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Abstract

Background: The competitiveness of two Tula hantavirus (TULV) isolates, TULV/Lodz and
TULV/Moravia, was evaluated in interferon (IFN) -competent and IFN-deficient cells. The two
isolates differ in the length of the open reading frame (ORF) encoding the nonstructural protein
NSs, which has previously been shown to inhibit IFN response in infected cells.

Results: In IFN-deficient Vero E6 cells both TULV isolates survived equally well. In contrast, in
IFN-competent MRC5 cells TULV/Lodz isolate, that possesses the NSs ORF for the full-length
protein of 90 aa, survived for more consequent passages than TULV/Moravia isolate, which
contains the ORF for truncated NSs protein (66—67 aa).

Conclusion: Our data show that expression of a full-length NSs protein is beneficial for the virus
survival and competitiveness in IFN-competent cells and not essential in IFN-deficient cells. These
results suggest that the N-terminal aa residues are important for the full activity of the NSs protein.

Background

Hantaviruses (genus Hantavirus, family Bunyaviridae) are
carried by rodents and insectivores and present all over
the world [1]. Some hantaviruses are nonpathogenic, and
others are human pathogens. Pathogenic hantaviruses
from Asia and Europe cause hemorrhagic fever with renal
syndrome (HFRS) while hantaviruses in the Americas
cause hantavirus pulmonary syndrome (HPS). The
genome of hantaviruses consists of three segments of a
negative-sense single-stranded RNA. The large (L) seg-

ment codes for RNA polymerase (L protein), the medium
(M) segment for two glycoproteins Gn and Gg, and the
small (S) segment for the nucleocapsid (N) protein [1].
Hantaviruses carried by Cricetidae rodents (subfamilies
Arvicolinae, Neotominae, and Sigmodontinae) have in
their S segment an additional +1 open reading frame
(OREF) for the nonstructural protein NSs [2]. Hantaviruses
carried by Muridae rodents (subfamily Murinae) do not
possess the NSs ORF [2]. Most recently, we have shown
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that the hantaviral NSs protein is an inhibitor (albeit not
a strong one) of the interferon (IFN) response [3].

The IFN response is one of the main host defence mecha-
nisms against viruses. Virus infection induces expression
of several IFN genes, in most cell types first the genes
encoding IFN-f and IFN-a4 [4]. These IEN proteins are
then secreted from an infected cell and they bind to corre-
sponding receptors on the same or neighbouring cells
starting a signaling cascade that leads to expression of
hundreds of IFN-stimulated genes producing powerful
antiviral proteins such as myxovirus resistance gene (Mx),
2'-5" oligoadenylate synthetases (OAS) and protein
kinase stimulated by dsRNA (PKR) (reviewed in [5]).
Many viruses have developed special mechanisms to
evade the host immune response (for a review, see [6,7]).
For example, orthobunyaviruses and phleboviruses from
the Bunyaviridae family encode NSs proteins that inhibit
the host cell immunity by suppressing host transcription
[8-11]. Our previous data show that the NSs ORF in Tula
(TULV) and Puumala (PUUV) hantaviruses is functional
[3]. TULV NSs protein was seen with coupled in vitro tran-
scription and translation from S segment cDNA. PUUV
NSs protein was seen with Western blot in infected Vero
EG6 cells. Transiently expressed NSs proteins of both TULV
and PUUV inhibited the activities of IFN- promoter, and
nuclear factor kappa B (NF-xB)- and interferon regulatory
factor-3 (IRF-3) responsive promoters in COS-7 cells. The
decline in the expression of IFN-B mRNA was evident in
TULV- infected or TULV- NSs expressing [FN-competent
MRCS5 cells. These data strongly suggested that the hanta-
viral NSs protein is an IFN antagonist.

In this study we aimed to find whether the length of the
NSs ORF can affect the hantavirus capacity to withstand
the host IFN response. We took advantage of the availabil-
ity of two TULV isolates, TULV/Lodz [12] and TULV/
Moravia [13]. These two TULV isolates differ in the length
of the NSs ORF. In TULV/Lodz the NSs ORF is 90 aa long
while in TULV/Moravia a single mutation generated dur-
ing adaptation to Vero E6 cell culture converted the 15th
triplet into a stop codon (Fig. 1). Consequently, this iso-
late produces a slightly shorter NSs protein of 67-68 aa
residues, which most probably starts from Met24 or
Met25 [3] (Fig. 1). IFN-competent MRC5 cells [14] and, as
control, IFN-deficient Vero E6 cells [15] were infected
with a mixture of the viruses and isolate-specific RT-PCR
assays were utilized to find out, which of the two isolates
resists the IFN response better.

Results

Selection of primers for isolate-specific amplification of
the S and M segment sequences of two TULYV isolates
First, we designed isolate-specific primers for detection
either of two TULV isolate during double infection. As the
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NSs-ORF

N-ORF

—

b) Lodz NSs MNSRLSLPAK NLKMORKQWR PTRMMLTKAH FKADGQLCQH WRTNWQISRD
Mor NSs  ---K----G- ----*KRR-K ——-MM—-—R—- YRV.

90 aa
66-67 aa

Lodz NSs NLQIWYQVKK WVKSLLTRLG LSLMIILRKD QASDMEMSLM

Mor NSs S—==-C-m=m ———mmm———— - R--TS-R- --F-——-—-—-
Figure |
Hantavirus NSs ORF. a) Schematic presentation of hanta-
virus S segment. TULV NSs protein is 90 aa and N protein
429 aa in length. b) NSs ORF sequences of TULV/Lodz and
TULV/Moravia. TULV/Lodz codes for the full-length NSs
protein of 90 aa. TULV/Moravia NSs ORF contains a stop
codon at the place of Glu-15 and the production of truncated
protein presumably begins from Met-24 or Met-25 (bold and
underlined) and thus yields a protein of 66—67 aa in length. *,
stop codon.

isolates are genetically closely related only a few potential
regions for the annealing of isolate-specific primers could
be found in their genomes. Our S-primers appeared iso-
late-specific indeed (Figures 2 and 3) and allowed to
amplify 266 bp and 255 bp products from TULV/Lodz
and TULV/Moravia isolates, respectively. RT-PCR assays
with these S-primers appeared also quite sensitive: the
PCR-products were seen after 30 rounds of amplification.
The selected M-primers showed the high specificity as well
but, to generate sufficient amount of amplicons, nested
PCR was needed (Table 1).

Controls Passages Gene
Lodz Moravia 3 4 5 6 segment
- - Lodz s
- % Moravia S
] .
“ * Moravia M
Figure 2

Detection of TULV/Lodz and TULV/Moravia S and M
segments in double-infected MRCS5 cells. Cells were
infected with the mixture of the TULV strains; fresh cells
were infected with supernatant, and the cells were used for
RNA isolation. RT-PCR was performed with isolate- and
gene-specific primers. From up: results of RT-PCR assays
with the primers specific for: TULV/Lodz S segment, TULV/
Lodz M segment, TULV/Moravia S segment, and TULV/Mora-
via M segment.
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Controls Passages Gene
Lodz Moravia 1 2 3 4 5 6 segment
ea Lodz S
Lodz M
Moravia S
Moravia M

Figure 3

Detection of TULV in MRCS5 cells infected with the
supernatant from double-infected Vero Eé cells.
MRCS5 cells were infected with the passage | supernatant
from Vero E6 cells infected with the mixture of TULV/Lodz
and TULV/Moravia. Supernatant was used to infect fresh
cells, and from them RNA was isolated. RT-PCR was done
with the isolate-specific S- and M-primers. From top: results
of RT-PCR assays with the primers specific for: TULV/Lodz S
segment, TULV/Lodz M segment, TULV/Moravia S segment,
and TULV/Moravia M segment.

Survival and competitiveness of TULYV isolates in IFN-
deficient cells

Vero E6 cells were infected with a mixture of TULV/Lodz
and TULV/Moravia isolates. After 14 days fresh Vero E6
cells were infected with a part of the supernatant and
again new supernatant was collected and used in infection
(for details, see Methods). Altogether 10 passages were
performed. Total RNA was isolated from infected cells and
the isolate-specific RT-PCR assays were used to monitor
the presence of viral S and M segments. The S- and M-
amplicons of both isolates were seen during all passages
(Table 2), i.e. none of the viruses outcompeted another.
These results suggested that, at least under these experi-
mental conditions, the length of the NSs protein did not
affect the competitiveness of the virus in IFN-deficient
cells. When the mixed infection was repeated in I[FN-com-
petent cells, the situation changed.

Table I: Primers used in TULYV isolate-specific RT-PCR assays.

http://www.virologyj.com/content/5/1/3

Survival and competitiveness of TULYV isolates in IFN-
competent cells

MRCS5 cells were infected with the mixture of TULV/Lodz
and TULV/Moravia isolates. The supernatant was col-
lected and used to infect fresh cells. Altogether 6 passages
were performed and the RNA was analyzed by RT-PCR
assays. While both S and M segments of TULV/Lodz were
detected during three passages, the corresponding seg-
ments of TULV/Moravia were detected only at passage 1
(Fig. 2). When MRCS5 cells were infected with the first pas-
sage supernatant from Vero EG6 cells infected with the mix-
ture of two viruses, the outcome was essentially the same
(Fig. 3). Neither of the isolates survived all six passages,
and the TULV/Lodz isolate probably producing 90 aa-
long NSs protein survived better than TULV/Moravia iso-
late capable of producing a shorter version of the NSs pro-
tein. Interestingly, under these experimental settings both
TULYV isolates survived better.

Discussion

IFN response plays an important role during hantavirus
infection [16-21] and, not surprisingly, hantaviruses rep-
licate better in IFN-deficient than in IFN-competent cells
[19,22,23].

NSs ORF is found in many but not in all hantaviruses [2].
Both nonpathogenic hantaviruses (e.g. TULV and Prospect
Hill virus) and pathogenic ones (e.g. Sin Nombre virus
(SNV) and Andes virus) have NSs ORF, and presumably
produce the NSs protein. Thus this protein is probably not
the sole determinant of hantavirus pathogenicity. An NSs
OREF is present also in the S segments of bunyaviruses of
the genera Orthobunyavirus, Tospovirus, and Phlebovirus [1].
The NSs proteins of orthobunya- and phleboviruses coun-
teract the IFN response by inhibiting RNA polymerase II
and hence downregulate the general transcription in
infected cells [8-11]. By analogy one would assume a sim-
ilar anti-IFN function for hantaviral NSs protein. Accord-
ing to our data, host protein synthesis is not severely

Primer name (isolate, segment, forw/rev) Sequence 5'-3'

Position (nt) Amplicon size (bp)

LVSF783 (Lodz, S, forw) GAAAAAGCAAGGTGGTCCCAAC 783-804 266
LVSR1026 (Lodz, S, rev) GGATTGAGAAGAAGGCTCCTAAT 1026—1048

LodzG2F426 (Lodz, M, for) CAAATTGAGGTCAGTCGGG 426444 528
LodzG2R953 (Lodz, M, rev) AATGATAAATCCCTATTGACG 933-953

LodzG2F554 (Lodz, M, nested PCR, forw) CCGTTAAAGTTTGCATGATAGGG 554-576 261
LodzG2R814 (Lodz, M, nested PCR, rev) GTTGATAGCCAGAAACTGTATTG 792-814

TulSF895 (Moravia, S, forw) GATTGATGACTTGATTGATCTTGC 895-918 255
MVSR1149 (Moravia, S, rev) GCGTCTCAGATATGACTGATAG 1128-1149

MorG2F83 (Moravia, M, forw) CTGATTTAGAATTGGATTTTTCCC 83-106 735
MorG2R817 (Moravia, M, rev) TTCTCTGATATCCAGATACAGTG 795-817

MorG2F444 (Moravia, M, nested PCR, forw) CAAAGTTTATAAAATCCTGTCCC 444466 136
MorG2R579 (Moravia, M, nested PCR, rev) TGTTCCAATCATACAGACCTTC 558-579
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Table 2: Summary of RT-PCR detection of TULV S and M segment RNA.

Passages
Cells Infection with TULYV isolates TULYV isolate | 2 3 4 5 6 7 8 9 10
Vero E6 Lodz & Moravia Lodz + + Xa + + + + + + +
Moravia + + X + + + + + + +
MRC5 Lodz & Moravia Lodz + + + - - - NDb ND ND ND
Moravia + - - - - - ND ND ND ND
MRC5 I'st passage from VeroE6 Lodz + + + + + - ND ND ND ND
Moravia + + + +/-c¢ - - ND ND ND ND

2RNA pellet from passage 3 was lost and therefore we were unable to detect viruses in this passage;

5ND = not done;

¢The S-specific RT-PCR was positive up to passage 4; the M-specific RT-PCR was positive up to passage 3.

affected by infection with TULV and PUUV. The NSs pro-
teins of these viruses decrease the IFN response by inhib-
iting the activation of IFN-B promoter via NF-kB and IRF-
3 pathways [3]. Thus the suppression of IFN-$ induction
by TULV, PUUYV, and also Prospect Hill virus, New York
virus, SNV, and Andes virus reported by several research
groups [17-21] could be, at least in part, attributed to the
inhibitory activity of the NSs protein. In hantaviruses lack-
ing the NSs ORF, the IFN response could be antagonized
by other means, e.g. by glycoproteins [21,23].

Here we have studied the competitiveness of two TULV
isolates, TULV/Lodz and TULV/Moravia, after double
infection in IFN-deficient and IFN-competent cells. These
two TULYV isolates differ in the length of their NSs ORF,
which provided an opportunity to gain insights on func-
tion(s) of the NSs protein in vivo. TULV/Lodz isolate was
expected to be more resistant to the IFN response than
TULV/Moravia. This appeared to be the case indeed, sup-
porting our earlier conclusion that the NSs protein is
involved in the counteraction of IFN response, and sug-
gesting that the N-terminal aa residues in the molecule are
needed for the full activity of the NSs protein of TULV. It
would be interesting to examine the anti-IFN activity of
the NSs proteins of other hantaviruses, especially of SNV
and SNV-like viruses that possess shorter NSs ORFs than
PUUV and TULV [2].

Interestingly, even the more resistant of two TULV iso-
lates, TULV/Lodz, failed to survive in MRCS5 cells for more
than five consequent passages. This temporary survival is
in sharp contrast to the persistent, life-long infection,
which TULV causes in its natural rodent host [24,25]. One
possible explanation is that, in the course of natural infec-
tion, the virus infects only a few IFN-competent cells and
thus can avoid an immediate clearance by the host innate
immunity. In Vero E6 cells the full-length NSs protein of
TULV/Lodz did not appear beneficial for the competitive-
ness of this isolate suggesting that the full-length NSs pro-
tein is not essential for the virus in IFN-deficient cells.

So far no hantavirus with the entire NSs ORF deleted has
been found in nature or engineered using reverse genetics.
However, an interesting clone of PUUV strain Sotkamo
was recently obtained by focus purification technique
from the original Vero E6 cell culture isolate [26]. This
clone, Sotkamo-delNSs, carries a stop codon instead of
Trp-21 codon in the NSs ORF, and thus could produce a
truncated NSs protein (transcription presumably starts
from Met-24), which is of the same size as in TULV/Mora-
via isolate. Most notably, Sotkamo-delNSs clone grows to
substantially lower titers (about 10 times) than parental
virus in IFN-competent A549 cells while in IFN-deficient
Vero cells both viruses replicated with the same efficacy
(Andreas Rang, personal communication). This is in
agreement with our results on TULV and supports the idea
that the production of the full-length NSs protein is ben-
eficial for the viral growth in IFN-competent cells but not
vital in IFN-deficient cells.

Reassortant variants could have been formed in the course
of double infection with two TULV isolates. One could
also assume that the reassortants possessing the S segment
of TULV/Lodz isolate would have higher chances to sur-
vive in MRCS5 cells (provided that the full-length NSs pro-
tein is a potent pro-survival factor). Unfortunately, our
current isolate-specific RT-PCR assays are not quantitative
and thus this hypothesis could not be properly evaluated.
We are currently trying to develop real-time PCR assays to
clarify this issue.

Conclusion

The data presented here show that TULV/Lodz survives
better in IFN-competent MRCS5 cells than TULV/Moravia.
This is probably due to the function of NSs protein, which
in the former isolate is full-length while in the latter trun-
cated and hence less active. The results are in agreement
with our earlier findings on the anti-IFN function of TULV
NSs protein [3]. The production of the full-length or trun-
cated NSs protein appeared to have no effect on the com-
petitiveness of TULV isolates in Vero E6 cells suggesting
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that in IFN-deficient cells the full-length NSs protein is
not essential for virus growth.

Methods

Cells and viruses

Vero E6 cells were cultured in modified Eagle's medium
(MEM) and MRCS5 cells in Dulbecco's modified Eagle's
medium (DMEM) with 10% fetal calf serum (FCS), 2 mM
L-glutamine, penicillin and streptomycin in 5% CO, at
37°C. TULV strain Lodz [12] and the cell culture-adapted
isolate of TULV strain Moravia Tula/Moravia/Ma5302V/
94 [13] were used.

Titration of viruses

Confluent Vero E6 cells grown on 6-well plate wells were
infected with several virus dilutions (0.5 ml) for 1 h.
About 5 ml of 42°C 0.5% agarose, 8% FCS, 20 mM
HEPES, 1 mM -glutamine, penicillin and streptomycin in
MEM was added onto the cells. The plate was incubated
for 10 min at room temperature (RT). After 11 days of
incubation at 37°C the cells were fixed with 10% formal-
dehyde for 30 min at RT. Agarose was removed and cells
were washed three times 5 min with 0.15% Tween-20 in
PBS. The antibody reaction was done at RT for 1 h with
1% human anti-PUUV serum in 5% FCS, 0.15% Tween-
20 in PBS. After washes, conjugate incubation was done at
RT for 1 h with peroxidase-conjugated rabbit anti-human
IgG diluted 1:150 in 0.15% Tween-20 in PBS. After wash-
ing, cells were stained with Liquid DAB+ Substrate Chro-
mogen System (DakoCytomation, Glostrup, Denmark)
according to the manufacturer's instructions. The titer was
calculated by dividing the number of foci from a well hav-
ing 2-5 foci, by the amount of virus put onto the cells.

Double infections

About 80% confluent MRC5 cells grown on 25 cm? flasks
were infected with TULV/Lodz and TULV/Moravia for 1 h
(both MOI 0.2). The virus inoculum was then replaced
with 10 ml DMEM. After 7 days of infection the superna-
tant (approximately 10 ml) was collected and the part of
it (2 ml) was used to infect new cells. The remaining
infected cells were used for RNA isolation. Consequently,
the passage 2 supernatant was used to infect fresh cells 7
days post infection. Altogether 6 passages and samples for
RNA isolation were collected. Confluent Vero E6 cells
grown on 25 cm? flasks with medium containing 5%
serum were infected with TULV/Lodz and TULV/Moravia
(both 800 FFU). Lodz-Moravia passage 1 supernatant and
samples for RNA isolation were collected 14 days post
infection. New Vero E6 cells were infected with 1 ml of
passage 1 supernatant with 9 ml medium containing 2%
serum. After 14 days passage 2 samples were collected and
fresh cells were infected with it. Totally 10 passages and
samples for RNA isolation were assembled. The first pas-
sage of TULV/Lodz and TULV/Moravia mixed infection
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supernatant collected from Vero E6 cells was also used to
infect MRC5 cells like above (MOI 0.04).

RNA isolation

Cells from a 25-cm? flask were suspended to 3 ml of
TriPure Isolation Reagent (Roche, Basel, Switzerland).
RNA was isolated essentially according to the manufac-
turer's recommendation. Before use, the RNA was re-pre-
cipitated twice with ethanol and 3 M Na-acetate pH 5.3.
RNA was dissolved in 25 pl H20.

RT-PCR

Reverse transcription was performed with 5 pul RNA and
strain-specific primers using the SuperScript™ First-Strand
Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA)
following the manufacturer's instructions. PCR was done
with AmpliTaq® DNA Polymerase (Applied Biosystems,
Foster City, CA) with 5 pl cDNA, which was amplified
with 250 uM dNTPs, 4 mM MgCl,, 1 uM of primers, and
0.03 U/ul polymerase. The isolate-specific primers are
listed in Table 1. For Vero E6 samples Moravia S-segment
PCR was done with the following primers [3]: forward
MVSF780 5'-CCTGAAGAAAAGTGGTCCTAGT-3' and
reverse MVSR1149 (Table 1). Later it was noticed that
primer TulSF895 worked better together with MVSR1149
and this pair of primers was used in the amplification of
MRC5-cell samples (Table 1). Due to the low sensitivity of
the amplification of the M-segment sequences, the nested
PCR was needed. PCR-amplicons were analyzed in 1.7%
agarose gels.
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