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Abstract

Background: Measuring virus attachment to host cells is of great importance when trying to
identify novel receptors. The presence of a usable receptor is a major determinant of viral host
range and cell tropism. Furthermore, identification of appropriate receptors is central for the
understanding of viral pathogenesis and gives possibilities to develop antiviral drugs. Attachment is
presently measured using radiolabeled and subsequently gradient purified viruses. Traditional
methods are expensive and time-consuming and not all viruses are stable during a purification
procedure; hence there is room for improvement. Real-time PCR (RT-PCR) has become the
standard method to detect and quantify virus infections, including enteroviruses, in clinical samples.
For instance, primers directed to the highly conserved 5' untranslated region (5'UTR) of the
enterovirus genome enable detection of a wide spectrum of enteroviruses. Here, we evaluate the
capacity of the RT-PCR technology to study enterovirus host cell interactions at the cell surface
and compare this novel implementation with an established assay using radiolabeled viruses.

Results: Both purified and crude viral extracts of CVB5 generated comparable results in
attachment studies when analyzed with RT-PCR. In addition, receptor binding studies regarding
viruses with coxsackie- and adenovirus receptor (CAR) and/or decay accelerating factor (DAF)
affinity, further demonstrated the possibility to use RT-PCR to measure virus attachment to host
cells. Furthermore, the RT-PCR technology and crude viral extracts was used to study attachment
with low multiplicity of infection (0.05 x 10-4TCIDs/cell) and low cell numbers (250), which implies
the range of potential implementations of the presented technique.

Conclusion: We have implemented the well-established RT-PCR technique to measure viral
attachment to host cells with high accuracy and reproducibility, at low cost and with less effort than
traditional methods. Furthermore, replacing traditional methods with RT-PCR offers the
opportunity to use crude virus containing extracts to investigate attachment, which could be
considered as a step towards viral attachment studies in a more natural state.

Background main determinant of viral host range, cell tropism and
The first critical step in the viral lifecycle involves attach- ~ pathogenesis [1,2]. Enteroviruses form one genus within
ment and entry via interactions with one or several cell ~ the family Picornaviridae [3] and are important human
surface receptors. The presence of a suitable receptoristhe  pathogens causing a wide spectrum of clinical symptoms
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including meningitis, myocarditis, gastroenteritis, polio-
myelitis, common cold and diabetes [4]. The enterovirus
genome is a positive single stranded RNA molecule of
approximately 7.500 nucleotides starting with a
5'untranslated region (5'UTR) followed by an open read-
ing frame encoding a polyprotein of about 2.200 amino
acids and a 3'UTR ending with a poly A tail [5]. Several cel-
lular receptors have been identified as attachment mole-
cules for Picornaviridae, including the poliovirus receptor
(PVR) [6], various types of integrins [7-10], intracellular
adhesion molecule 1 (ICAM-1) [11,12], decay-accelerat-
ing factor (DAF or CD55) [13,14] and coxsackie- and ade-
novirus receptor (CAR) [15,16]. Group B coxsackieviruses
(CVB) with its six serotypes, CVB1-6, may enter the sus-
ceptible cell by attachment to CAR, a 46-kDa transmem-
brane protein that also serves as a receptor for many
adenoviruses [17]. In addition, some strains of CVB1, 3
and 5 can interact with an additional receptor, DAF, a 70-
kDa regulatory protein consisting of four short consensus
repeats (SCRs) [18]. CVBs can attach to DAF, but are usu-
ally unable to enter the cell in the absence of CAR [19,20]
unless the DAF receptors are cross-linked by specific anti-
DAF monoclonal antibodies (MAbs) [21]. Thus, binding
to DAF is a characteristic feature of many enteroviruses
including enterovirus 70 and echovirus 7 [13,14,21-25].
Interactions between a virus and the host cell surface are
generally studied using purified radiolabeled virions that
are allowed to attach to cultured cells.

The real-time PCR (RT-PCR) technology utilizes the
standard PCR method with the addition of measuring the
accumulation of amplified DNA in real-time by a fluores-
cent signal. RT-PCR uses the threshold cycle (Ct) value, i.e.
the lowest number of cycles necessary to detect a fluores-
cent signal above a threshold, to quantify amplified DNA.
The recorded Ct value is directly proportional to the start-
ing number of cDNA, i. e. viral RNA, where one cycle the-
oretically represents the double amount of template. RT-
PCR is the method of choice to detect and quantify virus
infections in clinical samples, including enteroviruses
[26,27]. Amplification of highly conserved regions of the
enterovirus 5'untranslated region (5'UTR) is the golden
standard to detect enteroviruses in specimens [28,29].

In this report, we demonstrate for the first time the possi-
bility to use RT-PCR to study interactions between entero-
viruses and their target cells. RT-PCR is a rapid and
sensitive method suitable for attachment studies and
allows the use of crude virus containing extracts as well as
limited amounts of cells and viruses.

Methods

Cells and viruses

HeLa-SoH (provided by M. Rovainen, Helsinki, Finland),
CHO, CHO-CAR and CHO-DAF [30,31] cells were main-
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tained in DMEM (Sigma), supplemented with 10% new-
born calf serum (NCS) (Biological Industries) and 1%
penicillin-streptomycin and L-glutamine (Sigma). 1mg/
ml G418 (Sigma) was added to CHO-CAR cells and
0.75mg/ml Hygromycin B (Invitrogen) to CHO-DAF
cells. The clinical isolate CVB5 strain 151rom70 was
kindly provided by T. Hovi (Helsinki, Finland), while
echovirus 7 strain Wallace (EVZW, ATCC VR-37) and
CVB2 strain Ohio (CVB20, ATCC VR-29) were obtained
from American Tissue Culture Collection (ATCC). Viruses
were propagated and titrated on GMK cells.

Binding assays

CVB5 151rom70 was labeled by growth in GMK cells in
the presence of 35S-methionine and 35S-cysteine (Perkin-
Elmer). Virions were purified by sucrose gradient centrifu-
gation as described elsewhere [8]. Binding assays, using
both purified radiolabeled viruses and crude virus
extracts, were carried out in suspension as described by
Arnberg et al. [32]. Briefly, cells were detached with
versene solution, pelleted and washed twice in binding
buffer (DMEM supplemented with 2% NCS and 1% pen-
icillin-streptomycin and L-glutamine). Cells and viruses,
2.5 x 105 cells per tube if not stated otherwise, were incu-
bated for 2 h on ice or at room temperature and washed
twice with ice-cold or room temperatured binding buffer
before re-suspension in 200 ul serum-free media, all in
triplicates. For measures of radioactivity, the radiation was
determined by liquid scintillation counting, while non-
radioactive samples were frozen for further applications.

Two-step RT-PCR

RNA was extracted using QIAamp viral RNA extraction kit
(Qiagen) according to the manufacturer's instructions
and used for reverse transcription. cDNA synthesis was
performed using Applied Biosystems TagMan reverse
transcriptase kit according to the manufacturer's protocol.
Assay conditions for quantification of extracted viral RNA
were optimized using the Applied Biosystems 7500 Real-
Time PCR System (Applied Biosystems), by using a two-
step RT-PCR and SYBR Green detection method as previ-
ously described [33]. Obtained Ct values were recalcu-
lated into RNA copies, i.e. virions, by the use of a standard
curve previously described by Jonsson et al. [33].

Statistical analyses

Individual data pairs were analysed by the unpaired t test,
and one-way analysis of variance followed by Dunnetts
post-test was used to compare groups vs. controls. Data
were considered statistically significant if p < 0.05.

Results and Discussion

Comparison of purified and unpurified viruses
Interactions between a virus and the target cell are gener-
ally studied using radioactive labeling, and subsequently
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gradient purification of viruses. The purified and labeled
viruses are allowed to interact with cultured cells and the
amount of bound radioactivity is used as a measurement
of the viral attachment capacity. In this article, we demon-
strate that RT-PCR is an alternative, rapid and efficient
method to study viral interaction with the cell surface. RT-
PCR can complement or replace the expensive and time-
consuming methods presently employed.

A clinical isolate of CVB5, CVB5 151rom70, was analysed
for validation and comparison between the standard
method with labeled viruses and the RT-PCR, with the
assumption that one enterovirus genome is equivalent to
one virion. 3 x 104 dpm 3°S-labeled virus (corresponding
to a multiplicity of infection (MOI) of 0.05 TCID/cell)
or MOI 0.05 TCID50/cell of crude virus extracts were incu-
bated with cells in suspension on ice for 2 h. The attached
virus was measured using scintillation counting (purified,
radiolabeled virus) or RT-PCR (purified and crude virus
extracts). Using radiolabeled viruses (Figure 1A) the clini-
cal isolate of CVB5 demonstrated similar affinity for HeLa
and CHO-DAF, which could be expected due to approxi-
mately equal amount of expressed DAF on the cell sur-
faces determined by flow cytometry (data not shown).
Comparable results were recorded using RT-PCR (Figure
1B), thus supporting the applicability of RT-PCR in viral
affinity measurements. In addition, the interaction
between CVB5 151rom70 and the cell surface were stud-
ied using crude virus extracts (Figure 1C). Although the
binding of CVB5 to CHO cells was higher using crude
extracts, the specific binding to HelLa and recombinant
CHO-DAF cells were statistical significant compared to
CHO cells.

The relative binding (fold difference) of viruses attached
to HeLa in comparison to CHO was calculated for the
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results presented in Figure 1. Considering the purified
virus, the RT-PCR present ~3000 fold difference (Figure
1B), while the difference in dpm is ~700 fold (Figure 1A).
Crude virus give a ~550 fold difference (Figure 1C), which
demonstrates that unpurified viruses and RT-PCR give
results that are comparable with labeled and purified
viruses, but with less effort and expense.

Altogether, these results clearly indicate the capacity of the
RT-PCR technology in studies of viral attachment. Fur-
thermore, RT-PCR gives the opportunity to study viruses
that are not purified through differential ultracentrifuga-
tion and therefore enables attachment studies using virus
in a more natural environment. Binding assays described
and discussed from this point were therefore carried out
using crude viral extracts.

The data obtained did not distinguish between binding to
CHO and CHO-CAR using the clinical isolate of CVB5,
although an indication of attachment to CHO-CAR was
observed when measuring interactions at the cell surface
using purified viruses (Figure 1A). CVB prototype strains
have been shown to utilize CAR as receptor [15,34]. Sev-
eral low-passage clinical isolates of CVB5 are less affected
by antibodies directed against CAR [23], indicating that
some CVB strains may use alternate receptors. Attachment
of crude virus extracts, analysed by RT-PCR, showed a
higher proportion of binding to CHO than labeled
viruses, which is consistent with previous reports. Martino
et al. [35] showed that several unpurified isolates of CVB
have an affinity for CHO cells. Newcombe et al. [36]
reported that unpurified coxsackievirus A20 (CVA20)
binds to RD cells, cells that do not express its major recep-
tor ICAM-1, whereas labeled and subsequently purified
CVA20 have no affinity to RD cells. Similar observations
were reported by Pash et al. [31], where two strains of
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Attachment studies using a clinical isolate of CVB5. A) 3 x |0*dpm (corresponding to MOI 0.05 TCID/cell) was incu-
bated with 2.5 x 105 cells in suspension at 4°C for 2 h. Attachment was measured using scintillation counting. B) MOI 0.05
TCIDgp/cell of the labeled, purified virus and C) MOI 0.05 TCIDg/cell of unpurified virus incubated as described in A) and the
amount of virus bound to the cell surface was measured with a two-step RT-PCR. Results are presented as mean * SEM.
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CVB3 demonstrated no affinity for CHO cells when puri-
fied virions were used, while both strains interacted with
CHO and Hela cells at comparable levels when crude
virus extracts were used. Hence, our observations that a
higher degree of binding to CHO cells is obtained with
crude viruses are in accordance with these previous
reports. These observations by others and us indicate that
gradient purification may alter the structure of the virion
or remove components that affect the interactions with
the cell surface. The observed differences suggest that the
interaction between virus and host cell differs in an envi-
ronment that resembles infection in its natural state in
comparison to the highly purified radiolabeled virus.
Hence the use of RT-PCR that enables to measure attach-
ment without any purification could be an advantage.

Studies regarding binding to DAF and CAR

Due to the fact that binding to DAF, but not to CAR, was
recorded using the experimental conditions described
above and RT-PCR, two additional well-characterized
enterovirus serotypes were included in the study, EV7W
and CVB20O. EV7W utilizes DAF as receptor [13,14] and
CVB20 uses CAR [15,16,34,35]. In a first set of experi-
ments, MOI 0.5 TCIDs/cell of each virus were allowed to
attach to HeLa, CHO, CHO-CAR and CHO-DAF cells at
4°C. EV7W and CVB5 demonstrated equal binding to
HeLa and CHO-DAF, a result in accordance with previous
reports [20,37]. However, the RT-PCR analyses of CVB20
attachment showed no statistical significant difference in
attachment between any of the cell lines at 4°C (Figure
2A). The observed lower affinity of CVB2O to susceptible
cells could be due to the fact that DAF is ten times more
abundant than CAR on Hela cells [38], and that CVB20
previously has been shown to have a significantly slower
attachment rate to cells than CVB5 [39]. The increase of
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Figure 2
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MOI (MOI 5 TCID;/cell) of CVB20 and attachment car-
ried out at 4°C or at room temperature (Figure 2B)
showed that increasing the temperature is an important
parameter using our experimental setup. Binding of
CVB20O to CHO cells was reduced at room temperature
demonstrating that incubation at a higher temperature
reduced unspecific attachment of this virus to CHO cells,
while attachment to CHO-CAR, CHO-DAF and Hela
remained at the same level. Thus, a significant difference
in attachment to CHO-CAR and Hela in comparison to
CHO was observed performing the measurements at
room temperature.

Interestingly, these studies indicate that CVB20O has some
affinity to CHO-DAF cells, thus suggesting that CVB20
may have a capacity to interact with DAF at the cell sur-
face. Although, presented results give indications of an
affinity for DAF that was not affected by temperature, this
novel finding needs to be further explored. Further inves-
tigation using the RT-PCR method to quantify binding of
CVB20 and CVB4 may reveal that these viruses have some
affinity for DAF, which may explain why CVB2O could be
adapted to cytolytic replication in RD cells despite the
absence of CAR [40].

Using RT-PCR for sensitive studies of viral host cell
interactions

To explore the implementations of RT-PCR in viral bind-
ing studies the limitations in MOI and cell number that
could be used to generate recordable affinities using SYBR
green and two-step RT-PCR were investigated. A fixed
number of HelLa and CHO cells (2.5 x 105) were incu-
bated with various amounts of CVB5, starting with MOI
0.05 TCIDsy/cell to a final ratio of MOI 0.05 x 104
TCID;,/cell. A significant difference in binding to Hela in
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Binding studies for DAF and CAR. A) MOI 0.5 TCID/cell ofCVB20O, EV7W and CVB5 was incubated with 2.5 x 05 cells
in suspension for 2 h at 4°C and virus attachment was subsequently measured using RT-PCR. B) MOI 5 TCID;/cell of CVB20O
was incubated as described in A) at 4°C or at room temperature and attached virus was measured by RT-PCR. Results are

presented as mean + SEM.
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Sensitivity studies to measure viral attachment with RT-PCR. A) Decreasing amount of virus, MOI 0.05-0.05 x 104
TCIDgg/cell, was incubatedwith 2.5 % 105 cells and bound virus was analysed with RT-PCR. B) Decreasing number of CHO and
Hela cells, 2.5 x 105-2.5 x 102, were incubated with MOI 0.05 TCIDg/cell of CVB5 and attached virus was measured with RT-

PCR. Results are presented as mean + SEM.

comparison to CHO could be observed even at a MOI of
0.05 x 104 TCIDs,/cell (Figure 3A). These results demon-
strate the potential to measure specific interactions with
very low amounts of viruses using this RT-PCR approach.

By using a fixed ratio of virus/host cell relation (MOI 0.05
TCIDs,/cell), the ability to study interaction using a lim-
ited amount of cells was also investigated. A decreasing
number of cells were incubated with CVB5 at a concentra-
tion of MOI 0.05 TCIDs/cell and significant differences
in binding to HeLa in comparison with CHO cells were
observed with as few as 250 cells (Figure 3B). The data
presented above clearly demonstrate that RT-PCR is a val-
uable technology for studies of interactions between virus
and cells even when low amounts of cells or viruses are
available.

Investigating viral binding using labeled and purified
viruses is usually conducted with high virus to cell ratio,
high concentration of cells and virus in a small sample
volume [31,32,37,41]. We have demonstrated, using well-
characterized enteroviruses, that RT-PCR is a powerful
method to quantify interactions between a virus and the
cell surface. The options to use unpurified viruses, low
MOI and cell numbers indicate the opportunity to study
virus host cell interaction even when the amount of cells
and viruses are limited.

Conclusion

This article describes a straightforward, rapid and robust
method that with high accuracy can be used to quantify
viral attachment, as an alternative to traditional methods.

We present data that demonstrate the opportunity to use
crude virus extracts and RT-PCR to study binding of
viruses to cells. This is an important step towards studying
viruses in their natural state rather than using highly puri-
fied viruses for these types of studies. The potential to cir-
cumvent purification and radiolabeling of viruses gives
the possibility to study viral attachment with less effort
and at low cost. In addition, it gives the opportunity to
investigate binding of viruses that are not stable during
the purification process by differential ultracentrifugation
and viruses that can not be cultured in cell culture.
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