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Abstract

demonstrated using LEDGF/p75-knokdown cells.

type (WT) HIV-1 of LEDGF/p75-knockdown cells.

complex leads to productive infection in those cells.

Background: The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is
essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus
production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was

Results: Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the
lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed
viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the
addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS
(IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that
HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high
levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild

Conclusions: It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due
mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory

Background

Productive infection of susceptible cells by Human
immunodeficiency virus type 1 (HIV-1) has been shown
to require, in addition to virus-encoded proteins, the
presence of the host cellular protein Lens Epithelium
Derived Growth Factor p75 (LEDGF/p75) [1-3]. Follow-
ing nuclear import of a viral integrase (IN)-DNA com-
plex, IN interacts with intranuclear LEDGF/p75
molecules, which pave its way via the recipient cells
chromatin allowing efficient integration [1,4-6]. This is
mediated by the LEDGF/p75 AT hook and PWWP
domains [7-9]. The requirement for LEDGF/p75 was
demonstrated by experiments showing a lack of integra-
tion, and thus virus production, in LEDGF/p75-
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knockdown cells [4,6,10,11]. Moreover, expression of
the LEDGF/p75 integrase-binding domain (IBD), which
mediates the LEDGF/p75 binding to IN, was shown to
significantly inhibit integration and virus infection due
to its ability to interfere with the IN-LEDGF/p75 inter-
action [12]. Finally, HIV strains bearing mutated IN pro-
teins which fail to interact with LEDGF/p75 are not
infectious [13]. These results demonstrate that the pre-
sence of intracellular LEDGF/p75 protein is essential for
efficient virus infection. However, integration of HIV-1
¢DNA can occur in LEDGF/p75-knockdown cells fol-
lowing infection with HIV-1 mutant lacking the Rev
protein (ARev virus), as has been shown previously by
us [14].

Following integration of the viral cDNA, several viral
proteins are expressed, among them Rev [15]. After its
nuclear import the Rev protein is involved in nuclear
export of unspliced and partially spliced viral RNA
molecules [15]. Thus, similar to IN, the presence the
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Rev protein is essential for completion of the HIV-1 life
cycle [15]. In addition to its expression from integrated
viral DNA, Rev can be expressed from unintegrated
DNA molecules and thus appear at an early stage in
virus-infected cells [16-20]. Recently, we have shown
that early expressed Rev can interact with IN in virus-
infected cells, resulting in inhibition of IN nuclear
import [18,21] as well as of its enzymatic activity
[17,22,23]. Rev-induced inhibition of the IN enzymatic
activity resulted in inhibition of cDNA integration and
significant reduction in the degree of virus infection
[14,17,24]. Formation of the Rev-IN complex in virus-
infected cells can be disrupted by three cell-permeable
IN-derived peptides, the INrs (IN derived-Rev interact-
ing peptides) [22] and INS (IN derived-integrase stimu-
latory peptide) [25]. The INS, in addition to its ability to
promote dissociation of the Rev-IN complex, was able
to stimulate the enzymatic activity of the IN itself
in vitro, and consequently the integration of viral cDNA
in virus infected cells [25].

In the current work we show that in the presence of
the INr and INS peptides, WT HIV-1 can productively
infect LEDGF/p75-knockdown cells. Furthermore, a
relatively high degree of viral cDNA integration was
observed in these cells following their incubation with
the INr and INS peptides. These results indicate that
the previously reported [4,6,10,11] failure of the HIV-1
to infect LEDGF/p75-knockdown is mainly due to the
formation of the inhibitory Rev-IN complex.

Results

The INS peptide binds to LEDGF/p75 and partially
disrupts the IN-LEDGF/p75 complex

The INS peptide was derived from the IN domain that
mediates IN binding to Rev [25] as well as IN-IN interac-
tions [26]. This peptide stimulates IN enzymatic activity
in vitro and integration of the viral genome in HIV-1-
infected cells [25]. Based on structural studies, it appears
that binding of the IN to the LEDGF/p75 protein is also
mediated by the same domain [2]. It was therefore of
interest to determine whether the INS peptide, in addi-
tion to its binding to IN and Rev, is also able to interact
with the LEDGF/p75 protein. ELISA binding studies
revealed specific binding of INS to LEDGF/p75 (Fig. 1A
and Table 1). The same was observed with two modified
INS peptides (INS K188E and K188A [25]). The results
in Fig. 1B and 1C show that the INS and its two derived
peptides caused in vitro only partial inhibition of the IN-
LEDGF/p75 interaction. Being cell permeable [25], these
peptides were able to cause partial disruption of the IN-
LEDGEF/p75 complex formed in virus infected cells as
was revealed by co-immunoprecipitation (Co-IP) experi-
ments of an extract obtained from HIV-infected cells
(Fig. 1D).
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The INS peptide promotes HIV-1 cDNA integration in
LEDGF/p75-knockdown cells

The results in Fig. 2A and Table 2 confirm previous
observations [4,6,10,11] of almost no detectable viral
cDNA integration in LEDGF/p75-knockdown cells
(HeLaP4/shp75Cl15 cells [27]) infected by a WT HIV-1
(in this case at a multiplicity of infection (MOI) of 1.0).
On the other hand, when the LEDGF/p75-knockdown
cells were infected by a ARev HIV-1 at the same MOI,
an average of about 4 integration events were observed
per cell (Fig. 2A and Table 2, and see also Levin et al.
[14]). These integration levels were greatly stimulated by
the addition of increasing amounts of the INS peptide
(Fig. 2A and Table 2). Such stimulation of integration
was observed in LEDGF/p75-knockdown cells as well as
in WT HeLa P4 cells infected with the WT or ARev
viruses (Fig. 2A and Table 2). As many as 11.0 integra-
tion events in average per cell were observed when
LEDGF/p75-knockdown cells were infected with WT
virus at a MOI of 1.0 in the presence of 200 uM INS.
However, when these cells were infected under the same
experimental conditions with the ARev virus, the inte-
gration reached a high value of an average of 17.0 inte-
gration events per cell (Fig. 2A and Table 2).

The results in Fig. 2A, show, as was reported pre-
viously [14,17,25], that infection of HeLa P4 cells by the
WT virus (in the absence of INS) results in only 1.0
integration event (in average) per cell. This value
increased to as high as 19.0 integration events (in aver-
age) per cell in the presence of 200 uM INS and to 30.0
integration events (in average) per cell following infec-
tion of the INS-treated HeLa P4 cells with ARev virus.
The degree of viral cDNA integration was directly pro-
portional to the concentrations of the INS added
(Fig. 2A). Quantitative analysis of the total amount of
viral cDNA in cells infected with WT or ARev HIV-1,
both at a MOI of 1.0, revealed the presence of about
30.0 to 35.0 copies (in average) per cell (Fig. 2B). It
appears therefore that a value of 30.0 integration events
(in average) per cell-in the case of HeLa P4 cells treated
with 200 uM INS and infected by a ARev HIV-1-
reflects integration of practically all of the available viral
c¢DNA copies. The number of cDNA copies generated
(in average) per infected cell are not linearly correlated
to the MOI added as was revealed by estimating the
amount of viral cDNA copies per cell in cells infected
by increasing MOIs (see Additional file 1 and Additional
file 2, Fig. S1).

In the absence of INS, practically no integration of
viral cDNA was observed in the LEDGF/p75-knockdown
cells, even when infected at high MOI (10.0) by the WT
HIV-1 (Fig. 3A and Table 3). On the other hand, an
increase in the degree of integration was observed the
when LEDGF/p75-knockdown cells were infected with
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Figure 1 INS and INS-derived peptides bind LEDGF/p75 and promote partial dissociation of the IN-LEDGF/p75 complex. (A) LEDGF/p75
was incubated in ELISA plates coated with the indicated peptide or with BSA as a negative control, and binding was determined as described
in Methods. Wells containing the buffer carbonate (BC) in the absence of peptide were used as a background control. (B) The IN protein was
first bound to the ELISA plates which were then incubated with LEDGF/p75 to obtain LEDGF/p75-IN complex. The complex was then incubated
with either the indicated peptide or BSA at the designated IN:peptide (or BSA) ratios. The amount of bound LEDGF/p75 was then determined.
(C) Same as (B) but the peptides (or BSA) were added at the same time as LEDGF/p75 to determine competition. (D) Formation of Rev-IN, IN-
LEDGF/p75 and Rev-LEDGF/p75 complexes and their dissociation by the INS and INS-derived peptides. Co-IP was performed in lysates obtained
from virus-infected cells. All other experimental conditions are described in Methods.

Table 1 Binding to LEDGF/p75

LEDGF increasing amounts of WT HIV-1, reaching about 7.0

Peptide Sequence IN residues Kq [uM]*  integration events in average per cell at a MOI of 10.0,
INS WIAVQMAVFIHNFKRK ~ W+174-188  22+07  in the presence of 100 uM INS (Fig. 3A and Table 3).

INS KI88A  WTAVOMAVFIHNFKRA W+174-187+A 30+ 15 The same increase was observed, but to a much higher
INS KI88F ~ WTAVOMAVFIHNFKRE W+174-187+E 45+20  degree of integration, when WT HeLa P4 cells were
* Apparent K; according to ELISA system using LEDGF and BSA alone as infected with increaSing amounts of WT HIV-1 in the
control. presence of INS (Fig. 3A and Table 3). A clear
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Figure 2 Effect of INS concentrations on integration and total viral-DNA in infected wt and LEDGF/p75-knockdown HeLa-P4 cells. Hela
P4 and HelaP4/shp75CI15 (LEDGF/p75-knockdown) cells were incubated with the indicated concentration of INS and infected with wt or ARev
HIV-1 at a MOI of 1.0. The average number of integration events per cell (A) and of total viral DNA copies per cell (B) was estimated as
described in Methods. Black shading and dark grey shading are LEDGF/p75-knockdown cells infected with WT or ARev HIV-1, respectively; white

grey shading and white shading are Hela P4 cells infected with WT or ARev HIV-1, respectively. AZT was used at 2 uM concentration.

correlation between the amount of HIV-1 added and the
degree of integration was observed when the same
experiments were performed using the ARev virus (Fig.
3B and Table 3). As many as 50.0 and 23.0 integration
events in average per cell were obtained following infec-
tion of WT HeLa P4 and LEDGF/p75-knockdown cells
respectively by the ARev HIV-1 at a MOI of 10.0, in the
presence of 100 uM INS (Fig. 3B and Table 3).

Similar to INS, the INrs are IN-derived peptides which
promote dissociation of the Rev-IN complex [17,22,24].
Therefore, in light of the above results, it was of interest
to find out whether the INrs would also stimulate inte-
gration of viral cDNA in LEDGF/p75-knockdown cells.
In contrast to the INS, the INrs do not interact with IN
and therefore do not affect its enzymatic activity [22].

Table 2 Summary of the results described in Figure 2

From the results presented in Fig. 4 it is clear that the
INrs were also able to significantly stimulate integration
in LEDGF/p75-knockdown cells, most probably due to
their ability to promote dissociation of the intracellular
Rev-IN complex [17,22,24]. The extent of INr stimula-
tion of integration levels was lower than that obtained
by the INS peptide, probably due to their inability to
enhance the enzymatic activity of the IN itself [22].

Productive virus infection is greatly stimulated by the INS
and INr peptides in LEDGF/p75-knockdown cells

The INS and INr peptides were also able to support
high productive virus infection in LEDGF/p75-knock-
down cells (Fig. 5), probably due to their ability to pro-
mote an increase in viral cDNA integration events in

INS [uM]
Cells Virus (MOI 1) 0 1 2.5 12.5 62.5 100 150 200
Hela P4 WT 102+ 008 104+ 007 125+009 216+011 330+0.14 516+020 970+ 043 1893 + 074
ARev 882 £ 037 913 +034 965+ 041 1098 + 043 1383 + 061 1666 071 2199 + 094 30.16 + 1.12
LEDGF/p75-knockdown WT 004 £ 001 008 +001 017 +002 039+003 069+005 123+010 332+014 1160+ 057
ARev 393 £ 017 405+021 444027 521 +038 692+047 830%063 1056 +074 1680 + 1.01

Values represent an average number of integrations per cell.
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Figure 3 Effect of increasing HIV-1 MOls on integration levels in infected wt and LEDGF/p75-knockdown Hela P4 cells. Hela P4 and
Hel.aP4/shp75CI15 (LEDGF/p75-knockdown) cells were incubated with or without 100 uM INS and infected at the indicated MOls with (A) WT
or (B) ARev HIV-1. The average number of integration events per cell was estimated as described in Methods. Black shading and dark grey
shading are infected LEDGF/p75-knockdown cells without or with INS treatment, respectively; light grey shading and white shading are infected
Hela P4 cells without or with INS treatment, respectively. AZT was used at 2 uM concentration.

Table 3 Summary of the results described in Figure 3

MOI
Cells and peptides Virus 0  0.001 0.005 0.01 0.05 0.1 0.5 1 5 10
Hela P4 WT 0 005+ 0.06 + 0.09 + 0.10 + 012 + 051 + 102 +008 153+009 168+ 0.11
0.01 0.01 0.01 0.01 0.01 0.02
ARev 0 067 + 134 + 322 + 342 + 395 + 513 + 879 + 037 1759 + 52.76 +
0.04 0.10 0.15 0.16 0.18 0.23 0.89 221
LEDGF/p75- WT 0 0 001 + 0 0 0 001 + 0.04 £001 008 +001 023+003
knockdown 0.00 0.00
ARev 0 030 + 0.60 + 143 + 152 + 176 228 + 391 £0.13 783+ 047 2348 +
0.03 0.04 0.08 0.07 0.09 0.10 1.34
Hela P4 WT 0 039 + 0.78 £ 157 + 235+ 330 + 429 + 514 + 044 1029 + 30.86 +
+ INS 100 M 0.02 0.02 0.09 0.14 0.20 0.35 0.99 2.14
ARev 0 0.76 + 152 + 3.04 456 + 6.39 + 830 + 1163 + 1993 + 5237 =
003 0.08 0.14 038 0.71 0.76 1.01 164 342
LEDGF/p75- WT 0 0.09 + 0.19 + 037 + 056 + 0.78 + 1.02 + 122+ 010 244+018 733 +042
knockdown 0.01 0.02 0.02 0.03 0.06 0.09
+ INS 100 pM
ARev 0 0.63 + 126 £ 252 + 379 530 + 6.89 + 827 £ 074 1654 + 4961 +
0.04 0.11 0.18 0.26 044 061 133 311

Values represent an average number of integrations per cell.
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Figure 4 INr peptides stimulate viral cDNA integration in
LEDGF/p75-knockdown cells. Hela P4 (0) and HelaP4/shp75CI15
(LEDGF/p75-knockdown) (m) cells were incubated with or without
100 uM INS or INr and infected with wt HIV-1 at a MOI of 1.0. AZT
was used at 2 uM concentration. The average number of
integration events per cell was estimated as described in Methods.

these cells. Production of both p24 (Fig. 5A) and infec-
tious viruses (Fig. 5B) reached, in LEDGF/p75-knock-
down cells and in the presence of the INr peptides, the
same level as in infected, non-treated, WT HeLa P4
cells (Fig 5). Furthermore, even higher levels of p24 and
virus production were obtained following addition of
INS to the virus-infected LEDGF/p75-knockdown and
wt HeLa P4 cells (Fig. 5A and 5B).

Discussion
The results of the present work demonstrate that HIV-1
is able to efficiently infect cells which lack the cellular
LEDGEF/p75 protein, the presence of which is considered
to be essential for productive infection [4,6,10,11]. How-
ever, infection of LEDGF/p75 knockdown cells occurs
only in the presence of INS [25] or INr [17,22,24] pep-
tides which promote dissociation of the Rev-IN com-
plex, formed in the infected cells [14,17,18,22,24].
Following Rev-IN dissociation viral cDNA integration as
well as virus production can reach, in LEDGF/p75-
knockdown cells, even higher levels than those obtained
in WT cells. The fact that viral cDNA integration can
occur in LEDGF/p75-knockdown cells provided that the
cells are infected by the ARev virus has already been
demonstrated [14]. These results further supports the
view that integration, and consequently infection, in
LEDGEF/p75-knockdown cells, is blocked by the inhibi-
tory Rev. Infection by the ARev HIV-1 does not lead to
productive infection due to the absence of Rev whose
presence is required for nuclear export of unspliced and
partially spliced viral RNA molecules [15].

The way by which the interplay between the LEDGF/
p75 and Rev proteins regulates integration of the viral
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Figure 5 Stimulation of p24 and virus production in LEDGF/
p75-knockdown cells by the INS and INr peptides. Sup-T1 and
Sup-T1/TL3 (LEDGF/p75-knockdown) cells were incubated with or
without 100 M INS or INr and then infected with wt HIV-1 at a
MOI of 0.01. The amount of viral p24 (A) and of infectious virus (B)
was estimated every 2 days post-infection (Pl) as described in
Methods. ™, @ and 4 represent Sup-T1 cells treated with INS, INr or
not treated, respectively; 0, K and A represent LEDGF/p75-
knockdown cells treated with INS, INr or not treated, respectively; ¢
are non-infected cells.

c¢DNA has been described previously [14]. Infection by
HIV-1 results in most cases in the integration of an
average of 1 to 2 cDNA molecules per cell
[14,17,22,25,28]. This is despite the fact that a large
number (between 20 and 30 molecules) of cDNA
remain unintegrated [28,29]. Our previous results
[14,17] indicated that this is due to the fact that the
large majority of the viral IN molecules, which catalyze
the integration reaction, are inactive as a result of their
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interaction with the Rev protein [14,17,18,22]. It is pos-
sible, however, that the few integration events that do
occur in virus-infected cells are mediated by IN mole-
cules which were translocated, as IN-DNA complexes,
into the nucleus before sufficient early Rev was
expressed and thus escaped its inhibitory effect [14,18].
These active IN molecules then interact with the
nucleus-localized LEDGF/p75 protein, which paves the
way for the IN-DNA complexes to the host chromoso-
mal DNA [1,5,13,30]. From our present results it
appears that the resistance of LEDGF/p75-knockdown
cells to HIV-1 infection and particularly the absence of
any cDNA integration events in such cells is due to the
inhibitory effect of Rev [4,6,10,11]. Due to the absence
of the LEDGEF/p75 protein in these cells, all of the IN
molecules are available for interaction with Rev, result-
ing in the formation of inactive Rev-IN complex and
complete inhibition of cDNA integaration (Fig. 6A and
Levin et al. [17,18,22]). Promotion of the Rev-IN com-
plex dissociation by the INr or INS peptides results in
reactivation of the IN enzymatic activity, thus allowing
relatively efficient integration and virus production in
LEDGEF/p75-knockdown cells (Fig. 6B).

According to this view, the Rev protein plays a major
role in restricting, in WT cells, and totally inhibiting, in
LEDGEF/p75-knockdown cells, the integration of viral
c¢DNA and consequently virus replication and produc-
tion. In addition to regulation by Rev, integration is
probably regulated by the enzymatic activity of IN itself
since stimulation of this activity by INS resulted in
further stimulation of integration [25].

Methods

Protein expression and purification

Expression and purification of the histidine-tagged IN
and LEDGF/p75 expression vectors, were a generous
gift from Prof. Engelman, Dana-Farber Cancer Institute
and Division of AIDS, Harvard Medical School, Boston,
MA, USA), were performed essentially as described pre-
viously [31,32].

Peptide synthesis and purification

Peptides were synthesized on an Applied Biosystems
(ABIL; Carlsbad, California, USA) 433A peptide synthesi-
zer and purification was performed on a Gilson HPLC
using a reverse-phase C8 semi-preparative column
(ACE, Advanced Chromatography Technologies, Aberd-
een AB25 1DL, United Kingdom) as described in Levin
et al. [22].

ELISA-based binding assays

Protein-peptide, protein-protein and protein-DNA bind-
ing was estimated using an ELISA-based binding assay
exactly as described previously [33]. Briefly, Maxisorp
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Figure 6 Schematic model of the process of viral cDNA
integration in wt and LEDGF/p75-knockdown cells. (A) In
LEDGF/p75-knockdown cells, an early expressed Rev (green triangle),
from unintegrated viral DNA (brown double line), binds and
inactivate all viral IN molecules (red circle) (in both the cytoplasm
(light blue) and nucleus (yellow)) before integration occurs (due to
the absence of LEDGF/p75 which supports rapid integration). (B)
Addition of INS or INr peptides promotes dissociation of the
inhibitory Rev-IN complexes, allowing the IN, which bound to viral
DNA, to mediate integration into the host genome (black double

line).

plates (Nunc) were incubated at room temperature for 2
h with 200 ml of 10 pug/ml synthetic peptide/recombi-
nant proteins in carbonate buffer. After incubation, the
solution was removed, the plates were washed three
times with PBS, and 200 pl of 10% BSA (Sigma) in PBS
(w/v) was added and the plates were further incubated
for 2 h at room temperature. After rewashing with PBS,
the tested BSA-biotinilated (Bb) peptide or protein
(alone or biotinilated) was added for a further 1-h incu-
bation at room temperature. Following three washes
with PBS, the concentration of bound molecules was
estimated following the addition of streptavidin-horse-
radish peroxidase (HRP) conjugate (Sigma), as described
previously [34]. The enzymatic activity of HRP was esti-
mated by monitoring the product’s optical density (OD)
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at 490 nm using an ELISA plate reader (Tecan Sunrise,
Minnedorf, Switzerland). Each measurement was per-
formed in duplicate. Estimation of complex dissociation
was performed as follow: after binding of the first pro-
tein to the maxisorp plate, the binding partner was incu-
bated for 1 h at room temperature and after three
washes in PBS, the dissociating component was added
and its binding to the complex, as well as the remaining
bound complex, were estimated separately as described
above.

Cells

Monolayer adherent HEK293T, and HeLa MAGI cells
(TZM-bl) [35,36], as well as HEK293T cells over-expres-
sing Rev (Rev10" cells [37]), were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM). The T-lymphocyte
cell lines Sup-T1 and Sup-T1/TL3 were grown in RPMI
1640 medium. Cells other than the Rev10", HeLaP4/
shp75CI15 and Sup-T1/TL3 cells were provided by the
NIH Reagent Program, Division of AIDS, NIAID, NIH
(Bethesda, MD, USA). The various cells were incubated
at 37°C in a 5% CO, atmosphere. All media were sup-
plemented with 10% (v/v) fetal calf serum, 0.3 g/l L-glu-
tamine, 100 U/ml penicillin and 100 U/ml streptomycin
(Biological Industries, Beit Haemek, Israel). HeLaP4/
shp75Cl15 cells (a generous gift from Prof. Debyser,
Molecular Medicine, K.U. Leuven, Flanders, Belgium),
were grown as described in Vandekerckhove et al. [27].
Sup-T1/TL3 cells, (a generous gift from Prof. Poeschla
Department of Molecular Medicine, Mayo Foundation,
Rochester, MN, USA), were grown as described in Llano
et al. [5].

Viruses

The wt HIV-1 (HXB2 [38]) was generated by transfec-
tion into HEK293T cells [39]. The ARev pLAIY47H?2
[40] HIV was generated by transfection into Rev10*
cells [37]. Viruses were harvested and stored as
described previously [22]. The pLAIY47H2 [40] viruses
were a generous gift from Prof. Berkhout (Department
of Human Retrovirology, Academic Medical Center,
University of Amsterdam, The Netherlands). Virus
stocks were concentrated by ultracentrifugation
(25,000rpm at 15°388 for 105 min) using Beckman
SW28 rotor [41]. All viral stocks were treated with 50
U/ml DNase for 1 h at 37 °C in order to eliminate
excess of viral DNA plasmid

Infection of cultured lymphocyte cells with HIV-1

Cultured lymphocytes (1 x 10°) were centrifuged for 5
min at 500 g and after removal of the supernatant, the
cells were resuspended in 0.2 to 0.5 ml RPMI 1640
medium containing virus at different MOIs. Following
absorption for 2 h at 37°C, the cells were washed to

Page 8 of 11

remove unbound virus and then incubated at the same
temperature for an additional 2 days [23].

Study of in-vivo protein-protein interactions using the
Co-IP methodology

The Co-IP experiments were conducted essentially as
described previously [42] with the following modifica-
tions. Briefly, cells were infected at a MOI of 15 of the
indicated viruses. Infected cells were harvested at differ-
ent times post-infection, washed three times with PBS
and lysed by the addition of PBS containing 1% (v/v)
Triton X-100 for whole-cell lysate. Half of the lysate
was subjected to SDS-PAGE (an E-PAGE™ 48 8% High-
Throughput Pre-Cast Gel System (Invitrogen)) and
immunoblotted with either monoclonal anti-Rev anti-
body (a-Rev) [43], antiserum raised against IN amino
acids 276-288 (a-IN) (NIH AIDS Research & Reference
Reagent Program catalog number 758), anti-LEDGF/p75
(a-LEDGF/p75) (R&D Systems, Minneapolis, MN, USA)
or anti-actin (a-Actin) antibody (Santa Cruz), and com-
plementary HRP-conjugated antibodies (Jackson Immu-
noResearch, West Grove, PA, USA) as second
antibodies.

The remaining lysate was incubated for 1 h at 4°C
with either the a-Rev, a-IN, a-LEDGF/p75 or a-Actin
antibodies. Following 3-h incubation at 4°C with protein
G-agarose beads (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), the samples were washed three times with
PBS containing 1% (v/v) Nonidet P-40. SDS buffer was
added to the samples and after boiling and SDS-PAGE
(an E-PAGE™ 48 8% High-Throughput Pre-Cast Gel
System (Invitrogen)), the membranes were immuno-
blotted with either a-Rev, a-IN, a-LEDGEF/p75 or a-
Actin antibodies, and complementary HRP-conjugated
antibodies (Jackson) as second antibodies. When pep-
tides were used, cells were incubated with 150 uM of
the indicated peptide for 2 h prior to infection.

Quantitative determination of the average copy numbers

of HIV-1 DNA integrated into the cellular genome

The integration reaction was estimated essentially as
described previously [23]. Briefly, following incubation of
the indicated peptides with Sup-T1 cells for 2 h, the cells
were infected at the indicated MOI. Integrated HIV-1
sequences were amplified by two PCR replication steps
using the HIV-1 LTR-specific primer (LTR-Tag-F
5-ATGCCACGTAAGCGAAACTCTGGCTAACTAGG-
GAACCCACTG-3') and Alu-targeting primers (first-
Alu-F 5'-AGCCTCCCGAGTAGCTGGGA-3' and first-
Alu-R 5-TTACAGGCATGAGCCACCG-3') [44].
Alu-LTR fragments were amplified from 10 ng of total
cell DNA in a 25-pl reaction mixture containing 1x PCR
buffer, 3.5 mM MgCl,, 200 uM dNTPs, 300 nM primers,
and 0.025 U/ul of Taq polymerase. The first-round PCR
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cycle conditions were as follows: a DNA denaturation
and polymerase activation step of 10 min at 95°C and
then 12 cycles of amplification (95°C for 15 s, 60°C for
30 s, 72°C for 5 min).

During the second-round PCR, the first-round PCR
product could be specifically amplified using the Tag-
specific primer (Tag-F 5-ATGCCACGTAAGC-
GAAACTC-3') and the LTR primer (LTR-R 5'-AGG-
CAAGCTTTATTGAGGCTTAAG-3') designed by
PrimerExpress (ABI) using the default settings. The sec-
ond-round PCR was performed on 1/25th of the first-
round PCR product in a mixture containing 300 nM of
each primer and 12.5 pl 2x SYBR Green Master Mix
(ABI) at a final volume of 25 pl, and run on an ABI
PRIZM 7700. The second-round PCR cycles began with
DNA denaturation and a polymerase-activation step
(95°C for 10 min), followed by 40 cycles of amplification
(95°C for 15 s, 60°C for 60 s).

To generate a standard calibration curve, the SVC21
plasmid containing the full-length HIV-1yxg, viral DNA
was used as a template. In the first-round PCR, the
LTR-Tag-F and LTR-R primers were used and the sec-
ond-round PCR was performed using the Tag-F and
LTR-R primers. The standard linear curve was in the
range of 5 ng to 0.25 fg (R = 0.99). DNA samples were
assayed with quadruplets of each sample (Additional file
3, Fig. S2). For further experimental details, see Rosen-
bluh et al. [23] see also [45]. The cell equivalents in the
sample DNA were calculated based on amplification of
the 18 S gene by real-time PCR as described in Field et
al. [46].

Quantitative determination of total viral DNA copies
Total viral DNA was estimated using SYBR Green real-
time quantitative PCR at 12 h post-infection from the
total extract of infected cells. DNA was isolated by the
phenol-chloroform method. Briefly, DNA samples (1 pg)
were added to 95 pl containing 1x Hot-Rescue Real
Time PCR Kit-SG (Diatheva s.r.], Fano, Italy), and 100
nM of each primer-binding-site primer: F5 (5’ primer,
5'-TAGCAGTGGCGCCCGA-3') and R5 (3’ primer, 5'-
TCTCTCTCCTTCTAGCCTCCGC -3'). All amplifica-
tion reactions were carried out in an ABI Prism 7700
Sequence Detection System: one cycle at 95°C for
10 min, followed by 45 cycles of 15 s at 95°C and 35 s
at 68°C. In each PCR run, three replicates were per-
formed. All other details are exactly as described in
Casabianca et al. [47].

HIV-1 titration by multinuclear activation of a
galactosidase indicator (MAGI) assay

Quantitative titration of HIV-1 was carried out using the
MAGI assay, as described previously [36]. Briefly, TZM-
b1 cells were grown in 96-well plates at 10* cell/well
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and incubated for 12 h at 37°C. Peptides were then
added and after an additional 2 h of incubation, the
cells were infected with 50 pl of serially diluted HIV-1.
Cultured cells were fixed 2 days post-infection and
B-galactosidase was estimated [23,48,49]. Blue cells were
counted under a light microscope at 200x magnification.
It should be noted using this assay system may results in
slightly higher titer of virus due to leakiness.

Quantitative estimation of HIV-1 infection by
determination of extracellular p24
The amount of p24 protein was estimated in the cell
medium exactly as described previously [23].

All experiments were repeated three to four times and
the differences between the obtained results never
exceeded + 10%.

Additional material

Additional file 1: A non linear correlation exist between the HIV-1
MOIs and the amount of cDNA copies calculated per virus per
infected cell. Additional data demonstrating the correlation between the
MOI used and the amount of cDNA copies that can produce be the
virus per infected cell.

Additional file 2: The correlation between the amounts of infected
virus added and the cDNA copies in infected cells. (A) Hela P4 cells
(1 x 10°) were incubated by the wt HIV-1 at the indicated MOIs. The
average amount of viral cDNA copies per cell was estimated as
described in Methods. (B) The correlation between the calculated
average amount of cDNA copies per virus per cell and the MOIs used for
infection. The average numbers of cDNA copies per virus per cell were
estimated based on the results depicted in (A) divided the MOI namely,
the average number of virions used to infect each cell.

Additional file 3: Calibration of the quantitative Real time
measurement of integration events. (A) Dissociation curve of the
integration sample from infected cells (in red) vs. a sample from the
standard used for this real time PCR assay (green). (B) Standard curve
used for the estimation of the average number of integration events.
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