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Abstract

infected C6/36 cells when elF5A activity was reduced.

this phenomenon of dengue infection.

Background: Dengue virus, a mosquito-borne flavivirus, is the etiological agent of dengue fever, dengue
hemorrhagic fever, and dengue shock syndrome. It generally induces apoptosis in mammalian cells, but frequently
results in persistent infection in mosquito cells. That mechanism remains to be explored. In turn, a genomic survey
through subtractive hybridization (PCR-select cDNA subtraction) was conducted in order to find gene(s) that may
play a role in interactions between the virus and its host cells.

Results: Through this technique, we identified a novel eukaryotic translation initiation factor 5A (elF5A) which is
upregulated in Aedes albopictus-derived C6/36 cells infected by the type 2 dengue (Den-2) virus. The full-length of
the identified elF5A gene consisted of 1498 bp of nucleotides with a 41.39% G+C content, and it possessed a
higher similarity and shorter evolutionary distance with insects than with other organisms. Upregulation of elF5A in
response to Den-2 virus infection was validated at both the RNA and protein levels. This phenomenon was also
observed by confocal microscopy. In addition, cell death obviously occurred when elF5A activity was inhibited in
C6/36 cells even when they were infected by the virus. However, viral multiplication was not obviously affected in

Conclusions: Taken together, we postulated that elF5A plays a role in preventing mosquito cells from death in
response to Den-2 viral infection, thus facilitating continued viral growth and potential persistent infection in
mosquito cells. It would be worthwhile to further investigate how its downstream factors or cofactors contribute to

Background

The dengue virus, one of the flaviviruses, contains ~11
kilobase (kb) single-stranded, positive-sense genomic
RNA [1]. Within host cells, viral RNA directly translates
into a single polyprotein that is subsequently cleaved
into three structural proteins and seven nonstructural
proteins [2]. The process is carried out by the combined
action of host proteases and a trypsin-like viral NS2B/
NS3 serine protease [3].

The dengue virus is transmitted between humans by
mosquitoes, implying that both mammalian and mos-
quito cells are susceptible to the virus [4]. Mammalian
cells with dengue virus infection usually end up
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undergoing apoptosis due to shutdown of protein synth-
esis in the host cell [5]. However, dengue and other arbo-
viruses frequently occur in mosquito cells without
causing obvious deleterious effects [6,7], implying that
specific host factors are critically involved in such
regulation.

Hypothetically, viruses invading a host cell redirect
cellular processes to meet the needs of viral propagation
[8], leading to the induction of novel changes in gene
expressions; this was reported in human umbilical vein
endothelial cells infected with dengue virus [9]. The
change in a host cell’s protein-making machinery was
also confirmed after infection by the dengue virus [10].
In turn, the path to maturation for the dengue virus
may depend on the cell type, leading to unique charac-
teristics of the virus.
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Through the method of polymerase chain reaction
(PCR)-select complementary (c)DNA subtraction, eukar-
yotic translation initiation factor 5A (eIF5A) was
demonstrated to be upregulated at both the messenger
(m)RNA and protein levels in C6/36 cells following den-
gue 2 (Den-2) virus infection [11]. eIF5A, formerly
called elF-4D, was first isolated from immature red
blood cells [12], is an acidic protein with a molecular
mass of 17~21 kDa, and is relatively conserved from
yeast to humans [13]. It is the only protein in nature
known to contain the unusual amino acid, hypusine
[N®-(4-amino-2-hydroxybutyl) lysine], derived from a
modification of lysine by spermidine [14].

The eIF5A protein was originally considered to be a
translation initiation factor based on its in vitro activity of
stimulating the formation of methionyl-puromycin, a
dipeptide analogue, used in a model system to study the
formation of the first peptide bond and to transiently
attach to the ribosome in the course of initiation of eukar-
yotic cellular protein synthesis [15]. However, its role in
translation seems controversial since its deletion in yeast
leads to only a slight decrease in total protein synthesis
[16]. Further, eIF5A was suggested to function as a nucleo-
cytoplasmic shuttle for specific subsets of mRNAs
involved in cell division [17], and its posttranslational
modification is important for cell survival as well as prolif-
eration [18]. These functions were observed via stimula-
tion of polyamines (putrescine, spermidine, and spermine),
which are transformed to active eIF5A [19]. Herein, e[F5A
was demonstrated to be upregulated in response to Den-2
virus infection in C6/36 cells, and its role in association
with the survival of infected cells is discussed.

Results

Full-length sequence and phylogenetic analysis of elF5A
derived from Ae. albopictus

Full-length eIF5A derived from Ae. albopictus consists
of 1498 bp of nucleotides with a 41.39% G+C content
and possesses an 85.8% similarity with that from
Ae. aegypti (AY433334). The sequence was submitted to
GenBank (accession no. EU910137). This genome
encoded 160 amino acids, with only a single amino acid
difference (S—>A) compared to that from Ae. aegypti
(ABF18091) (Figure 1).

In a comparison of 12 eIF5A proteins, the one from
Ae. albopictus shared 99% similarity with that from Ae.
aegypti, 89% with that from Bombyx mori (AAZ15319),
57% with that from Caenorhabditis elegans (CAA90247),
69% with that from Danio rerio (AAH67190), 80% with
that from Drosophila melanogaster (AAG17032), 67%
with that from Gallus gallus (CAG31407), 68% with that
from Homo sapiens (NP001961), 68% with that from
Rattus norvegicus (NP001028853), 62% with that from
Saccharomyces cerevisiae (BAA11826), 90% with that
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from Spodoptera frugiperda (AAF13316), and 68% with
that from Xenopus tropicalis (CAJ83651). In the phylo-
genetic tree constructed using the NJ method (Figure 2),
at the protein level, the first branch that emerged from
the insect group included vertebrates as mentioned
above. The bootstrap support for the insect group was
98%; it was as high as 80% for other organisms in the
NJ tree. In contrast, eIF5A derived from Ae. albopictus
was genetically distant from those of fungi (S. cerevisiae)
and nematodes (C. elegans).

Elevated expression of elF5A in C6/36 cells infected by
the Den-2 virus

Expression of eIF5A in C6/36 cells was analyzed follow-
ing Den-2 virus and UV-inactivated Den-2 virus infec-
tion. C6/36 cells were infected with either the Den-2
virus or a UV-inactivated Den-2 virus at an MOI of 1. At
24 h, cells were collected for RNA extraction. Significant
upregulation of e[F5A was only observed in C6/36 cells
after infection by intact Den-2 virus as detected by a
quantitative real-time PCR. Den-2 virus infection induced
a 3-fold (3.60 £ 0.30) increase in elF5A (for comparison
with the mock; Student’s ¢-test; p > 0.05), whereas the
inactivated Den-2 virus infection only induced a 1.63-
fold (1.63 + 0.44) increase (Student’s ¢-test; p < 0.05)
(Figure 3). Enhanced expression of eIF5A at the protein
level was measured by Western blotting (Figure 4A).
Using double-staining with specific antibodies to com-
pare images under laser scanning confocal microscopy,
the expression of eIF5A was obviously enhanced in virus-
infected C6/36 cells at 24 hpi compared to mock-infected
cells in which lighter expression of the endogenous pro-
tein was shown (Figure 4B). Co-localization of eIF5A and
dengue proteins was shown in certain areas of infected
C6/36 cells (Figure 4B).

Association of elF5A with the survival of infected

C6/36 cells

Cell death was measured at 24 and 48 hpi using the
method of PI staining. With mock infection (without
CPO treatment) in C6/36 cells, the cell death rates were
2.15% and 2.12%, respectively; the rates did not evi-
dently change even when cells were treated with CPO
(1.14% and 9.85%, respectively). When cells were
infected with the Den-2 virus (without CPO treatment),
the cell death rate slightly increased to 4.71% and 8.10%
at 24 and 48 hpi, respectively. In the group with Den-2
virus infection plus CPO treatment, the cell death rate
slightly increased to 5.85% at 24 hpi, but rapidly to
28.04% at 48 hpi (Figure 5).

Effects of the elF5A on propagation of the dengue virus
After treatment of C6/36 cells with CPO for 24 h, both
viral RNA and proteins were examined to evaluate the
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Figure 1 Alignment of the elF5A amino acid sequence derived from C6/36 cells with 11 homologous proteins from other organisms.
The black background denotes amino acid residues identical to those in the first line, and gaps are indicated by a dash (-). Accession numbers
of listed species: Aedes albopictus (EU910137); Ae. aegypti (ABF18091); Bombyx mori (AAZ15319); Caenorhabditis elegans (CAA90247); Danio rerio
(AAH67190); Drosophila melanogaster (AAG17032); Gallus gallus (CAG31407); Homo sapiens (NP_001961); Rattus norvegicus (NP_001028853);
Saccharomyces cerevisiae (BAA11826); Spodoptera frugiperda (AAF13316); and Xenopus tropicalis (CAJ83651).
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Figure 2 Neighbor-joining tree of elF5A identified from 12
species of organisms using protein databases from GenBank.
Numbers on the branches are bootstrap proportions (1000
replicates). See the text for accession numbers.

Mock v Den-2

Figure 3 Validation of the elF5A gene expression level in C6/
36 cells with Den-2 virus infection. RNAs extracted from C6/36
cells with mock infection (Mock), UV-inactivated Den-2 virus (UV), or
intact Den-2 virus (Den-2) at a multiplicity of infection (MOI) of

1 were evaluated by a quantitative real-time RT-PCR assay. The
quantitative real-time PCR analysis of elF5A was monitored and
normalized to the expression of 18S, which was used as an internal
control. Ratios of the normalized expressions of elF5A of Den-2-
infected cells were relative to that of mock-infected cells. The results
showed that the expression of elF5A was significantly higher in the
group with Den-2 virus infection (p < 0.05), but not in those
inoculated with UV-inactivated Den-2 virus (p > 0.05).
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Figure 4 Upregulation of elF5A in C6/36 cells infected by Den-2 virus for 24 h. elF5A was shown to have increased in expression,
according to the results of Western blotting, in response to Den-2 virus infection at 24 h post-infection (hpi) (A). With confocal microscopy,
expression of elF5A (green) was shown to be upregulated in Den-2 virus (red)-infected cells compared to that of the mock infection (B).
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effect of eIF5A on the growth of Den-2 virus. Total
RNA harvested from C6/36 cells was evaluated with the
primer pair (D2EL and D2ER) to detect the amplifica-
tion of positive- and negative-sense viral RNAs. The
results showed that viral RNA was detected in infected
cells with and without treatment with CPO although
they did not quantitatively differ (Figure 6A). At the
protein level, they did not show a quantitative difference
either (Figure 6B). In addition, virus production was not

obviously affected by CPO treatment before 24 hpi, but
slightly decreased in the period between 24 and 48 hpi
(Figure 6C).

Discussion

The dengue virus is transmitted by mosquitoes between
vertebrate hosts in nature [4], reflecting its ability to
grow in both humans and mosquitoes. This way of
transmission reveals an important event: the vector
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Figure 5 Effects of elF5A on the survival of C6/36 cells with Den-2 virus infection. C6/36 cells were incubated with the Den-2 virus for 1 h
at a multiplicity of infection (MOI) of 1, and then treated with ciclopirox olamine (CPO, 10 uM). At 24 and 48 h, cells were fixed and stained with
propidium iodide for a flow cytometric analysis. Cells in the sub-Go/G; phase are marked as M1, and the rate of cell death is shown in
parentheses on each graph. Representative data of the experiments are shown.
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must be compatible for virus amplification or can even
become persistently infected without causing tissue or
cell damage; which is hypothetically regulated by specific
genes upregulated by viral stimulation [11]. We recently
found that elF5A is upregulated in C6/36 cells with
Den-2 infection, suggesting that this gene may have spe-
cific functions in mosquito cells infected with Den-2
virus. This implies that eI[F5A may play a role different
from that in mammalian cells. Because C6/36 cells are
upregulated to express elF5A only by intact, not by UV-
inactivated, Den-2 virus, its overexpression is supposedly
regulated when endocytosis is completed. Levels of the
virus in infected cells treated with CPO compared to
non-treated cells did not significantly differ. This indi-
cated that induction of el[F5A may just prolong the sur-
vival of infected cells, providing an environment
beneficial for viral growth.

Phylogenetic analyses using the amino acid frequen-
cies of conserved proteins are free from the drastic bias
of the genomic G+C content and may provide a robust
estimation of early divergences in the evolution of
eukaryotes [20]. As shown in the phylogenetic tree con-
structed using the NJ method, eIF5A was suggested to
have a closer evolutionary relationship and common
functions due to the short genetic distance between spe-
cies compared. The high sequence conservation of

elF5A across species suggests that the protein has an
important common physiological role.

Unlike mammalian cells, mosquito cells are usually
susceptible to Den-2, but infection does not result in
cell death. Based on a cell-cycle analysis, both mock-
and Den-2-infected C6/36 cells tended to remain in the
S phase, a point at which mosquito cells are good at
replication, protein synthesis, and assembly of the virus
[21]. It would be interesting to see if inhibiting eIF5A in
infected mammalian cells also induces G, arrest as
opposed to uninfected cells. This experiment could be
crucial in revealing the significance of data in this
report. In fact, reduction of eI[F5A was previously
described to induce G, arrest in mammalian HeLa cells
[22]. In C6/36 cells not treated with CPO, the death
rate slightly increased in infected cells, indicating that
the Den-2 virus may naturally cause a low-level death
rate in mosquito cells. On the other hand, eIF5A upre-
gulation induced by the virus actually helped mosquito
cells survive the lethal effects of the virus by allowing
successful progression through the cell cycle. Although
the functions of elF5A are still being debated, it was
reported to play roles in cell proliferation, cell viability,
and cell-cycle progression. In addition to proliferation
and cellular protein synthesis [15], genetic and pharma-
cological studies provided evidence that elF-5A is
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Figure 6 Inhibition of elF5A via treatment with CPO showed no effect on propagation of C6/36 cells inoculated with Den-2 virus for
24 h. (A) Demonstration of viral replication using RT-PCR to amplify fragments of the E gene from extracted positive- (+) or negative (-)-strand

viral RNA of infected cells. (B) Detection of dengue E protein with an anti-E monoclonal antibody via Western blot analysis in infected cells.
(C) Growth of the Den-2 virus in C6/36 cells with or without inhibition at different times after infection.

essential for cell survival [23]. Although the expression
of the eIF5A protein is normally low [24], the Den-2
virus likely induces eIF5A overexpression in C6/36 cells,
which is advantageous for cells’ adaptation to viral infec-
tion without deleterious effects.

Taken together, we postulate that the Den-2 virus may
stimulate the overexpression of elF5A, which facilitates
a reduction in cell death in infected C6/36 cells. This
actually produces an advantage of continuing replication
by the virus in mosquito cells although it might not be
involved in directly promoting virus replication.

Methods

Virus and cell culture

The Den-2 virus (New Guinea C strain) was propagated
in Aedes albopictus-derived C6/36 cells, which were cul-
tured in minimal essential medium (MEM; GIBCO™,
Invitrogen, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (FBS), 2% non-essential amino acids,
2 g/ml Hepes (Sigma, St. Louis, MO, USA), 2.2 g/ml

sodium bicarbonate (NaHCQO3), and 0.4% antibiotic-anti-
mycotic at 28°C in a closed system. The virus was
titrated as described below in baby hamster kidney
(BHK)-21 cells, which were maintained in MEM con-
taining 10% FBS, 2% non-essential amino acids, 2.2 g/ml
sodium bicarbonate (NaHCO3), and 0.4% antibiotic-anti-
mycotic (GIBCO™, Invitrogen) at 37°C in a 5% CO,
atmosphere. Viruses produced in cultured cells were
titrated by a plaque assay as described previously [11].

Cell infection

C6/36 cells (~1 x 107 cells/tube) were harvested and
centrifuged at 3000 rpm and 4°C for 10 min. After
removing the medium, the Den-2 viral suspension or
medium (mock infection as the control) was added to
the tubes at a multiplicity of infection (MOI) of 1 for
incubation at 25°C for 1 h with gentle agitation every 15
min. Then the viral suspension was removed by centri-
fugation, and pelleted cells were seeded and incubated
at 25°C.
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RNA extraction and reverse-transcription polymerase
chain reaction (RT-PCR)

The procedures of RNA extraction and RT-PCR were
performed as described previously [11]. In brief, total
RNA was isolated from both mock- and Den-2 virus-
infected C6/36 cells using the Trizol reagent (Invitro-
gen). Complementary (c)DNA was prepared from
extracted total RNA following instructions provided by
the SMART™ PCR cDNA synthesis kit (Clontech,
Mountain View, CA, USA).

Real-time PCR

c¢DNA from infected (with active or UV-inactivated vir-
ions) or uninfected (mock) cells was used to validate the
expression of elF5A using the primers GCCCATC-
CACTCACAACATG (forward) and TCGATGTCAGT-
GAGCTGGTAGTC (reverse), designed from the
sequence of the cloned eIF5A described above. The
thermal cycling conditions and presentation of results
followed a previous description [11].

Determination of the full-length sequence of elF5A
Determination of the full-length sequence of eIF5A fol-
lowed an approach described elsewhere [25]. Extracted
total RNA was used to synthesize a fragment of el[F5A
with Oligo dT and the primer derived from selected
clones of eIF5A (elF5AL: 5-TATTTGCCCATCCACT-
CACA). The products were then cloned into the
pGEM-T vector to subsequently sequence the 3’-end of
the gene. The 5-end of Ae. albopictus eIFSA was
obtained using a 5’RACE system (Invitrogen) according
to the manufacturer’s protocol. In brief, the extracted
total RNA was first treated with 1 U/ul DNase (Pro-
mega, Madison, WI, USA) to remove the genomic
DNA, from which 5-end cDNA was generated with
gene-specific primer (GSP)-1, 5-CGATGCCAACCA-
GATGTACC-3’, and Superscript II™ RT (Invitrogen).
dCTP was added to the tail of the 5’-end cDNA using
terminal deoxynucleotidyl transferase, and then the
dCTP-tailed cDNA was amplified by a PCR with GSP-2,
5-GTGTTTACCGGTCTTGGAGG-3’, and universal
primers provided by the manufacturer of the kit. The
resultant PCR products were then cloned into the
pGEM-T vector (Promega) for nucleotide sequencing.
The obtained sequence was used to compare ESTs
derived from both Ae. aegypti and Armigeres subalbatus
[26].

Phylogenetic analysis

The similarity of the eIF5A coding sequence derived
from Ae. albopictus-derived C6/36 cells was compared,
using the basic local alignment search tool [27] in the
BLAST network service (National Center for Biotech-
nology Information, Bethesda, MD, USA), against those
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from selected species (see “Results”) in the database. All
sequences were aligned using the default parameters of
CLUSTAL X [28] and edited by Genedoc software [29];
from this, a phylogenetic analysis using an unrooted tree
constructed with the distance-based Neighbor-joining
(NJ) method was carried out with MEGA4 [30]. One
thousand bootstrap replications were performed. Other
parameters used the default option.

UV inactivation of the Den-2 virus

The method followed a previous description [11].
Briefly, a viral suspension was exposed to a UV lamp
(254 nm; 120 mJ/cm?2) for 30 min. The efficacy of viral
inactivation was examined by a real-time RT-PCR and
plaque assay. Expression of the eIF5A gene in UV-inac-
tivated Den-2 viral-infected C6/36 cells was assayed by a
real-time RT-PCR as described above.

Detection of viral RNA synthesis

Synthesis of viral RNA including positive and negative
strands was detected by an RT-PCR as described before
[31]. Viral RNA was extracted from C6/36 cells inocu-
lated with a combination of Den-2 virus (at an MOI of
1) and CPO. Inoculated cells were harvested at 24 h
post-infection (hpi) to detect RNA synthesis through
amplification of a gene fragment by RT-PCR. The pri-
mer pair (D2EL: TAACACCACAGAGTTCCATC and
D2ER: TAAACTTTCCTGTGCACATA) was used to
detect newly synthesized positive-strand RNA. The pri-
mers used to detect negative-strand RNA was the com-
plementary counterparts of the above primer pair. The
PCR product was identified as 429 bp of an amplified
c¢DNA fragment by running on a 2% (w/v) agarose gel.

Confocal microscopy

About 2 x 10° C6/36 cells were plated in 6-well culture
plates for 24 h. A Den-2 virus suspension was added to
each well and allowed to be adsorbed for 1 h, and then
the cells were was incubated for another 24 h. Cells
were fixed with 4% paraformaldehyde and subsequently
treated with 0.1% Triton X-100 for 2 min to increase
the permeability. Primary antibodies including a rabbit
anti-eIF5A antibody (1: 8000 in dilution) and a mouse
anti-Den-2 antibody (1: 100 in dilution), followed by
secondary antibodies of Alexa Fluor® 488-conjugated
goat anti-rabbit IgG (Invitrogen) and rhodamine-conju-
gated goat anti-mouse immunoglobulin G (IgG) (Chemi-
con International, Billerica, MA, USA), were used to
respectively detect eIF5A (in green) and the Den-2 (in
red) virus. 4-6-Diamidino-2-phenylindole (DAPI) which
presented as blue was used as an indicator of cell nuclei.
Prepared specimens were observed under a laser scan-
ning confocal microscope (Zeiss LSM 510, Vertrieb,
Germany).
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Effects of elF5A on cell death measured with propidium
iodide (PI) nucleic acid staining

C6/36 cells (~2 x 10° cells/tube) were collected and
infected with the Den-2 virus at an MOI of 1. After 1 h
of absorption, cells were treated with 10 uM ciclopirox
olamine (CPO, Sigma) to inhibit the function of elF5A,
while treatment with dimethyl sulfoxide (DMSO; the
solvent used with CPO) was used as the control. At 48
hpi, cells were harvested and centrifuged at 1000 rpm
and 4°C for 5 min. After the suspension was removed,
the cell pellet was fixed with ice-cold 70% ethanol in a
-20°C freezer for at least 1 h. Cells were centrifuged
again at 1500 rpm and 4°C for 5 min, and washed with
PBS after the fixative solution had been discarded.
These cells were treated with 0.5% Triton X-100 and
0.05% RNase A (Sigma) in PBS for 1 h at 37°C. After a
final centrifugation, pelleted cells were stained with
50 pg/ml PI (Sigma) in PBS at 37°C for 20 min and
stored at 4°C in the dark. The cellular DNA content was
measured using ModFit LT software vers. 3.0 (Verity
Software House, Topsham, ME, USA) with a FASCAN
flow cytometer (BD Biosciences, San Jose, CA, USA).

Western blotting

To detect viral proteins, C6/36 cells were infected with
the Den-2 virus at an MOI of 1. At 24 hpi, cells were
harvested and washed with PBS three times. Approxi-
mately 2 x 10° cells were pelleted and lysed with 100 pl
RIPA lysis buffer (50 mM Tris Cl (pH 7.4), 150 mM
NaCl, 1% NP-40, 1 mM EDTA, and a protease inhibitor
cocktail) at -80°C overnight. After centrifugation at
14,000 rpm for 10 min at 4°C, supernatants were boiled
in 2x sample buffer (8% sodium dodecylsulfate (SDS),
1 M Tris (pH 6.8), 40% glycerol, and 0.001 bromophenol
blue) for 10 min; these were subsequently resolved by
SDS-polyacrylamide gel electrophoresis (PAGE) and
transferred to an Immobilon™-P transfer membrane
(Millipore, Billerica, MA, USA). Membranes were
soaked in 5% skim milk in a TBS-T solution (0.242%
Tris-base, 2.924% NaCl, and 0.1% Tween 20; pH 7.5) at
room temperature for 1 h. Membranes were then
washed with the TBS-T solution three times. For viral
protein detection, membranes were probed with an anti-
Den-2 viral E protein antibody at room temperature for
1 h; for eIF5A detection, membranes were probed with
an anti-elF5A antibody (both of which were prepared by
our lab). A goat anti-rabbit IgG-horseradish peroxidase
(HRP)-conjugated antibody (Perkin-Elmer™ Life
Sciences, Boston, MA, USA) was subsequently added to
the membranes and incubated for 1 h at room tempera-
ture after the membranes had been washed with TBS-T.
After the membranes were washed again, band profiles
were visualized by a reaction after application of Wes-
tern Lighting” Chemiluminescence Reagent Plus (Perkin-
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Elmer™ Life Science, Waltham, MA, USA) and exposure
to Kodak BioMax XAR film (Eastman Kodak, Rochester,
NY, USA).

Statistical analysis
Comparisons between two means were analyzed by Stu-
dent’s ¢-test at a significance level of 5%.
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