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Abstract

serotypes without the risk of assay specific artifacts.

Background: Picornaviruses are common human and animal pathogens, including polio and rhinoviruses of the
enterovirus family, and hepatits A or food-and-mouth disease viruses. There are no effective countermeasures
against the vast majority of picornaviruses, with the exception of polio and hepatitis A vaccines. Human
rhinoviruses (HRV) are the most prevalent picornaviruses comprising more than one hundred serotypes. The
existing and also emerging HRVs pose severe health risks for patients with asthma or chronic obstructive
pulmonary disease. Here, we developed a serotype-independent infection assay using a commercially available
mouse monoclonal antibody (mabJ2) detecting double-strand RNA.

Results: Immunocytochemical staining for RNA replication centers using mabJ2 identified cells that were infected
with either HRV1A, 2, 14, 16, 37 or coxsackievirus (CV) B3, B4 or A21. MabJ2 labeled-cells were
immunocytochemically positive for newly synthesized viral capsid proteins from HRV1A, 14, 16, 37 or CVB3, 4. We
optimized the procedure for detection of virus replication in settings for high content screening with automated
fluorescence microscopy and single cell analysis. Our data show that the infection signal was dependent on
multiplicity, time and temperature of infection, and the mabJ2-positive cell numbers correlated with viral titres
determined in single step growth curves. The mabJ2 infection assay was adapted to determine the efficacy of anti-
viral compounds and small interfering RNAs (siRNAs) blocking enterovirus infections.

Conclusions: We report a broadly applicable, rapid protocol to measure infection of cultured cells with
enteroviruses at single cell resolution. This assay can be applied to a wide range of plus-sense RNA viruses, and
hence allows comparative studies of viral infection biology without dedicated reagents or procedures. This
protocol also allows to directly compare results from small compound or siRNA infection screens for different

Background

The family of picornaviridae comprises a wide variety of
human and animal pathogens [1]. Notable members of
the twelve genera are the enteroviruses, such as polio-
virus, the causative agent for poliomyelitis, which
affected millions of people before broad vaccinations
became available in the last decades. Within the picor-
navirus subgenera, the number of serotypes per species
varies from three in the case of poliovirus up to more
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than one hundred for human rhinoviruses (HRV). HRVs
are the main cause of common cold [2], and for recur-
ring infections in humans [3]. HRV infections lead to
severe exacerbations in patients with asthma or chronic
obstructive pulmonary disease [4]. HRVs comprise spe-
cies A, B and C [2]. Twelve HRVs from species A bind
to the minor receptors from the low density lipoprotein
(LDL) receptor family, and the other 61 A-members as
well as the B-viruses bind to intercellular adhesion
molecule 1 (ICAM-1) for infection [5]. The receptor(s)
for the HRV-C serotypes are unknown. The enterotropic
coxsackieviruses (CV) can cause myocarditis, pancreati-
tis and meningitis. The hepatitis A hepatovirus is
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responsible for mild forms of human hepatitis. An
example of a non-human picornavirus is the foot-and-
mouth disease virus of the apthovirus genus, which
induces lesions in cloven-hoof animals, such as cattle,
swine, goat, sheep and buffalo, and is the cause for tre-
mendous economic losses, as experienced during the
last outbreak in England in 2001 [6].

Picornaviruses are small, non-enveloped RNA viruses
with an icosahedral capsid of about 28-30 nm in dia-
meter [7], and a single strand, plus-sense RNA genome,
which is in case of enteroviruses about 7.2 to 8.45 kb
[8]. The genome encodes a single polyprotein that is
proteolytically processed by viral proteases into struc-
tural and non-structural proteins. The replication of
picornaviruses takes place in the cytoplasm in close
association with endo-membranes containing single-and
multi-membrane vesicles and complex membranous
structures of various sizes [9]. Cytoplasmic membranes
are well known to support the replication of plus-sense
RNA viruses, for example the alphavirus Semliki Forest
virus [10-12], the rubivirus rubella virus [13,14], the
enterovirus poliovirus [15], or the flaviviruses hepatitis
C, Dengue and West Nile viruses [16-18], where it is
referred to as membranous web. Membrane associated
replication structures are thought to protect the repli-
cating viral RNA from anti-viral factors recognizing
double-strand RNA (dsRNA), and may provide a scaf-
fold for anchoring and locally concentrating the viral
replication complexes. Since its establishment requires
de novo lipid synthesis, it may represent an anti-viral
target, as suggested from work with drosophila C virus,
a dicistronic virus, which is in many ways similar to
picornaviruses, for example, encoding a polyprotein by a
single positive-strand RNA genome, or using cap-
independent, internal ribosome entry site-dependent
translation [19,20].

The replication process of viruses has been a target for
classical anti-viral agents directed against proteases,
polymerases or integrases in the case of human immu-
nodeficiency syndrome viruses (HIV) or hepatitis C
viruses (HCV) [reviewed in [21]]. Enterovirus inhibitors
have been developed against the HRV protease 3C [22]
or the capsid uncoating mechanism [for example, pleco-
naril, [23]]. Alternative approaches against host factors
that support viral replication included protein kinases
involved in virus entry, such as the serine/threonine
kinase PAK1 for echoviruses, adenoviruses or vaccinia
virus [24-28], as well as tyrosine kinases for coxsackie-
virus B3-RD [29] or microbial pathogens [for a review,
see [30]]. To enhance the identification of anti-viral
agents, standardized infection assays should be devel-
oped for cultured cells as a basis for high throughput
screening projects.

Page 2 of 13

Here we describe a simple immunofluorescence-based
infection protocol to quantitatively assess infection of
cultured cells with enteroviruses, using the mouse
monoclonal anti-dsRNA antibody J2 [mab]2, [31]]. It
recognizes dsRNA duplexes larger than about 40 bp and
was used earlier to detect replicating HCV genomes in
distinct cytoplasmic foci [32], or RNA replication inter-
mediates from the groundnut rosette virus RNA-depen-
dent RNA polymerase [31]. The cytoplasmic foci
recognized by mab]J2 are similar to foci recognized by
an anti-dsRNA serum in rubella virus or Semliki Forest
virus-infected cells [13,33]. We found that the appear-
ance of mabJ2-positive dsRNA replication centers in
HRYV or coxsackievirus infected cells correlated with the
emergence of capsid protein epitopes and infectious
virus titer, and the mab]J2 assay was applicable for pro-
totypic high throughput, image-based siRNA and small
compound screens.

Results
Double-strand RNA replication centers identify HRV and
coxsackievirus infected cells
We first tested if the formation of dsRNA-positive repli-
cation centers can be used as an assay for infection of
HelLa cells strain Ohio (herein referred to as HeLa) with
HRYV or CV. HelLa cells are widely used to isolate and
study HRVs and other enteroviruses [34]. Cells were
infected at low multiplicity of infection (moi 0.2-0.4)
with HRV1A, 14, 16, 37 or CVB3 or B4, and co-stained
by double label immunofluorescence for dsRNA using
mabJ2, and newly synthesized viral proteins using
mabR16-7-Alexa488 (conjugated with Alexa488 dye) or
a rabbit polyclonal antibody raised against purified cap-
sid proteins (Fig. 1A). MabR16-7 had been raised against
HRV16 and recognized VP2 from both HRV16 and 1A
[35]. As expected, all cells positive for newly synthesized
viral protein were also positive for dSRNA detected by
mab]J2, and replication foci had a subcellular localization
similar to cytoplasmic foci, which had been reported
earlier as replication centers in picornavirus-infected
cells [15,36]. Performing a similar experiment with the
mabK1, detecting dsRNA >40bp, gave identical results,
although with lower signal intensity (data not shown).
We hence used mab]2 for all following experiments.
Attempts to detect incoming viral particles by mab]2
failed, although incoming HRV16 have been successfully
visualized with mabR16-7, detecting a capsid epitope
(data not shown). This was in agreement with the
notion that mab]J2 detects long duplexes of double-
strand structures of the replicating RNA rather than
genomic RNA, that is, most likely duplexes of postive
and negative-strand RNAs [31,32]. Biochemical assays
estimated the numbers of negative-strand RNA copies
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Figure 1 MabJ2 detects viral replication-induced dsRNA in high content image based assays. (A) Cells with dsRNA replication centers are
positive for newly synthesized viral protein. Hela cells were infected with the indicated HRV or CV serotypes, fixed and stained with mabJ2 (red)
or capsid specific antibodies (green). CVB3, CVB4, HRV37 and HRV14 were stained with a rabbit polyclonal serum (rpc); HRVIA and 16 were
stained by mabR16-7 covalently labelled with Alexa488 (R16-7-488). Magnification 60x; scale bar 20 pum. (B) Appearance of dsRNA replication
centers is moi dependent. Example overview of a 96 multiwell plate of Hela cells infected with serial dilutions of indicated HRV or CV serotypes.
Imaging by automated microscopy was with 10x magnification. One out of nine images per well is shown for each condition. dsRNA replication
centers (green) and DAPI stained nuclei (blue) are shown. Scale bar 100 pum. (C) An example for automated fluorescence image analysis to score
infection of Hela cells with HRV16 (moi 0.3) with raw images on the left and an image processed and pseudocolored with a Matlab algorithm
on the right side. Scale bar 100 um. (D) Example for the quantification of moi dependent fraction of infected cells (infection index) of the

experiment shown in (B), and analysis by the scoring algorithm presented in (C). More detailed characterisations (time, dose) of this assay are
shown in the subsequent figures.
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in poliovirus infected HeLa cells to about 1000 per cell
at the log phase of replication, corresponding to a few
percent of the total viral RNA [37]. Since poliovirus
replicates to higher levels than HRV in HeLa cells as
determined, for example, in single step growth curves
(WML, unpublished), we suggest that our image-based
assay detects less than 1000 dsRNA molecules per cell.
Although it might be possible to correlate the mab]J2
signal intensity with the viral RNA load per cell, this
would require higher resolution image acquisition and
quantitative measurements, and hence would reduce the
throughput of the assay, and require orders of magni-
tude more data to be processed, which would limit the
utility of this assay for screening purposes.

To test if the mabJ2 assay is useful for high-content,
image-based infection screens, we infected HeLa cells
with serial dilutions of different HRV and CV serotypes
in multiwell plates, followed by staining with mab]J2 and
counterstaining of the cell nuclei with 4/,6’-diamidin-2-
phenylindol (DAPI, Fig. 1B). Non-infected cells did not
show detectable signals from mab]J2, while cells inocu-
lated with HRV1A, 2, 14, 16, 37 or CVB3 or B4 showed
dose-dependent mabJ2 signals. Infected cells were quan-
tified using a custom-written Matlab routine. This algo-
rithm scored cells as infected, if the DAPI signal
overlapped with a thresholded infection marker, which
were either the newly synthesized viral protein or
dsRNA replication centers (Fig. 1C, and additional file 1,
Fig. S1). This analysis did not discriminate between
“weak” and “intense” infection signals, but rather scored
cells as infected if certain criteria were met (see details
described in the methods section and additional file 1,
Fig. S1). The analysis confirmed that the mab]2 infection
assay was robust and specific for HRV1A, 2, 14, 16 and
CVB3, B4 infections in a dose-dependent manner
(Fig. 1D).

For a biological validation of the mab]2 assay, we per-
formed a receptor interference experiment using the
mouse monoclonal antibody mab15.2L to block the
binding site of major HRV serotypes 14, 16 and 37 and
CVA21 on the intracellular adhesion molecule 1
(ICAM-1) [38-40]. As expected, for ICAM-1 tropic
HRVs and CVAZ21, receptor blocking led to a >90%
decrease of infection, whereas minor group HRVs and
CVB3, which use the low density lipoprotein (LDL)-
receptor or coxsackievirus adenovirus receptor (CAR),
respectively [41,42], were not affected (Fig. 2). Note that
a low amount of mabJ2 signal (approximately 5%) was
detected in non-infected cells treated with the mouse
anti-ICAM-1 antibody, but not in non-antibody treated
cells, and hence represents the reactivity of the second-
ary anti-mouse antibody (see additional file 2, Fig. S2).
We conclude that the mab]2 replication center assay is
reliable and has a good signal-to-noise ratio.
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Towards high content image based infection screening
To determine optimal conditions for high content infec-
tion assays we performed time course and titration
experiments with HRV1A, 2, 14, 16 and 37 and CVB3
and B4. As expected from the initial experiments (see
Fig. 1B, D), the dsRNA infection assay scored a time-
and dose-dependent increase of the infection index for
HRV16 and CVB3 (Fig. 3A, B), and also for the other
viruses (additional file 2, Fig. S2). We found that an
infection at low moi (less than 0.5) for 7 h at 37°C was
optimal for HRVs and CVs. Longer infection times led
to cytopathic effects and loss of infected cells from the
culture dish. Notably, HRV infections were similar or
even more efficient at 37°C compared to at 33.5°C,
whereas CVB3 and B4 infections were attenuated at
33.5°C (Fig. 3A, B, and additional file 3, Fig. S3). The
strong attenuation of CVs at 33.5°C was expected. The
good growth characteristics of HRVs at 37°C was consis-
tent with recent data showing that HRVs replicate well
at core body temperature [43,44] and are associated
with lower respiratory tract infections [3,35,45,46]. In
addition, the dsRNA mab]2 assay detected increasing
infection rates in time course experiments with all the
five HRVs and both coxsackieviruses (additional file 4,
Fig. S4), further confirming the specificity of the assay.

We next asked if the mab]J2 replication signal from
HRV1A and 16 correlated with viral titers produced in
the infected cells. We found a strong correlation
between the number of infected cells detected by mab]2
in the producer cells (dubbed ‘infection’) and infectious
virus production by the infected cells, as determined by
single step growth curves yielding more than 30-fold
higher titers than inoculum (Fig. 3C). This is in close
agreements with reports from the literature [47]. We
conclude that mab]J2-positive cells produce infectious
particles confirming that the image based dsRNA infec-
tion assay can also be used for high throughput full
cycle infection assessments.

The RNA replication assay for studies with antiviral
compounds

We next tested the performance of the mabJ2 dsRNA
detection assay with the HRV and CV entry inhibitor
pleconaril [23]. Pleconaril binds in the hydrophobic
pocket of the capsid protein VP1 of several entero-
viruses [48], and thereby prevents conformational
changes in the capsid that enable RNA release upon
receptor-mediated endocytosis. The concentration for
50% inhibition (IC50) of pleconaril in our dsRNA-based
infection assay ranged from 0.01 pg/ml for the highly
sensitive CVB4 up to 0.05 pg/ml to 0.1 pug/ml for the
majority of HRVs (Fig. 4A, color code as in panel B).
Our CVB3 strain was resistant to pleconaril in accor-
dance with data from the literature [48].
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Figure 2 ICAM-1 receptor blocking antibodies abolish the formation of dsRNA replication centers by major group HRVs and CVA21.
Hela cells were pre-incubated with anti-ICAM-1 mab15.2L for 30 min and infected with indicated HRV and CV serotypes. Infection was
quantified by the mabJ2 anti-dsRNA antibody using automated image acquisition and analysis. Fold infections relative to untreated control cells
are indicated in arbitrary units (AU). The means including standard errors of the mean (SEM) from four independent infections are shown.
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To test if the dsSRNA infection assay can be used to
determine at which step of the viral life cycle a particu-
lar compound blocks infection, we performed successive
compound addition experiments. Cells were treated with
pleconaril either prior to infection or at defined time
points post infection (pi). Pleconaril strongly inhibited
infection only when added at early time points (up to
about 45 min) post infection (pi) (Fig. 4B), in agreement
with the notion that it inhibits the entry and conversion
steps of the capsid prior to release of the RNA genome,
but not genome replication [49].

To address if the dsRNA replication assay responded
to downstream replication blocking agents, we treated
cells with guanidine-HCI, which blocks the enteroviral
protein 2C and specifically prevents the initiation of
negative-strand RNA synthesis but not translation of the
polyprotein [50-53]. All five HRVs (1A, 2, 14, 16, 37)
and CVB3 and B4 were sensitive to the highest concen-
tration of guanidine-HCI tested (20 mM), but HRVIA
and HRV16 were not inhibited by intermediate concen-
trations of 2 mM (Fig. 4C), which could be related to
the close genetic relationship of HRV1A and 16 [5]. The
lowest concentration of guanidine (0.2 mM) inhibited
HRV14 and 37, but none of the other viruses, which
may also reflect the genetic diversity of the 2C protein
[see for example, [5]]. Consistent with guanidine inhibi-
tion of replication but not upstream processes of infec-
tion, we found that 2 mM guanidine blocked the
appearance of dsRNA mab]2 epitopes when added up to
120 min pi for CVB3, and up to 240 min pi for the

slower replicating and highly guanidine-sensitive HRV14
(Fig. 4D). The guanidine insensitive HRV1A and 16
remained rather unaffected by guanidine in the time
course experiment confirming the results from the
dose-dependent pre-incubation experiment (Fig. 4C).
Together, these data illustrate that the dsRNA image-
based replication assay is applicable for screening of
small anti-viral compounds and determining the time
point of their maximal efficacy in the viral replication
cycle.

Application of the RNA replication assay for image-based

siRNA screens

siRNA profiling in cultured cells has been widely used to
identify host factors with potential therapeutic impact for
anti-viral or anti-microbial interference, but there were
only a few genes commonly identified in the different
screens. To reduce some of the technical variables for
siRNA screenings in viral infections, we evaluated the
mab]2 infection assay for its applicability in high content
image-based siRNA infection screens with a prototype
library of 137 host factors, and a set of defined controls
targeting the HRV genome, that is, three siRNA oligos
per target, a total of 490 individual data points including
scrambled siRNAs and-non-treated controls. Infection of
HeLa cells with HRV14 was scored by mab]J2 staining
and a rabbit polyclonal antibody against structural pro-
teins of HRV14 (W.M. Lee, unpublished). Inspection of
the primary imaging data revealed a strong correlation of
the extent of infection determined by staining for newly
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Figure 3 Appearance of dsRNA replication centers is time, dose and temperature dependent and correlates with emergence of
infectious titres. (A, B) The time and dose dependencies of HRV16 and CVB3 infections at 33.5°C (blue) or 37°C (red) were determined using
the mabJ2 dsRNA infection assay in Hela cells by either infection for 300 to 700 min, or with two fold serial dilutions of inocula. (C) To
determine the correlation of mabJ2 dsRNA staining with viral titre production, Hela cells were infected with HRV1A or 16 for 16 h (infection,
blue) with serial dilutions of inocula. Newly synthesized particles were released from in parallel treated cells by three freeze/thaw cycles and
inoculated on naive Hela cells to obtain single step growth curves (red). Infection was scored using automated image analysis. Means and SEMs
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synthesized viral protein or the dsRNA replication cen-
ters (Fig. 5A, B). Likewise, comparing the log2 infection
indices between three independent siRNA screens of
HRV16-infected HeLa cells showed strong correlations
(R2 > 0.9) among the three independent replica screens

using both a viral capsid specific antibody (mabR16-7)
and the dsRNA infection assay (Fig. 5C). These data
demonstrate that mabJ2 can be employed for detection
of RNA replication centers in high throughput image-
based infection screens.
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The RNA replication center assay detects infection of
non-transformed human WI-38 fibroblasts

Finally, we also tested if mabJ2 recognized HRV-infected
WI-38 primary human lung fibroblasts. We readily
detected mab]2-positive cells inoculated with the two
minor group serotypes HRV1A and HRV2 (Fig. 6A).
HRV1A and HRV2 infections were dependent on the
temperature and inoculum dose, as indicated by analyses
at 7 and 8 h pi (Fig. 6B, C). In addition, both infections
were strongly attenuated by an inhibitor of the vacuolar
ATPase, bafilomycin Al, in a dose-dependent manner
with an IC50 of 1 nM [Fig. 6D, E, [54]]. These data
were in agreement with earlier reports showing that
infectious cell entry of minor group HRVs, as shown
with HRV2, was dependent on low endosomal pH [55],
and that both HRV1A and HRV2 were readily inacti-
vated by low pH solutions in vitro [data not shown, and
[56]]. To our surprise, however, the major group viruses
HRV14 as well as CVB3 and B4 did not lead to detect-
able formation of mab]J2-positive replication centers in
WI-38 cells up to 8 h pi, even at high moi (100-1000

times higher than for HeLa cells), while HRV16, HRV37
and CVA21 gave low levels of mab]2 signals (Suppl.
Fig. 5). These data show that mab]J2 detects subtle
differences in infection levels in cultured cells.

Discussion

Comprehensive studies of the vast number of entero-
virus serotypes and their cell biological mechanisms of
infection are a key foundation for developing new anti-
viral therapies. Progress in this area has been limited by
the lack of reagents to detect infection of all the sero-
types, and hence it has remained difficult to stringently
compare the infection mechanisms from different virus
serotypes or families.

Here we present a dsRNA replication center assay that
can be used to detect infections by a broad range of
enteroviruses in HeLa cells, that is, five human rhino-
virus and three coxsackievirus serotypes. In the case of
the minor HRV serotypes HRV1A and HRV2 the assay
also detected infection of primary human lung WI-38
fibroblasts. The assay is applicable for high content
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Figure 5 The mabJ2 dsRNA replication assay is compatible with high content image based siRNA infection screens. (A) Overview
montage of an example siRNA screening plate. Hela cells were infected with HRV14 and stained with a rabbit polyclonal antibody (rpc, green)
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SIRNA, which are not specified here. (B) Examples close-ups from wells treated with HRV-targeting (HRV siRNA), no siRNA, or scrambled siRNA,
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(Q) Normalized HRV16 infection index (log2 transformed) determined by automated microscopy/analysis from three independent siRNA screens.




Jurgeit et al. Virology Journal 2010, 7:264

Page 9 of 13
http://www.virologyj.com/content/7/1/264

untreated

B 1 HRV1A titration, WI-38 C 1 HRV2 titration, WI-38
0.8 ¢
5 A =)
< v <
5 5
g 0.4 g
Qo Q
£ ¥7h,33.5°C -A-8h, 33.5°C £ ~7h,33.5°C -A-8h,33.5°C
. ¥ 7h,37°C  -a8h,37°C . ~¥7h,37°C - 8h,37°C
05 10 15 20 25 05 10 15 20 25
input virus pl input virus pl
D WI-38
T T
5107 I HRV1A
< E HRV2
c
S
5 0.5
(0]
€
0

DMISO 125 25 5 1 0.2
BafA1 [nM]
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(DAPI, blue) 7 h pi. Scale bar 100 um. (B, C) WI-38 cells were inoculated with serial dilutions of HRV1A or HRV2 for 7 or 8 h at 33.5°C (blue) or 37°C
(red), and infection was quantified by the mabJ2 dsRNA infection assay using automated image acquisition/analysis. The infection index is plotted
in arbitrary units (AU), where 1 means all cells infected. (D) WI-38 cells were pre-treated with increasing concentrations of bafilomycin A1 (BafA1) for
30 min, and infected with HRV1A or HRV2 for 7 h. Quantification by the mabJ2 dsRNA infection assay was by automated image acquisition/analysis
and the means (n = 3) and SEMs of the normalized infection index relative to DMSO carrier control infected cells are plotted.

_

screening, and infection readouts are time, dose and  virus [62], West Nile virus [63], influenza virus [64-68],
temperature-dependent. human papillomavirus [69] and vaccinia virus [70]. The

Importantly, our assay is compatible with siRNA  multiple screens for HIV, influenza virus and HCV,
screening approaches, which have received considerable  however, identified only very few overlapping genes for
attention in the last few years, due to the promise to  the individual viruses. Reasons for such findings have
uncover much of the so far hidden host functions that  been attributed to the biological nature of cells and
support viral infections. Recently genome wide or subge-  viruses, including virus strain differences, cell line differ-
nomic screens have been published for a variety of viral  ences, cell context-dependent effects and redundancies
pathogens, including HIV [57-59], HCV [60,61], dengue of host factors. Among the technical reasons for the low



Jurgeit et al. Virology Journal 2010, 7:264
http://www.virologyj.com/content/7/1/264

levels of overlapping hits from the published screens are
also the different sources and efficacies of siRNAs,
which depended on the manufacturer, or whether single
siRNAs or siRNA pools were used. In addition, the dif-
ferent hit scoring algorithms, including post-processing
filters and variable accounts for toxicity and specificity,
hit ranking algorithms, or consideration of hit assign-
ment to previously known functional networks of cellu-
lar pathways can contribute to different hit lists from
siRNA screens. Last but not least, the assays for infec-
tion are not standardized, that is, different types of
infection assays cover variable phases of the viral repli-
cation cycle with variable efficacies and, hence, detection
sensitivities and hit identifications are poorly informed.

Our data support the notion that mabJ2 detects repli-
cating dsRNA in infected cells rather than genomic
RNA from incoming virus particles. MabJ2 is hence use-
ful to measure viral replication. We suggest that mab]2
(or any similar antibody) can be used to detect infec-
tions of any positive-strand RNA virus that is actively
replicating. It may even be used to detect dsRNA from
certain DNA virus infections [71]. These findings and
the fact that mabJ2 detects dsRNA with high sensitivity
in solid support based assays [31] open a path towards
standardized and reproducible infection assays, and pos-
sibly clinical diagnostics.

Our dsRNA replication assay was validated at several
levels. The dsRNA readout correlated with single step
growth curves, whereby the infectious titers produced
per cell were similar to values reported in the literature,
that is, in the range of 40 plaque forming units per cell
[47]. We have also validated the assay with two proof of
concept chemical compounds known to block entero-
virus infections, the capsid binding component pleco-
naril [23,72] and the 2C protein inhibitor guanidine
[50]. While pleconaril was an entry inhibitor with a half
maximal inhibition time of about 25 to 30 min, guani-
dine blocked infection until 2 to 4 h pi, reflecting the
different modes of action of these compounds. Hence,
our dsRNA replication assay in the image-based high
content format may prove useful also for screening of
small chemical libraries against viral infections.

Conclusions

The mabJ2 RNA replication assay has proven to be a
reliable procedure to study enterovirus infections on a
systematic level opening new doors for comparative
genomic and chemical studies. It fulfils requirements
such as robustness, good signal-to-noise ratio and prac-
tical usability, making it broadly and systematically
applicable for high content infection assays for entero-
viruses, and possibly other plus-sense RNA viruses. The
assay covers steps required for virus entry, translation
and RNA replication, and can be extended to a full
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replication cycle assay. It is based on a commercially
available mouse monoclonal antibody, which is readily
accessible for both academic and commercial labora-
tories. The assay also offers a way to carry out mechan-
istic studies with many different serotypes, including
emerging picornaviruses, and hence identify serotype
independent requirements for picornavirus infection.

Methods

Cell culture and virus production

HeLa cervical carcinoma cells strain Ohio (from L. Kai-
ser; Central Laboratory of Virology, University Hospital
Geneva, Switzerland) and primary human embryonic
lung WI-38 cells [American Type Culture Collection,
[73]] were cultured in Dulbecco’s Modified Eagle Med-
ium (Sigma-Aldrich) supplemented with L-glutamine
(Sigma-Aldrich), non-essential amino acids (Sigma-
Aldrich) and 10% fetal calf serum (FCS, Sigma-Aldrich)
at 37°C and 5% CO, in a humidified incubator. In all
experiments passage numbers were kept at a maximum
of 25 post thawing. For infection experiments in 96 well
imaging plates (Matrix) 14,000 cells were split in a total
of 100 ul the day before the experiment. HRV serotypes
1A and16 were provided by W.M. Lee (Department of
Pediatrics, School of Medicine and Public Health, Uni-
versity of Wisconsin, Madison, Wisconsin, USA), HRV2,
14 and 37 were from L. Kaiser and CVB3, B4 and A21
were from T. Hyypid (Department of Virology, Univer-
sity of Turku, Finland).

Both HRVs and CVs were grown in HeLa cells.
Briefly, cells were inoculated with a cell lysate stock
from the respective serotypes at 33.5°C (HRV) or 37°C
(CV) over night in infection media (IM/FC-DMEM sup-
plemented with L-glutamine, 30 mM MgCl, and 2%
FCS). When CPE was visible in 80-90% of the cells,
media was removed and cells harvested by scraping and
pelleting, lysed by 3 freeze/thaw cycles and centrifuged
at 2500 x g for 10 min. Aliquots of the supernatants
containing stock virus were stored at -80°C. All sero-
types used in this study were analyzed by reverse tran-
scriptase-polymerase chain reaction and diagnostic
sequencing of the 5’UTR and/or capsid regions and
found to be virtually identical with the published
sequences. For details, see additional files 5, 6, 7, 8.

Infections and immunocytochemistry

Viruses where added to cells in infection media/BSA
(DMEM supplemented with L-glutamine, 30 mM MgCl,
and 0.2% BSA, Sigma-Aldrich). For all the compound
and siRNA experiments, moi was chosen such that
approximately 20 to 40% of the cells were infected at 7
h pi. Cells were fixed by adding 1/3 volume of 16%
para-formaldehyde directly to the cells in culture media.
Fixation was for either 15 min at room temperature or
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long term storage at 4°C. Cells were washed with PBS,
PBS/25 mM NH,CI and PBS, permeabilized with 0.2%
Triton X-100 (Sigma-Aldrich) and washed twice with
PBS and blocked with PBS containing 1% BSA (Fraction
V, Sigma). Antibodies detecting viral protein antigens
were used as follows: for HRV1A and HRV16 mabR16-7
[35], for HRV2 mab8F5 [74], for HRV14, 37 and CVB3,
B4 the rabbit polyclonal antisera (rpc, W.M. Lee, unpub-
lished). MabJ2 and K1 used to detect dsRNA of infected
cells [31,71] were obtained from English & Scientific
Consulting (Bt. Szirdk, Hungary). Fixed and permeabi-
lized cells were incubated at room temperature for 1 h
with diluted mabJ2 in PBS/1%BSA (0.33 pg/ml which
corresponded to a 1:1500 dilution of the 0.5 mg/ml anti-
body). Cells were washed twice with PBS and incubated
with Alexa-fluor labelled secondary antibodies (Invitro-
gen) at 0.2 ug/ml for 1 h. Nuclei were stained with
DAPI, and cells on coverslips mounted in mounting
media (Dako), or the 96 well imaging plates were stored
at 4°C in PBS/NaNj.

Automated image acquisition and data analysis
Automated image acquisition was performed with an
ImageXpress Micro (Molecular Devices) equipped with
a CoolSNAP HQ 12bit greyscale camera (Roper Scienti-
fic) and 10x/NA 0.5 objective (Nikon). Routinely, 9-20
images per 96 well were acquired leading to an average
of 5000-12000 cells analyzed per well. For high resolu-
tion images, an Olympus IX81 equipped with a 60x/1.4
NA. objective and oil immersion was used. Image over-
lays were made using MetaXpress (Molecular Devices)
and Image] (NIH Image, http://rsbweb.nih.gov/nih-
image/). Images were analyzed using a custom written
Matlab routine. Briefly, a canny edge algorithm was
used to identify areas of all the nuclei stained with
DAPI [75] and infected cells stained for newly synthe-
sized viral protein or replicating dsRNA were identified
by a user-defined thresholding method scoring staining
intensity and size. If the overlap of the nuclear and
infection signals exceeded a user defined threshold, a
cell was scored as infected. Data analysis was performed
using Prism (version 5.01, Graphpad), and data for dif-
ferent serotypes were plotted in the order of HRV1A, 2,
14, 16, 37, and CVB3, B4 as infection indices (fraction
of infected cells per total cell number, indicated as arbi-
trary units) unless stated otherwise.

ICAM-1 receptor blocking and compound assays

HeLa cells were pre-incubated with mouse monoclonal
anti-ICAM-1 antibody mab15.2L (Santa Cruz) at 37°C at
a concentration of 0.5 pg of antibody in 50 ul of infec-
tion medium/BSA per 96 well for 1 h, followed by infec-
tion for 7 h and staining for dsRNA replication centers.
For compound assays cells were pre-incubated for 30
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min with compounds diluted in infection medium/BSA
prior to virus addition. Virus diluted in infection med-
ium/BSA was added to the cells at 37°C for 7 h, and
cells were fixed and immunostained. All compounds
were dissolved in dimethyl sulfoxid (DMSO, cell culture
grade, Sigma-Aldrich) and the respective concentrations
of DMSO were used as controls. Pleconaril was a kind
gift from 3-V Biosciences and guanidine-HCIl was
bought from Sigma-Aldrich.

siRNA screens

For siRNA experiments, siRNA oligos (Qiagen) were
spotted in OptiMEM-I (Gibco) at a final concentration
of 50 nM in 96 well imaging plates (Matrix). Lipofecta-
mine 2000 (Invitrogen)/OptiMEM-I was added to a total
volume of 25 pl, and 3000 HeLa cells were seeded into
each 96 well in a total of 100 pl per well. Transfected
cells were incubated for 65 h, followed by infection at
37°C for 7 h and fixation/staining as indicated above.
Specific siRNA oligos directed against the structural
protein VP4 (termed HRV siRNA) were designed
according to the specific genomic sequence of the parti-
cular serotype [76].

Additional material

Additional file 1: Fig. S1. Automated image analysis details. The matlab
scoring algorithm (1) detects edges of the nuclei (A, DAPI) and infection
(B, immunostaining) channels using a canny edge algorithm and user
defined thresholds and forms areas by closing the edges. (2) Areas
below or above a set size-threshold are excluded from both channels
(A2, B2) leading to the final total cell (A3) and infection (B3) mask.
Merging of both masks leads to the final result indicating infected and
not infected cells (as shown in Fig. 1C). Scale bar corresponds to 100 pum.

Additional file 2: Fig. S2. Dose and temperature dependent formation
of dsRNA replication centers of HRV1A, 2, 14, 37 or CVB4 infected Hela
cells. The dose dependencies of HRV1A, 2, 14, 37 and CVB4 infections at
33.5° (blue) or 37°C (red) were determined for the mabJ2 dsRNA
infection assay in Hela cells by two fold serial dilutions of inocula.
Infection was scored using automated image acquisition/analysis. Means
and SEMs of one representative triplicate are shown.

Additional file 3: Fig. S3. Time and temperature dependent formation
of dsRNA replication centers of HRV1A, 2, 14, 37 and CVB4 and A21
infected Hela cells. The time dependencies of of HRV1A, 2, 14, 37 and
CVB4 and A21 infections at 33.5°C (blue) or 37°C (red) were determined
for the mabJ2 dsRNA infection assay in Hela cells by infection for 300 to
700 min. Infections were scored using automated image analysis. Means
and SEMs of one representative triplicate are shown.

Additional file 4: Fig. S4. MabJ2 dsRNA replication center assay in
normal human lung airway cells. (A) Example images of WI-38 non-
transformed primary human embryonic diploid airway cells inoculated
with the indicated HRV and CV serotypes and stained for dsRNA
replication centers using mabJ2 (green) and nuclei (DAPI, blue) 7 h pi.
Scale bar 100 pm. (B) WI-38 cells were inoculated with serial dilutions of
the indicated HRV and CV serotypes for 7 or 8 h at 33.5°C (blue) or 37°C
(red), and infection was quantified by the mabJ2 dsRNA infection assay
using automated image acquisition/analysis. The infection index is
plotted in arbitrary units (AU), where 1 means all cells infected.

Additional file 5: Table S1. List of primers for diagnostic sequencing of

HRV and CV serotypes.
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Additional file 6: Table S2. Top results of Blastn alignments of HRV and
CV diagnostic PCR products.

Additional file 7: Table S3. DNA sequences of reverse transcribed PCR
products from five HRV and two CV serotypes.

Additional file 8: Supplemental references.
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