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Abstract

The family Dicistroviridae (order Picornavirales) includes species that infect insects and other
arthropods. These viruses have a linear positive-sense ssRNA genome of ~8-10 kb, which contains
two long ORFs. The 5' ORF encodes the nonstructural polyprotein while the 3' ORF encodes the
structural polyprotein. The dicistroviruses are noteworthy for the intergenic Internal Ribosome
Entry Site (IGR-IRES) that mediates efficient translation initation on the 3' ORF without the
requirement for initiator Met-tRNA. Acute bee paralysis virus, Israel acute paralysis virus of bees
and Kashmir bee virus form a distinct subgroup within the Dicistroviridae family. In this brief report,
we describe the bioinformatic discovery of a new, apparently coding, ORF in these viruses. The
ORF overlaps the 5' end of the structural polyprotein coding sequence in the +| reading frame.
We also identify a potential 14-18 bp RNA stem-loop structure 5'-adjacent to the IGR-IRES. We
discuss potential translation initiation mechanisms for the novel ORF in the context of the IGR-
IRES and 5'-adjacent stem-loop.

Findings

The family Dicistroviridae includes a number of insect- and
arthropod-infecting species such as Cricket paralysis virus,
Black queen cell virus, Plautia stali intestine virus and
Taura syndrome virus. The species Acute bee paralysis
virus (ABPV), Israel acute paralysis virus of bees (IAPV)
and Kashmir bee virus (KBV) - which have been associated
with Colony Collapse Disorder of honeybees - form a
tight subclade within the family (Figure 1; [1-5]). The
dicistroviruses have a linear positive-sense ssRNA genome
containing two long ORFs. The 5' ORF (hereafter CDS1)
encodes the nonstructural polyprotein while the 3' ORF

(hereafter CDS2) encodes the structural polyprotein. The
intergenic region (IGR) contains an internal ribosome
entry site (IRES), comprising a complex and compact tri-
ple-pseudoknotted RNA structure that binds ribosomes
and mediates efficient translation initation on CDS2. The
IGR-IRES essentially mimics the E- and P-site tRNAs
(including the P-site codon:anticodon duplex), allowing
A-site initiation at a non-AUG codon, without any
requirement for initiator Met-tRNA (Met-tRNA;) or any of
the usual initiation factors (see Refs. [6-12] for recent
reviews).
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Phylogenetic tree for representative dicistroviruses. A simple neighbour-joining phylogenetic tree, for representative
dicistroviruses based on the CDS2 (structural polyprotein) amino acid sequences. The tree was produced with CLUSTALX
[18]. Columns with alignment gaps were excluded. Numbers indicate bootstrap support (out of 1000), while the scale bar rep-

resents the number of substitutions per site.

Overlapping genes are common in RNA viruses where
they serve as a mechanism to optimize the coding poten-
tial of compact genomes. However, annotation of over-
lapping genes can be difficult using conventional gene-
finding software [13]. Recently we have been using a
number of complementary approaches to systematically
identify new overlapping genes in virus genomes [13-17].
When we applied these methods to the dicistroviruses, we
found strong evidence for a new coding sequence - hereaf-
ter ORFX - in the bee paralysis viruses (i.e. ABPV, IAPV and
KBV), overlapping the 5'-terminal region of CDS2 in the
+1 reading frame (Figure 2). Here we describe the bioin-
formatic analyses.

Dicistrovirus sequences were extracted from GenBank, the
polyprotein coding sequences were extracted, translated,
aligned with CLUSTALW [18], back-translated to nucle-
otide sequence alignments, and clustered into separate
alignments for each GenBank dicistrovirus RefSeq (using
65% nucleotide identity to the RefSeq as a cut-off thresh-
old). Beginning with pairwise sequence comparisons,
conservation at synonymous sites (only) was evaluated by
comparing the observed number of base substitutions
with the number expected under a neutral evolution
model. The procedure takes into account whether synon-

ymous site codons are 1-, 2-, 3-, 4- or 6-fold degenerate
and the differing probabilities of transitions and transver-
sions (see [17] for details). Statistics were then summed
over a phylogenetic tree as described in [14], and averaged
over a sliding window.

When this procedure was applied to the bee paralysis
viruses (see Figure 3 caption for GenBank accession num-
bers), a striking and extended peak in synonymous site
conservation (p ~ 10-14 for the total conservation within
ORFX) was apparent at the 5' end of CDS2 (Figure 2B,
panels 5-7). Such conservation peaks are indicative of
overlapping functional elements, though such elements
may be either coding or non-coding. However, in this
case, coinciding with the conserved region there was an
unusually extended and conserved absence of stop codons
in the +1 reading frame (Figure 2B; panel 3), thus suggest-
ing an overlapping coding sequence in the +1 frame as a
possible explanation for the enhanced conservation.
Inspection of an additional 74 sequences with only partial
coverage of CDS2, but nearly complete coverage of the
ORFX region, again revealed the complete absence of +1
frame stop codons in this region. If this region does not
harbour an overlapping coding sequence, then the unusu-
ally high synonymous site conservation in this region
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Figure 2 (see previous page)

Coding potential statistics for bee paralysis dicistrovirus CDS2 and the overlapping ORFX. (A) Genome map for
KBV [GenBank:NC_004807]. (B2-B1 1) Coding potential statistics based on an alignment of 16 bee paralysis virus CDS2
sequences (see Figure 3 caption for accession numbers). (B2-B4) Positions of stop codons in each of the three forward read-
ing frames. Note the conserved absence of stop codons in the +1 frame within ORFX. (B5-B7) Conservation at synonymous
sites within CDS2 (see [17]). (B6-B7) depict the probability that the degree of conservation within a given window could be
obtained under a null model of neutral evolution at synonymous sites, while (B5) depicts the ratio of the observed number of
substitutions within a given window to the number expected under the null model. (B8-B10) MLOGD sliding-window plots
(see [14]). In (B8) the null model, in each window, is that the sequence is non-coding, while the alternative model is that the
sequence is coding in the +0/CDS2 frame. Positive scores favour the alternative model and, as expected, there is a strong cod-
ing signature throughout CDS2 except where CDS2 is overlapped by ORFX. In (B9-B10) the null model is that only the CDS2
frame is coding, while the alternative model is that both the CDS2 frame and the window frame are coding. The ORFX region
has consecutive positively scoring windows, albeit only just (see text; B9). (B1 1) MLOGD statistics restricted to ORFX. Here,

for increased sensitivity, the null and alternative models were fitted specifically for the ORFX region.

almost certainly reflects some other functional element -
perhaps playing some role in normal IGR-IRES initiation
in the bee paralysis viruses. One possibility is simple selec-
tion against certain nucleotides in order to avoid forma-
tion of alternative RNA structures that disrupt the IGR-
IRES [19]. However, the extent and degree of conservation
appears unusually high (e.g. as compared with other dicis-
troviruses) if this is indeed the only explanation.

Next, the bee paralysis virus CDS2 alignment was ana-
lysed with MLOGD - a gene-finding program which was
designed specifically for identifying overlapping coding
sequences, and which includes explicit models for
sequence evolution in multiply-coding regions [13,14]
(Figure 2B, panels 8-11). Due to the overall high conser-
vation, the absolute MLOGD scores tend to be low within
the ORFX region (since there are fewer substitutions with
which to discrimate the null or non-coding model from
the alternative or coding model). Nonetheless, MLOGD
predicts that ORFX is indeed a coding sequence, with con-
secutive positively-scoring windows in the ORFX region
(Figure 2B, panels 9 and 11).

Given the location of ORFX and the unusual translation
mechanism of CDS2, the translation of ORFX - if it is
indeed expressed - is clearly of interest and may provide
new insights into the mechanics of IGR-IRES mediated
initiation. Possible ORFX translation mechanisms include
(i) a portion of ribosomes initiate at more-or-less the nor-
mal IGR-IRES mediated non-Met-tRNA; initiation site but
in the +1 frame; (ii) a portion of ribosomes, or rather 408
ribosome subunits, binding to the IGR-IRES somehow
start scanning, and normal AUG-initiation takes place at a
conserved tandem pair of +1 frame AUG codons ~35
codons downstream (Figure 3A) or, in some sequences, at
AUG codons further 5'; or (iii) normal IGR-IRES mediated
CDS2 initiation occurs but is followed by a programmed
+1 frameshift into ORFX.

The synonymous site conservation plot peaks around the
tandem +1 frame AUG codons (Figure 2B, panel 7; Figure
3A), falling off rapidly upstream and more slowly down-
stream. However, it is unclear whether or not this favours
scanning and AUG initiation. There is still significant syn-
onymous site conservation upstream of the AUG codons
(Figure 3A). The peak in synonymous site conservation
may just represent the region of the putative protein that
is subject to the strongest amino acid constraints. The
MLOGD statistics, on the other hand, indicate that the
positive coding signature in the +1 frame extends right up
to the 5' end of CDS2 (Figure 2B, panel 11), thus favour-
ing the model in which a portion of ribosomes initiate at
or near the usual IGR-IRES initiation site but in the +1
reading frame.

If ORFX initiation occurs at the normal IGR-IRES initia-
tion site but in the +1 frame then translation of ORFX
would result in an 11.2 kDa, 93 amino acid product in
KBV, and 92 and 94 amino acid products in ABPV and
IAPV respectively. If, however, initiation takes place at the
downstream tandem AUG codons, then translation of
ORFX would result in a 7.1 kDa, 60 amino acid product in
all three species. Within the longer (i.e. 92-94 amino acid)
potential ORFX product, there are 61 residues that are
completely conserved between the KBV, ABPV and IAPV
GenBank RefSegs. In the region of the structural polypro-
tein that is encoded by the portion of the CDS2 sequence
that ORFX overlaps, there are 66 completely conserved
residues. Thus the putative ORFX product is apparently
subject to slightly weaker functional constraints than the
‘corresponding' portion of the structural polyprotein.

The IGR-IRESes of the bee paralysis viruses differ from the
IGR-IRESes of most other sequenced dicistroviruses in
one notable aspect - namely they have an extra hairpin
structure within domain 3 (see Refs. [11,20] for details).
We investigated the possibility that the presence of the
extra hairpin structure might be correlated with the pres-
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Figure 3 (see previous page)

Nucleotide and amino acid sequence alignments and predicted RNA structures. (Al) Nucleotide alignment of
ORFX and flanking regions for the sequences [GenBank:NC_009025] (IAPV), [GenBank:NC_004807] KBV, and [Gen-
Bank:NC_002548] (ABPV). Spaces separate +0/CDS2-frame codons. Colour coding is as follows: light blue - CDS2 IGR-IRES-
mediated initiation site; red - ORFX termination codon; green - potential +1/ORFX-frame AUG initiation codons if ORFX is
AUGe-initiated (there are no intervening +0 or +2 frame AUG codons). Black arrows indicate the approximate expected initia-
tion site if ORFX is IGR-IRES initiated (see text). Symbols "' and 'x' represent completely conserved columns (based on a
larger alignment comprising GenBank accession numbers NC_009025, EU436455, EU436456, EU436423, NC_004807,

NC _002548). (A2) The corresponding region in [GenBank:NC_006559] (SINV-1). (B) Amino acid alignment of the translated
ORFX assuming initiation at the normal IGR-IRES initiation site but in the +1| reading frame. Methionine residues are high-
lighted in green. (C) Representative sequences showing a potential RNA hairpin structure directly upstream of the predicted
IGR-IRES in the bee paralysis dicistroviruses. The CDS| termination codons are underlined and in bold. The 5' end of the IGR-
IRESs (as summarized in Ref. [11]) are underlined. Predicted base pairings are indicated by paired parentheses and coloured

background shading. Substitutions that maintain the predicted base pairings are highlighted in blue (for single substitutions
involving G:U pairings) or pink (for compensatory paired substitutions).

ence of ORFX. Two other sequenced dicistroviruses have
the extra hairpin structure - (i) the ant-infecting Solenop-
sis invicta virus 1 or SINV-1 ([GenBank:NC 006559];
[21,22]), and (ii) the shrimp-infecting Taura syndrome
virus or TSV ([GenBank:NC_003005]; [23]).

SINV-1 clusters with the bee paralysis viruses in the phyl-
ogenetic tree (Figure 1), and an analysis of its sequence
shows that it does indeed contain a potential ORFX. In
fact ORFX in SINV-1 is substantially longer than in the bee
paralysis viruses - 125 codons if initiated in the +1 frame
at the IGR-IRES normal initiation site; 83 codons if initi-
ated at the tandem AUG codons (which are present in
SINV-1 and align with the tandem AUG codons in the bee
paralysis viruses); or 121 codons if initiated at an
unstream intervening AUG codon (Figure 3A). (An addi-
tional SINV-1 sequence - [GenBank:F[229495] - with par-
tial coverage of the ORFX region contained an ORFX-
frame premature termination codon [PTC] that truncates
ORFX by 33 codons. However, apart from the potential
for sequencing errors, PTCs in a small number of isolates
are not unusual for short overlapping genes, which tend
to have non-essential 'secondary' functions, and we do
not believe that this ORFX-defective partial sequence nec-
essarily precludes the presence of a functional ORFX in
SINV-1.)

On the other hand, ORFX was not present in TSV. The first
+1 frame AUG codon 3' of the IGR-IRES initiation site is
preceded by a CDS2-frame AUG codon, and is closely fol-
lowed by a +1 frame stop codon, while non-AUG +1
frame initiation at the usual IGR-IRES initiation site
would only give a 16 amino acid product. Thus the pres-
ence of ORFX does not seem to correlate with the presence
of the extra hairpin structure within domain 3 of the IGR-
IRES.

However, we did identify a novel (so far as we are aware)
potential RNA hairpin structure immediately 5'-adjacent
to, but not overlapping, the IGR-IRES in the bee paralysis
viruses (Figure 3C). In the KBV and IAPV RefSegs, the
hairpin comprises 18 consecutive base pairs (with a 4 nt
terminal loop containing the CDS1 termination codon)
and is supported by many compensatory substitutions
(i.e. paired substitutions that maintain the base pairings)
between KBV and IAPV. Inspection of 77 additional
sequences with coverage of this region revealed six
(mostly identical) sequences with single mismatches in
the stem, one sequence with two mismatches, and one
sequence with a 4-nt deletion at the apical end of the
stem. Nonetheless, the majority of sequences retained a
perfect 18 bp hairpin, and a total of 14 different substitu-
tions that preserved the base pairings were observed. A
similar, though shorter (14 bp), hairpin stucture was
identified in ABPV (Figure 3C). Again, inspection of ten
additional sequences revealed five different substitutions
in the stem, all of which preserved the predicted base pair-
ings. Whether the hairpin is in any way relevant to trans-
lation of the putative ORFX remains to be seen. However,
preliminary experimental results indicate that presence of
the predicted hairpin does have a strong effect on IGR-
IRES activity (unpublished data, QS Wang and E Jan).

Recent results suggest that under certain circumstances
(namely the presence of an initiator tRNA species that rec-
ognizes the P-site codon) the IGR-IRES can, at some level,
mediate initiation at the P-site (presumably in competi-
tion with A-site initiation) [24]. The codon:anticodon
duplex mimicking part of the IGR-IRES (a.k.a. PKI) has
been shown to be dynamic and flexible [25-27], and Ref.
[24] suggest that P-site initation takes place only upon dis-
sociation of the duplex. However, this duplex is critical for
selection of the CDS2 reading frame [25] so, upon disso-
ciation of the duplex, there may be flexibility in the selec-
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tion of reading frame, thus perhaps allowing +1 frame P-
site initiation. In fact, all available bee paralysis virus
sequences have a CUG codon at this location, which is
known to be recognizable by native Met-tRNA; [28].

Other dicistroviruses lack a long overlapping ORF at this
genomic location and lack the corresponding extended
region of synonymous site conservation (data not
shown). At least some other dicistroviruses do exhibit
some degree of heightened synonymous site conservation
at the very 5' end of CDS2, but the 3' extent of these
regions appears to be much more limited than in the bee
paralysis viruses (perhaps it simply reflects selection
against certain nucleotides in order to avoid forming alter-
native RNA secondary structures that may disrupt IGR-
IRES activity [19]). In fact the sequence data is rather lim-
ited for most dicistroviruses in the sense that it is difficult
to make alignments with sufficiently large phylogeneti-
cally-summed diversity but sufficiently small pairwise
divergences for the above analyses to produce useful sta-
tistics. Thus, there may be features in the other dicistrovi-
ruses that will remain hidden until more sequence data
becomes available.

Overlapping genes are difficult to identify and are often
overlooked. However, it is important to be aware of such
genes as early as possible in order to avoid confusion (oth-
erwise functions of the overlapping gene may be wrongly
ascribed to the gene they overlap), and also so that the
functions of the overlapping gene may be investigated in
their own right. Although overlapping the structural poly-
protein, there is no reason to suspect that ORFX encodes
a structural protein - indeed the limited phylogenetic dis-
tribution of OREX suggests that it does not. We are cur-
rently investigating the translation mechanism for the
putative ORFX and how it relates to the IGR-IRES and the
potential upstream hairpin structure.

Note: during the preparation of this manuscript, the pos-
itive coding potential of ORFX was also predicted by Ref.
[29] (who name the ORF 'pog'), albeit using different bio-
informatic approaches.
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