benthamiana
plant, respectively. Photographs were taken at 15 days post
inoculation.
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it spans three virus-encoded genes; Rep and REn, which
are important for viral DNA replication [38,39], and
TrAP. The begomovirus-encoded TrAP is a multifunc-
tional protein that plays an important role in host-virus
interactions. It is a transcription factor required for the
expression of late (virion-sense) genes for bipartite bego-
moviruses [40,41], can be a pathogenicity factor [42],
may counter programmed cell death [43], conditions a
virus-nonspecific enhanced-susceptibility phenotype in
transgenic plants [44], interacts with and inactivates
SNF1-related kinase [45] and may also suppress RNAi
[46], possibly by inhibiting adenosine kinase [47,48].

The results obtained here thus show that not all virus
derived sequences will deliver efficient silencing
mediated resistance to begomoviruses. A similar conclu-
sion was reached for RNAi-mediated resistance to
TSWYV where only expression of either the N or NS,
gene sequences yielded resistance [49]. Our results sug-
gest that the sequences of the TrAP gene are the most
efficient for delivering resistance, possibly because the
TrAP is a suppressor of silencing and down-regulation
of expression of this protein compromises the virus’
ability infect plants.

Although the CLCRNAiRepTrAPREn/pFGC construct
was able to prevent symptomatic infection of CLCuMYV,
in the presence of CLCuMB a significant proportion of
plants exhibited symptoms. This suggests that the beta-
satellite may compromise the resistance. Betasatellites
encode a single protein, BC1, which is a dominant
pathogenicity (symptom) determinant which also has
suppressor of RNAI activity [18,36,50]. Thus the addi-
tional suppressor activity and dominant symptom deter-
minant provided by the betasatellite, not targeted by
sequences contained in CLCRNAiRepTrAPREn/pFGC,
may be able to overcome the silencing by the construct.

A major drawback of RNA-mediated resistance, being
sequence-based, is its high degree of specificity. Thus
the resistance will only be functional against viruses
with very similar sequences across the targeted region.
For example, transgenically expressed sequences of the
tospovirus Tomato spotted wilt virus (TSWV) provide
protection against the homologous virus but not against
the related viruses Groundnut ring spot virus and
Tomato chlorotic spot virus, despite the fact that they
share 78 to 80% nucleotide sequence identity across
their genomes [49]. This is consistent with the results
obtained here. The CLCuMV derived construct
CLCRNAIiRepTrAPREn/pFGC efficiently prevented Rep
induced necrosis of inoculated tissues for the PVX vec-
tor expressing CLCuMV Rep but not the PVX vectors
expressing the Rep genes of the distantly related bego-
moviruses ACMV and CabLCuV.

The ultimate aim of this work is to develop a broad
spectrum virus-resistance that can be deployed in a
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number of crops but particularly in cotton. Efforts are
now underway to assess whether the results with the
CLCRNAiRepTrAPREn/pFGC construct results can be
reproduced in transgenic plants and particularly whether
the betasatellite is going to be a problem for RNAi-
mediated resistance to begomoviruses.
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