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Abstract

Background: Members of the Baculoviridae encode two types of proteins that mediate virus:cell
membrane fusion and penetration into the host cell. Alignments of primary amino acid sequences
indicate that baculovirus fusion proteins of group | nucleopolyhedroviruses (NPV) form the GP64
superfamily. The structure of these viral penetrenes has not been determined. The GPé4
superfamily includes the glycoprotein (GP) encoded by members of the Thogotovirus genus of the
Orthomyxoviridae. The entry proteins of other baculoviruses, group Il NPV and granuloviruses, are
class | penetrenes.

Results: Class |l penetrenes encoded by members of the Rhabdoviridae and Herpesviridae have an
internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha
helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Similar
sequences and structural/functional motifs that characterize class Il penetrenes are located
collinearly in GP64 of group | baculoviruses and related glycoproteins encoded by thogotoviruses.
Structural models based on a prototypic class lll penetrene, vesicular stomatitis virus glycoprotein
(VSV G), were established for Thogoto virus (THOV) GP and Autographa california multiple NPV
(AcMNPV) GP64 demonstrating feasible cysteine linkages. Glycosylation sites in THOV GP and
AcMNPV GPé64 appear in similar model locations to the two glycosylation sites of VSV G.

Conclusion: These results suggest that proteins in the GP64 superfamily are class Ill penetrenes.

Introduction

The entry of enveloped animal viruses into target cells
occurs via fusion of the viral membrane with a cellular
membrane. Penetrenes are viral membrane proteins that
mediate penetration into the host cell. The penetrenes of
enveloped animal viruses can be divided on the basis of
common structural motifs into at least three classes.
Orthomyxoviruses, retroviruses, paramyxoviruses, arena-
viruses, and coronaviruses encode class I penetrenes [1-6],
which are also known as class I viral fusion proteins or o-

penetrenes. Class I penetrenes contain a "fusion peptide,"
a cluster of hydrophobic and aromatic amino acids
located at or near the amino terminus, an amino terminal
helix (N-helix, HR1), a carboxyl terminal helix (C-helix,
HR2), usually an aromatic amino acid (aa) rich pre-mem-
brane domain and a carboxyl terminal anchor [1,7,2,8,9].
Envelope glycoprotein (E) and envelope glycoprotein E1
encoded respectively by members of the Flavivirus genus
of the Flaviviridae and the Alphavirus genus of the Togaviri-
dae are class II penetrenes (p-penetrenes) [10-12]. Class II
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penetrenes possess three domains (I-III) comprised
mostly of antiparallel B sheets, a membrane proximal a-
helical stem domain and a carboxyl terminal anchor. The
fusion loops of class II penetrenes are internal and located
in domain II. Members of the two other Flaviviridae
genuses, Hepaciviruses and Pestiviruses, appear on the basis
of proteomics computational analyses to encode trun-
cated class II penetrenes [13]. Proteomics computational
analyses suggest that the carboxyl terminal glycoproteins
(Gc) of bunyaviruses, and similar proteins of tenuiviruses
and a group of Caenorhabditis elegans retroviruses, are also
class I penetrenes [14]. Additional evidence that bunyavi-
rus Gc are class II penetrenes has been provided [15,16].

Recent studies have provided evidence for a third class of
viral penetrenes (class III or y-penetrenes). The entry glyc-
oprotein (G) of vesicular stomatitis virus (VSV), a rhab-
dovirus, contains a fusion domain comprised of  sheets,
other B sheet domains, an extended a-helical domain, a
membrane proximal o-helical stem domain and a car-
boxyl terminal anchor [17,18]. On the basis of sequence
similarity it is likely that G of other members of the Rhab-
doviridae are also class III penetrenes. Although larger,
glycoprotein B (gB) of herpes simplex virus type 1 (HSV-
1) and by sequence similarity gB of other herpesviruses,
were unexpectedly demonstrated to share several struc-
tural features with VSV G [19]. The extended a-helices in
the post-fusion forms of G and gB are involved in trimer-
ization, as is well documented for a-helices in the post-
fusion structures of class I penetrenes. The fusion domains
of rhabdovirus G and herpesvirus gB are very similar struc-
turally to the fusion domains of class II penetrenes [17-
20]. Therefore, class III penetrenes may share a common
progenitor(s) with members of other penetrene classes.

Members of the Baculoviridae are enveloped double-
stranded DNA viruses of arthropods that are subdivided
into two genuses, Nucleopolyhedrovirus (NPV) and Granu-
lovirus (GV). NPV are further subdivided into group I and
I1. Baculoviruses encode two distinct penetrenes [21,22].
Entry proteins of group I NPV are all approximately 64
kilodalton glycoproteins (GP64), and are referred to col-
lectively as GP64 superfamily proteins [23]. Group II NPV
and GV encode entry proteins referred to as fusion pro-
teins (F) [22,24]. Group I NPV often encode both GP64
and F homologues, although in these viruses F is nonfunc-
tional. Autographa california multiple NPV (AcMNPV)
lacking GP64 can be pseudotyped by the F protein of Spo-
doptera exigua MNPV [25], suggesting that F of group II
NPVs and GV can serve as a functional analog of GP64.
However, GP64 cannot serve as an analog of F [26]. Bacu-
lovirus F are class I penetrenes. Structural similarities exist
between baculovirus F, the envelope glycoproteins of
insect retroviruses (errantoviruses), the envelope glyco-
protein of the gypsy retrotransposon of Drosophila mela-
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nogaster and other class I penetrenes [24]. Like other class
I penetrenes, baculovirus F is present in virions as a homo-
trimer and synthesized as a precursor (F,), which is subse-
quently cleaved by furin-like proteases into subunits F,
and F, [27,28]. Prior studies have not revealed structural
relationships between baculovirus GP64 proteins and
other penetrenes.

Thogoto virus (THOV) is a tick-transmitted virus, which is
classified in the Thogotovirus genus of the Orthomyxoviri-
dae. The genome of THOV comprises six segments of sin-
gle-stranded, negative-sense RNA. The fourth largest RNA
segment of THOV encodes a glycoprotein (GP) that has
significant similarity with corresponding proteins of
Dhori, Araguari, and Batken viruses and other thogotovi-
ruses. Thogotovirus GP do not share significant sequence
similarities with the class I penetrenes, hemagglutinin 2
(HA2) or hemagglutinin-esterase 2 (HE2), encoded by
members of the three influenza virus genuses (types A, B
and C) of the Othomyxoviridae or the fusion (F) protein or
HE2 encoded by members of the Isavirus genus, the fifth
orthomyxovirus genus [29]. However, thogotovirus GP
share significant sequence similarity with baculovirus
GP64, and are included in the GP64 superfamily [30,31].
Here, we present the results of proteomics computational
analyses that suggest that GP64 superfamily members are
class III penetrenes.

Materials and Methods

Sequences

Sequence and structural comparisons were performed for
THOV strain SiAr 126 envelope glycoprotein precursor
(THOV GP, accession number P28977), the ACMNPV
GP64 superfamily protein (Ac MNPV GP64, P17501) and
other GP64 superfamily members. Representatives of G
from six genera of the Rhabdoviridae were also used for
sequence and structural comparisons: Vesiculovirus: VSV
strain Indiana (AAA48370); Lyssavirus: rabiesvirus strain
street (AAA47211); Ephemerovirus: bovine ephemeral fever
virus structural G (P32595) and nonstructural G
(P32596); Novirhabdovirus: infectious hematopoietic
necrosis virus (CAA61498); Cytorhabdovirus: lettuce necro-
sis yellows virus glycoprotein (LYP425091); Nucleorhab-
dovirus: rice yellow stunt virus (AB011257) and an
unclassified rhabdovirus: Taastrup virus (AY423355). We
also compared GP64 superfamily members to penetrenes
of representative members of the Herpesviridae, Flaviviri-
dae, Togaviridae, and Bunyaviridae. Comparisons of F from
ISAV strain RPC/NB 98-049-1 (ABE98322) and strain
RPC/NB 98-0280-2 (ABE02810), F from Spodoptera exigua
MNPV (AAF33539) and retrovirus-related Env polypro-
tein from transposon gypsy (P10403) were made to HA
from influenza A virus strains A/WSN/1933 (HINTI,
AAA3209), AJAichi/2/1968 (H3N2, AAA43178), A/
udorn/1972 (H3N2, ABD79032), A/guinea fowl/Italy/
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330/97 (H5N2, AF194991), A/chicken/Korea/S20/2004
(HO9N2, AAV68031) and influenza B virus, strain B/Texas/
37/1988 (ABN50602). Comparisons were also made
amongst HE of influenza C virus strains Yamagata/9/88
(BAA06094) and C/Johannesburg/1/66 (CAL69520),
ISAV strain T91/04 (AAY40756), human coronavirus
OC43 strain ATCC VR-759 (AAR01014) and human toro-
virus (AAF00614).

Proteomics computational methods

Methods developed by William Gallaher and coworkers
to derive models of viral surface glycoproteins have been
described previously [7,3,2,5]. William Pearson's LALIGN
program, which implements a linear-space local similarity
algorithm, was used to perform regional alignments. PHD
(Columbia University Bioinformatics Center), which is
part of the ProteinPredict suite was the preferred method
of secondary structure prediction. Domains with signifi-
cant propensity to form transmembrane helices were
identified with TMpred (ExPASy, Swiss Institute of Bioin-
formatics). TMpred is based on a statistical analysis of
TMbase, a database of naturally occurring transmembrane
glycoproteins [32]. Sequences with propensity to interface
with a lipid bilayer were identified with Membrane Pro-
tein eXplorer version 3.0 from the Stephen White labora-
tory using default settings [33], which can be used to
calculate scores on the Wimley-White interfacial hydro-
phobicity scale (WWIHS) [34]. MacPymol [35] was used
to render 3D models of VSV G (2cmz.pdb) and HSV-1 gB
(2gum.pdb) in the post-fusion configurations. These
models were extrapolated to THOV GP and AcMNPV
GP64 using Photoshop (Adobe) and Freehand (Macro-
media).

Results

Similar sequences and common structurallfunctional
motifs are located collinearly in VSV G, THOV GP and
AcMNPV GPé64

Gallaher and co-workers employed the fusion peptide and
other conserved features in combination with computer
algorithms that predict secondary structure, to construct
working structural models of several viral entry/fusion
proteins, collectively referred to here as class I penetrenes
[7,2,3,5,6]. This strategy has proven to be highly predic-
tive of structures solved later by X-ray crystallography
[4,36]. Gallaher's strategy, supplemented with increas-
ingly robust proteomics computational tools, can also be
applied to discovery of potential structures of viral pene-
trenes that belong to class I1 [13,14]. Here, we apply these
methods to THOV GP and AcMNPV GP64, representative
members of the GP64 superfamily.

The PHD algorithm predicts protein secondary structure
from multiple sequence alignments by a system of neural
networks, and is rated at an expected average accuracy of
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72% for three states, helix, strand and loop. Application of
PHD to VSV G, a prototypic class III penetrene [17],
reveals that predicted secondary structures (Fig. 1, o-helix
and B-sheets depicted with dashed lines) closely corre-
spond to the structures determined by X-ray crystallogra-
phy (colored cones and arrows, accuracy; 77.5%). The
PHD algorithm predicts that there is an extended a-helix
in THOV GP (aa 284-338; blue cone) and AcCMNPV GP64
(aa 284-340). With the exception of this extended o-
helix, the ectodomains of the GP64 superfamily proteins
are comprised mostly of B-sheets (colored arrows).
Another domain readily identifiable with computational
tools in THOV GP and AcMNPV GP64 is the carboxyl ter-
minal transmembrane anchor. TMpred, an algorithm that
identifies possible transmembrane helices, assigns signifi-
cant scores (> 500 is statistically significant) to THOV GP
aa471-491 (score: 2428) and AcCMNPV GP64 aa 470-490
(3030), which suggests that these sequences represent the
transmembrane anchors (violet cones). PHD analyses
also predict the presence of an a-helical stem domain
with several aromatic aa (indigo cones) in THOV GP (aa
442-472) and AcCMNPV GP64 (aa 441-471) prior to the
transmembrane anchor, a feature present in both class I1
and III penetrenes [37-39,18].

The structural determinations of VSV G and HSV-1 gB
were performed by independent groups and although it
was established that similar domains/structures are
present, a consistent domain nomenclature for these class
I1I penetrenes was not used (compare Fig. 2A with Fig. 2B)
[17,19]. The fusion domains of class II and III penetrenes
have a highly similar structure. Therefore, a class III
domain nomenclature is used here that can apply to both
rhabdovirus G and herpesvirus gB and assigns domain II
(IVin the VSV G nomenclature of Roche et al. [17], I in the
HSV-1 gB nomenclature of Heldwein et al. [19]) as the
class III fusion domain as in class II penetrenes. In addi-
tion to minor adjustments in the ends of domains, the
current class III penetrene numbering also combines two
interacting domains into domain III (I + II in Roche's VSV
G nomenclature, III + IV in Heldwein's HSV-1 gB nomen-
clature). The fusion domains of all class II or III pene-
trenes contain 1 or 2 prominent fusion loops, which give
significant scores on the WWIHS [34]. Sequences with
positive WWIHS have a high potential to interface with or
disrupt lipid membranes, and therefore are key features of
viral penetrenes. Another feature of the fusion domains of
class II and III penetrenes is the presence of several
dicysteine bonds, which appear to stabilize the overall
domain architecture. Regions in THOV GP (aa 44-182)
and AcCMNPV GP64 (aa 49-186) with 6 or 8 cysteine res-
idues, plus 1 or 2 sequences with positive WWIHS scores
(Fig. 1, red letters) are likely to represent the fusion
domains.
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Collinear arrangement of similarities in THOV GP, AcMNPV GP64 and VSV G. A common domain nomenclature
for class lll penetrenes is utilized: domain | (green), domain Il (yellow), domain Ill (blue), and stem domain (indigo). The domain
numbering originally proposed is also indicated [ 7]. UA represents "hinge" aa not assigned to domains in VSV G in the prior
scheme. Sequences with significant WWIHS scores in the fusion domain (ll) were identified by MPeX and colored red. Hydro-
phobic transmembrane domains (violet) were predicted using TMpred. The post fusion secondary structure of VSV G as
solved and numbered by Roche and coworkers [17] is depicted with a-helices as cylinders and B-sheets as arrows. The a-hel-
ices predicted by PHD In THOV GP and AcMNPV GPé64 are indicated similarly. 3-sheets (t) and (u) of VSV G are not present
in the protein data base structure (2cmz.pdb). In VSV G, a-helices predicted by PHD are indicated by dashed boxes and pre-
dicted B-sheets are identified with dashed arrows. Amino acids are numbered beginning after the putative signal sequences
enclosed in parentheses. In the alignments (:) refers to identical amino acids. (.) refers to chemically similar amino acids. Plum
amino acids: N-glycosylation sites.

A prominent feature of class III penetrenes is an extended
a-helix beginning near the carboxyl terminal third of the
ectodomain (domain III), which is involved in trimeriza-
tion of the post-fusion structure [17,19]. The extended a-
helices predicted by PHD in THOV GP and AcMNPV
GP64 correspond to this location. As noted previously
[40], the sequence of the predicted helices is consistent
with that of a leucine zipper (mostly leucines or iso-
leucines in the first and fourth positions of seven amino
acid repeats), as is the case for both VSV G (Fig. 1, blue
bars) and HSV-1 gB (not shown). The a-helices in the

GP64 proteins are predicted to be several helical turns
longer than the major helix (helix H) of the post-fusion
structure of VSV G, but comparable in length to the major
a-helix of HSV-1 gB.

Sequence similarities between VSV G, THOV GP and AcM-
NPV GP64 do not permit alignment by computational
methods alone. However, using the regions of local struc-
tural similarity including the putative fusion domain/
loops, extended a-helices and transmembrane domains,
all of which are collinear, alignments between VSV G,
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Figure 2

Similar linear arrangement of putative domain structures of THOV GP and AcMNPV GP64 compared to
domain structures of VSV G and HSV-I gB. Amino acids are numbered beginning after the putative signal sequences in
VSV G, but at the beginning of the signal sequence of HSV-I gB. Arrows indicate G and gB truncations of the forms used for
crystallography. Solid lines represent cysteine bonding in VSV G and HSV-I gB. Black boxes represent hydrophobic regions,
with violet representing the transmembrane anchor (TM) [51]. Dashed lines represent potential cysteine bonding in THOV GP
and AcMNPV GP64. Panel A: class Il penetrene domain nomenclature and coloring as in Fig. |. Panel B: domain nomenclature
and color coding schemes used previously for VSV G [17] and for HSV-1 gB [19]. Hatched boxes in VSV G represent "hinge" aa

not assigned to domains.

THOV GP and BV GP64 are proposed (Figs. 1, 2). These
alignments support assignment of a common domain
architecture for these proteins. The proposed domains of
these GP64 superfamily members are also collinear with
analogous domains of herpesvirus gB, the other proto-
typic class III penetrene (Fig. 2).

Structural models of THOV GP and AcMNPV GP64

Cysteine residues are usually the most conserved aa
within a protein family because disulfide bonds between
cysteines are critical determinants of secondary structure.
The cysteines of class III (and class II) penetrenes deter-
mined by X-ray crystallography are arranged such that

most disulfide bonds are formed between cysteine resi-
dues within the same domain (Fig 2). To determine the
plausibility of the proposed alignment, models of THOV
GP and AcMNPV GP64 scaffolded on the structure of VSV
G in the post-fusion (low pH) configuration [17] were
constructed (Fig. 3). The alignments between VSV G,
THOV GP and AcMNPV suggest that these penetrenes may
have a similar structure. Therefore, putative structures in
the GP64 superfamily members are depicted as in VSV G.
The proposed THOV GP and AcMNPV GP64 models are
based principally on the structural predictions of PHD,
the most robust secondary structure prediction algorithm
used. These results provide evidence that the 6 or 8
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AcMNPV
GP64

HSV-1 gB

Models of THOV GP and AcMNPV GP64 based on the X-ray crystallographic structure of VSV G. The predicted
structures of THOV GP and AcMNPV GPé64 were fit to the post-fusion structure of VSV G [17]. Secondary structures for

THOV GP and AcMNPV GP64 were predicted by PHD or by alignment to VSV G. The structure of HSV-1 gB [19] is shown for
comparison. Domain coloring as in Fig. | and Fig. 2A. Orange/black lines: dicysteine linkages as in Fig. 2. Black stick figures: N-

glycosylation sites.

cysteines in the portion of THOV GP and AcMNPV GP64
that align with the VSV G fusion domain (domain II)
potentially bond with each other. Such linkages can stabi-
lize the fusion loops as occurs in both class IT and III pen-
etrenes. There are also plausible intradomain linkages that
can form between each of the other cysteines in THOV GP
and AcCMNPV GP64.

The results of these analyses suggest that the locations of
the glycosyl residues may be conserved in class III pene-
trenes. Domain I of VSV contains a consensus glycosyla-
tion motif (NXS/T) between B-sheets h and I (Fig. 1). The
other glycosylation site in VSV G is located between (-
sheets r and s in domain III. THOV GP, AcMNPV and
other GP64 superfamily members have similarly located
glycosylation sites on or between predicted -sheets corre-
sponding to VSV G B-sheets h and i and r and s (Figs. 1, 3).

The THOV GP and AcMNPV GP64 structural models are
not intended as definitive structural predictions. Rather,
there are many possible alternatives to the secondary and
tertiary structures and the cysteine linkages of these and

other GP64 superfamily members. The modeling does
establish that feasible structures exist that are consistent
with the secondary structure predictions and with the
assignment of GP64 superfamily members as class III pen-
etrenes. The results of this structural modeling also pro-
vide further support for the proposed alignments of VSV
G with THOV GP and AcMNPV GP64.

Alignment of isavirus F with influenza A and virus
hemagglutinin and influenza C virus hemagglutinin-
esterase

Our computational analyses and molecular modeling
studies suggest that thogotovirus penetrenes are structur-
ally distinct from penetrenes encoded by viruses in the
three other genuses of the Orthomyxoviridae, influenza A, B
and C viruses. The fifth genus in the Orthomyoviridae, Isa-
virus, is represented by infectious salmon anemia virus
(ISAV). ISAV encodes two glycoproteins, one of which
(HE) has hemagglutinin and esterase activities [41]. The
other ISAV glycoprotein is a class I penetrene designated
the fusion protein (F). Previous studies by Aspehaug and
coworkers indicated that like other class I penetrenes,
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ISAV F, is produced by cleavage of a precursor (F;) that
exposes a hydrophobic fusion peptide near the amino ter-
minus [29]. To further investigate the relationship of isa-
virus F; to the «class I penetrenes of other
orthomyxoviruses sequence comparisons and molecular
modeling were conducted. While the alignment we report
here is somewhat different than that proposed previously
[29], it is also consistent with the designation of ISAV F,
as a class I penetrene (Fig. 4). ISAV F, is shorter in overall
length than HA2 of either influenza A or B viruses or HE2
of influenza C viruses, but comparable in length to certain
class T penetrenes, such as glycoprotein 2 of Ebola virus.
PHD reveals the presence of an extended a-helical
domain that corresponds to the N-helix of influenza A

fusion peptide

INFCV HE 441

. a s P . 2
3. R SRS S B LR

el NFeRieler VIOA YL NGEVQGDGAAS

ISAV F 277

..

INFAV HA 346 cingcrSeeising (elixe)/SIDGWYGFRHQNSEGTGQ

s .t zrsaa s sasEre s 3 .
. SIIILL o 1iIIIoIloi. :

INFBV HA 363 emeWwtejafaeleine!BAGWHGY TSHGAHGVAV

INFCV HE 477

ISAV F 305

IR NBRCINNRVNRYE TGIGGY LLGSRKESGGGV
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and B viruses. The N-helix of influenza A and B virus HA2
features a leucine zipper, which is involved in trimeriza-
tion. Other similarities include the presence of a con-
served cluster of three cysteine residues (ISAV F aa
382-390) and an aromatic pre-anchor domain (aa
414-421). Of note is the location of the C-helix in ISAV
F,. In comparison to most other class I penetrenes, the C-
helices of influenza viruses in HE2 or HA2 are shorter and
located more distally from the C-terminus. A sequence
termed the leash is located between the C-helix and the
aromatic domain. The formation of the post-fusion con-
figuration of influenza A, B and C virus HA2 or HE2 is best
described by a leash-in-grove mechanism, rather than by
a six-helix bundle mechanism as in most other class I pen-

INFAV HA 380 AADLKST-QAATDQINGKLNRVIEKTNEKFHOTEKEFSEVEGRIQDLEKYVEDTKIDLWSYNAELLVALEN

INFBV HA 397

leash

INFCV HE 534 GELGIImmTNRAGDLAVEVSPGCWIIDNNICDWFNETAPVETIPPLDTKIDLQSDP

ISAV F 348

INFAV HA 450
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etrenes [42]. The location of the C-helix in ISAV F, sug-
gests that this penetrene shares a common progenitor
with HA or HE of influenza A, B and C viruses, and medi-
ates fusion/penetration by a leash-in-grove mechanism.

Discussion

Proteomics computational analyses suggest that GP64
superfamily proteins are class III penetrenes. Each of the
major features common to class III fusion proteins are
present in THOV GP and AcMNPV GP64, including inter-
nal fusion loops, an extended o-helical domain, a stem
domain and a carboxyl terminal transmembrane domain.
These features are located collinearly with these features in
VSV G, a prototypic class III penetrene [17,18]. On the
basis of sequence similarities among the GP64 super-
family members it is likely that all are class III penetrenes.
Previous studies have suggested a role for the putative
extended a-helix and the leucine zipper motif in GP64
mediated fusion/entry, but did not assign GP64 to any
penetrene class [40,43]. Our results do not corroborate
the previous conclusion [43] that a 6 aa sequence (AcM-
NPV aa 209-214 in Fig. 1) may be the GP64 fusion pep-
tide. Structural models, which include feasible cysteine
linkage maps, could be established for THOV GP and
AcMNPV GP64. The fusion domains of THOV GP and
AcMNPV GP64 appear to be stabilized by cysteine bonds
and to contain one or more loops with positive WWIHS
scores, features that are characteristic of the fusion
domains of both class IT and III penetrenes. Glycosylation
sites in THOV GP and AcMNPV GP64 appear in similar
model locations to the two glycosylation sites of VSV G.
Whether or not the secondary and tertiary folding of GP64
superfamily members conform to the domain structure of
class III penetrenes will require x-ray crystallographic or
other physical structural determinations.

The three penetrene classes for enveloped virus mem-
brane glycoproteins were established based on structural
similarities in the post-fusion configurations. Therefore, it
is likely that there is a common post-fusion (low pH) con-
figuration of class III penetrenes, and that GP64 super-
family members have a post-fusion structure similar to
VSV G. In contrast, the prefusion configurations of class I,
IT and II penetrenes are highly variable. The virion config-
uration of VSV G is homotrimer arranged in a tripod
shape with the fusion domains corresponding to the legs
of the tripod [18]. No structural prediction of the prefu-
sion configurations of GP64 superfamily members is pos-
sible.

Conversion of the virion configuration of VSV G to the
fusion competent form occurs upon exposure to low pH
in the infected cell. Current models suggest that low pH
may permit reversible bending of VSV G at "hinge"
regions flanking domain I elevating the fusion loop(s) for

http://www.virologyj.com/content/5/1/28

insertion into the host membrane [18]. Additional rear-
rangements of VSV G involve a rotation around the hinge,
unfolding of a-helix A? and formation of helix C, interac-
tions of the stem with domains I-III, and formation of
higher multimers of the trimers. The order in which these
steps occur has not been established. These changes in
VSV G are hypothesized to drive deformation of the viral
and target membranes. Complete cell membrane:virion
membrane fusion follows, allowing entry of the ribonu-
cleoprotein containing the viral genomic RNA. It is likely
that GP64 superfamily members follow a mechanism of
fusion similar to rhabdovirus G. In the case of HSV-1 gB
there may be differences in the rearrangements due to size
and cysteine bonding patterns of this class Il penetrene
[19,20]. Rearrangements involving a hinge region also
occur in class II penetrenes during entry [11,12,44]. A
mechanism involving rearrangement of functional
domains has also been proposed for class I penetrenes
[44] as well as the penetrenes of non-enveloped viruses
[45]. In the case of influenza A virus HA2, the prototypic
class I penetrene, the rearrangement results in formation
of a trimer of the N-helices stabilized by an internal leu-
cine zipper [42]. The leash sequence interacts with the
external groove of the N-helix trimer. For other class I pen-
etrenes the rearrange brings together the N- and C-helices
into a six-helix bundle [46]. The F protein of isaviruses
appears to utilize a leash-in-the groove mechanism of
membrane fusion.

Orthomyxoviridae, Retroviridae, Paramyxoviridae, Filoviridae,
Arenaviridae, and Coronaviridae and Baculoviridae have
members that encode class I penetrenes [1-7,36]. Syncy-
tin, encoded by a human endogenous retrovirus (HERV-
W), is also a class I penetrene with has a critical role in
membrane fusion events involved in placental morpho-
genesis. Syncytin may also play a pathogenic role in can-
cer and autoimmunity [47]. Flaviviridae, Togaviridae, and
Bunyaviridae family members are known or appear to have
members that encode class II penetrenes [10,13-15]. If the
current analyses are correct, GP64 superfamily members
join rhabdovirus G and herpeviruses gB as class III pene-
trenes. While convergence to common structures is possi-
ble, penetrenes of enveloped viruses may have evolved
from a limited number of common progenitors. Support
for this hypothesis comes from the remarkable similarities
in the post-fusion structures of the penetrenes in each
class, even though the proteins differ dramatically in aa
sequence. While, it is likely that other classes of pene-
trenes exist for enveloped viruses, there may be a limited
number of effective structures for virus-mediated mem-
brane fusion.

Similar penetrenes are not present in all contemporary
members of the Orthomyxoviridae [31]. Reassortment of
segmented viruses is a well-establish phenomenon, and it
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is possible that orthomyoviruses diverged via the acquisi-
tion of segments encoding distinct penetrenes (Fig 5). The
HA proteins of type A and B influenza viruses lack several
structural domains present in influenza C virus HE,
although the carboxyl terminal proteins (HA2 and HE2)
derived from both HA and HE are class I penetrenes [48].
Members of the fifth genus in the Orthomyoviridae, Isavirus,
represented by ISAV, encode two glycoproteins, HE with
hemagglutinin and esterase activities and F, a class I pen-
etrene [41]. The progenitor of the penetrenes of members
of the three influenza virus genuses (A, B, and C) and ISAV
may have had a segment encoding an HE-like class I pen-
etrene that diverged to the HA in influenza A and B
viruses, HE in influenza C viruses and F in isaviruses.
Alternatively, HA or F could have evolved from HE or
another penetrene by loss or acquisition of the esterase
sequences. ISAV HE shares limited sequence similarities
with the more closely related HE of influenza C viruses,
coronaviruses and toroviruses [49]. Thogotoviruses
appear to have acquired a distinct penetrene possibly
from a common progenitor with the GP64 superfamily. It
is not possible to root the tree of Orthomyxoviridae with
regards to acquisition of penetrenes. The distinct pene-
trenes, class I or III, appear to have been acquired inde-
pendently by different orthomyxovirus genuses, but it is
unclear which, if any, was present prior to divergence of
this family.

As previously discussed [31], GP64 penetrenes seem to
have been acquired after divergence of the two main
groups of Baculoviridae. Therefore, it is possible to root
this tree with regards to penetrenes (Fig. 5). In this sce-
nario, the baculovirus progenitor acquired F, a class I pen-
etrene. One particular lineage then also acquired GP64,
which we suggest are class III penetrenes, after the split
into the two distinct groups of NVP and GV. Baculoviruses

influenza influenza

roup | group Il
B (HA/NA) A (HANA) Np\g(ege4/F) NVP (F)
influenza
C (HE)
HE
isa (F/HE) °1ffss
thogoto
(GP)
Orthomyxoviridae Baculoviridae
Figure 5

vesiculo
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have large DNA genomes, and mechanisms of genetic
exchange are distinct for those of RNA viruses. In contrast,
the G gene appears to have been present in the common
ancestor of all members of the Rhabdoviridae. The similar-
ities detected between GP64 superfamily members and
rhabdovirus G are consistent with divergent evolution
from a common progenitor, but sequence similarities are
insufficient to establish a phylogenic relationship. It is
unlikely that there are any recent common ancesters of
rhabdoviruses and baculoviruses, and that the class III
penetrenes of these viruses were acquired by independent
genetic events. The gB of herpesviruses of birds, mammals
and reptiles have a high degree of conservation, and are
likely to all represent class III penetrenes [19]. A gB-like
progenitor probably was present in the common ancestor
of these herpesviruses. Other viral glycoproteins (gC, gD,
gH/gL) are involved in herpesvirus fusion and entry [50].
These additional entry proteins are differentially distrib-
uted among members of the Herpesviridae, and it is likely
that they were acquired after acquisition of gB by the her-
pesvirus progenitor. Herpesvirus gB is nearly twice as long
as VSV G or GP64 superfamily proteins. Assuming that the
structure of gB is not an extreme example of convergence
to a class III penetrene structure, it appears to have under-
gone extensive insertions of sequences from a common
class III progenitor. Alternatively, the class III progenitor
could have been a longer protein that deleted sequences
prior to independent acquisitions by rhabdoviruses,
thogotoviruses or baculoviruses.
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