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Full-length Ebola glycoprotein accumulates in the
endoplasmic reticulum
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Abstract

The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever.
However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens.
The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect
maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism
underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity,
HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP
localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes
using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In
contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major
matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-
expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP),
it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin.
These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids.
Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to
the nuclear membrane, which may underscore its cytotoxic property.

Findings
Ebola GP is the only viral protein expressed on the virus
surface and mediates entry into target cells [1], [2].
However, several studies report that GP expression also
causes cell rounding and cytotoxicity, although the
underlying mechanism remains unknown. For instance,
expression of Ebola GP but not Marburg GP is reported
to cause cell detachment without death [3]. Additionally,
Ebola GP from Zaire, Sudan and Ivory Coast subtypes
are shown to cause cell rounding and detachment
ascribed to down-regulation of MHC class I and cell
surface adhesion proteins [4], [5]. Interestingly, Ebola
GP from the Reston subtype, believed to be non-patho-
genic to humans, had a less severe cell rounding effect
[4]. GP is also believed to be a key determinant of viral
pathogenesis and virus-like particles (VLPs) containing
GP are shown to activate human endothelial cells and

macrophages [6], [7]. Importantly, the mucin-like region
in GP1 is specifically shown to induce cytotoxicity when
GP is expressed at similar levels to that seen during
Ebola virus infection. Additionally, the other virus pro-
teins tested were not cytotoxic [8]. Collectively, these
reports indicate that Ebola GP imparts cell rounding
and cytotoxicity in addition to facilitating viral entry.
However, separate work reports that Ebola Zaire GP is

not cytotoxic when expressed in isolation at similar
levels to that seen during early virus infection [9].
Another study shows that GP is not detected in cells
infected with Ebola Zaire virus [10]. This failure to
detect GP during infection may arise as GP is released
from the infected cells either as soluble glycoprotein
(sGP) or a soluble form of GP1 [11]. As full-length GP
but not sGP is shown to cause cytotoxicity [12], this
suggests that the release of sGP during Ebola virus
infection could be a mechanism used by the virus to
prevent cytotoxicity and replicate and spread throughout
the body. Moreover, this release of sGP may also explain
why Ebola Zaire GP expressed at levels similar to early
infection is not cytotoxic [9].
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Previous studies suggest that Ebola GP is incorporated
into VLPs along with the viral VP40 and NP proteins
when co-expressed in cells [13], [14], [15]. VP40 is the
major matrix protein of Ebola and can drive the forma-
tion of filamentous VLPs that resemble wildtype Ebola
virus morphology [13]. VP40 plays an important role in
viral replication, assembly and budding [16]. VP40 inter-
acts with cellular factors such as the Nedd4 ubiquitin
ligase, Tsg101 that comprises part of the ESCRT-I com-
plex, and Sec24C that is a component of the COPII
complex [17], [18], [19]. VP40 also has RNA binding
and oligomerization properties [20]. The Ebola NP is
the principal component of the ribonucleocapsid, which
encloses the RNA [21] and is phosphorylated [22].
As the majority of studies suggest a critical role of

Ebola GP in causing cytotoxicity [3], [4], [8], [5], [23],
[24], and GP interacts with VP40 and NP to form viral
particles [13], [14], [15], we therefore investigated the cel-
lular localization of GP, VP40 and NP when transiently
expressed in HEK293T cells. Since Ebola GP induces cell
rounding and detachment 24 hours after transfection [8],
the cellular localization of Ebola GP was examined here
24 hours after transient transfection to try gain insight
into the mechanism of GP cytotoxicity.
To this end, HEK293T cells were transiently trans-

fected for 24 hours using the calcium phosphate trans-
fection method [25] with various plasmids. To compare
wildtype GP and GPΔmucin localization, 10 μg full-

length Ebola Zaire GP (pCB6-EbGP) [2] or GPΔmucin
(pCDNA6-EbGPΔmucin-mutΔ1234) [4] were trans-
fected. Their localization relative to cellular ER and
Golgi were examined by transfecting 8 μg GP or
GPΔmucin with 2 μg pDsRed2-ER or pEYFP-Golgi
(Clontech). GP, VP40 and NP localization when
expressed in varying combinations were examined by
transfecting 5 μg eGFP-VP40 [26] and 5 μg GP or NP
plasmids, or 10 μg NP plasmid (pWRG7077-NP) [27]
alone. Cells were fixed 24 hours post-transfection and
stained. Stains included the Hoechst DNA stain and
antibodies targeting nuclear pore complex (NPC) pro-
teins, early or late endosomes. GP was stained with a
neutralizing human monoclonal antibody (KZ52) labeled
with a Zenon labeling kit (Molecular Probes). Cells were
imaged using a DeltaVision microscope with subsequent
deconvolution as previously described [28].
Full-length Ebola GP localized in close proximity to

the nuclear membrane (Figure 1A). However, NPC
staining showed little overlap with GP suggesting GP
was not localized on the nuclear membrane. Thus, we
hypothesized that GP may localize within the ER. Co-
expression of Ebola GP with DsRed2-ER showed that
GP had localized within the ER (Figure 1B). Notably, GP
was not found within late endosomes (Figure 1B), Golgi
or early endosomes (data not shown).
Since full-length GP localized within the ER in close

proximity to the nuclear membrane, we then examined

Figure 1 Full-length Ebola GP localizes in the ER in close proximity to the nuclear membrane. A. HEK293T cells were transiently
transfected with 10 μg GP (pCB6-EbGP) plasmid for 24 hours. Cells were fixed and stained for DNA (blue) using Hoechst, nuclear pore complex
(NPC, red) proteins using mouse monoclonal antibody 414 (Covance Research Products), and GP (green) using the neutralizing human
monoclonal antibody (KZ52) labeled with a Zenon labeling kit (Molecular Probes). Scale bar represents 15 μm. Side panels show individual
fluorescent channels from the boxed region in the image. B. HEK293T cells were transiently transfected for 24 hours with 8 μg GP and 2 μg
pDsRed2-ER vector (Clontech) that labels the endoplasmic reticulum (ER, red). Cells were fixed and stained for late endosomes using a mouse
monoclonal antibody targeting CD63 (BD Biosciences, blue), in accordance with a previous publication [43]. GP was stained as above (green).
Scale bar represents 15 μm. Side panels show individual fluorescent channels from the boxed region in the image.
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whether GP lacking the mucin-like region and cytotoxic
activity [4], [8] also localized in the ER. Strikingly, while
GPΔmucin was expressed at comparable levels to full-
length GP, it did not accumulate in the ER (Figure 2A).
Instead, GPΔmucin was uniformly expressed throughout
the cell and did not localize within Golgi, early endo-
somes (Figure 2B), or late endosomes (Figure 2C) either.
This dispersed localization suggests that it is diffusely
localized in the plasma membrane.
Co-expression of GP and VP40 did not alter the loca-

lization of either protein. GP remained in close proxi-
mity to the nuclear membrane consistent with an ER
localization while VP40 localized near the plasma mem-
brane (Figure 3A), which agrees with previous reports
[29], [30], [31]. However, separate studies show that
Ebola GP localizes in the plasma membrane of either
tissues from experimentally infected non-human pri-
mates [10] or HeLa cells 48 hours post-transfection
[24]. Additionally, GP is reported to localize within
VP40 filamentous structures following GP and VP40 co-
expression, suggesting GP interacts with VP40 during
morphogenesis [13]. While we observed little overlay
between GP and VP40 here, GP must associate with
VP40 filaments to produce infectious virions perhaps
during a later phase of the viral replication cycle. There-
fore at this early 24 hour time-point, it is likely the GP
amount associated with the VP40 filamentous structures
is limited compared to the total cellular amount of GP,
making it difficult to visualize by fluorescence micro-
scopy here.
Ebola NP expressed in isolation accumulated in large

cytoplasmic aggregates (Figure 3B). Staining for the
intermediate filament protein, vimentin revealed these
NP aggregates were lined with vimentin. Aggresomes
are perinuclear structures lined with vimentin, which
recruit molecular chaperones and proteosomes. They
are believed to regulate protein folding and degradation
of misfolded proteins [32]. Therefore, the NP association
with vimentin here suggests the NP was present in
aggresome-like structures. Previous studies using cells
infected with Marburg virus report Marburg NP accu-
mulates in structures resembling inclusion bodies in
close proximity to the ER [33], [34]. So it is possible
that the Ebola NP in these aggresome-like structures
could perhaps serve as sites for assembly of filoviral
nucleocapsid analogous to African swine fever virus [35]
and herpes simplex virus type 2 [36].
VP40 and NP did not colocalize upon co-expression

(Figure 3C). VP40 was seen as filamentous structures near
the plasma membrane, while NP was localized within dis-
tinct cytoplasmic aggresome-like bodies. Actin staining
also showed little overlay with either VP40 or NP (Figure
3D), correlating with the report that actin incorporates
into VLPs containing both GP and VP40, but not VP40

Figure 2 Ebola GP lacking the mucin-like region does not
accumulate in the ER. A. HEK293T cells were transiently
transfected for 24 hours with 8 μg GPΔmucin (pCDNA6-
EbGPΔmucin-mutΔ1234) and 2 μg pDsRed2-ER vector (Clontech)
that labels the endoplasmic reticulum (ER, red). Cells were fixed and
stained for NPC proteins (blue) using mouse monoclonal antibody
414 (Covance Research Products) and GPΔmucin (green) using the
KZ52 neutralizing human monoclonal antibody labeled with a
Zenon labeling kit (Molecular Probes). Scale bar represents 15 μm.
Side panels show individual fluorescent channels from the boxed
region in the image. B. HEK293T cells were transiently transfected
for 24 hours with 8 μg GPΔmucin and 2 μg pEYFP-Golgi vector
(Clontech) that labels the trans-medial region of the Golgi apparatus
(blue). Cells were fixed and stained for early endosomes using a
mouse monoclonal antibody against EEA1 (BD Biosciences, green)
and for GPΔmucin as above (red). Scale bar represents 15 μm. Side
panels show individual fluorescent channels from the boxed region
in the image. C. HEK293T cells were transiently transfected with 10
μg GPΔmucin for 24 hours. Cells were fixed and stained for late
endosomes using a mouse monoclonal antibody targeting CD63
(BD Biosciences, blue) and for GPΔmucin as above (red). Scale bar
represents 15 μm. Side panels show individual fluorescent channels
from the boxed region in the image.
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alone [37]. While we did not detect NP in the VP40 fila-
mentous structures here, previous studies suggest that NP
interacts directly with VP40, and is present in VP40-con-
taining VLPs when VP40 and NP are co-expressed [14],
[15]. Thus, perhaps NP is recruited to VP40-containing
VLPs at a later stage during filament formation than the
24 hours experiment here, or another viral protein is
required for VP40 and NP interaction.

As filoviral replication takes place in the cytoplasm
[38], it is intriguing that full-length GP but not GPΔmu-
cin, accumulates in the ER in close proximity to the
nuclear membrane after 24 hours transient expression
in cells. This suggests that full-length GP localization in
the ER could play a role in its cytotoxic and cell round-
ing properties because the mucin-like region of GP is
reported to cause cytotoxicity [4], [8].

Figure 3 Co-expression of Ebola GP, VP40 and NP in HEK293T cells does not alter localization of individual proteins. A. HEK293T cells
were co-transfected with 5 μg Ebola GP and 5 μg eGFP-VP40 plasmids for 24 hours. Cells were fixed and stained for NPC proteins using mouse
monoclonal antibody 414 (Covance Research Products, blue) and GP (red) using KZ52 neutralizing human monoclonal antibody labeled with a
Zenon labeling kit (Molecular Probes). Green represents VP40. Scale bar represents 15 μm. Upper and lower side panels show VP40 and GP
fluorescence respectively, from the boxed region in the image. B. HEK293T cells were transfected with 10 μg Ebola NP plasmid for 24 hours.
Cells were fixed and stained for DNA using Hoechst (blue), NP using a mouse monoclonal antibody targeting NP (red) and vimentin using a
mouse monoclonal antibody targeting vimentin (green). Scale bar represents 5 μm. Upper and lower side panels show the vimentin and DNA
fluorescence and the NP and DNA fluorescence respectively, from the boxed region in the image. C. HEK293T cells were co-transfected with 5
μg Ebola NP and 5 μg eGFP-VP40 plasmids for 24 hours. Cells were fixed and stained for NP using a mouse monoclonal antibody targeting NP
(red) and DNA using Hoechst (blue). Green represents VP40. Scale bar represents 5 μm. Upper and lower side panels show the VP40 and DNA
fluorescence and the NP and DNA fluorescence respectively. D. HEK293T cells were co-transfected with 5 μg Ebola NP and 5 μg eGFP-VP40
plasmids for 24 hours. Cells were fixed and stained for NP using a mouse monoclonal antibody targeting NP (blue) and filamentous actin using
Texas Red Phalloidin (Invitrogen, red). Green represents VP40. Scale bar represents 15 μm. Side panels show the individual fluorescent channels
from the boxed region in the image.
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How accumulation of GP in the ER might induce cyto-
toxic effects remains to be defined. The GP mucin-like
region activates the NF�B signaling pathway [39] and
also downregulates activation of the MAPK effector
ERK2, which is linked to GP induced cytotoxicity [40].
Recently, the Classical Swine Fever virus NS2 protein is
reported to localize to the ER and cause ER stress and
NF�B activation [41]. Similarly, the SARS coronavirus 3a
protein causes ER stress and activates the PERK pathway
leading to unfolded protein response (UPR) [42]. There-
fore, Ebola GP accumulation in the ER may interfere
with protein synthesis, folding and transport thereby acti-
vating UPR to cause ER stress. Understanding the exact
mechanism of GP accumulation in the ER and its corre-
lation to cytotoxicity may be useful in designing inhibi-
tors to block this cytotoxic effect during Ebola virus
infection of patients and/or potentially reduce the severe
pathogenic effects these patients experience.

List of abbreviations
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responsive extracellular regulated kinase 2; GP1: surface subunit of GP;
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activated protein kinase; NP: nucleoprotein; NPC: nuclear pore complex;
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