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Abstract
RNA recombination is one of the two major factors that create RNA genome variability. Assessing
its incidence in plant RNA viruses helps understand the formation of new isolates and evaluate the
effectiveness of crop protection strategies. To search for recombination in Soybean mosaic virus
(SMV), the causal agent of a worldwide seed-borne, aphid-transmitted viral soybean disease, we
obtained all full-length genome sequences of SMV as well as partial sequences encoding the N-
terminal most (P1 protease) and the C-terminal most (capsid protein; CP) viral protein. The
sequences were analyzed for possible recombination events using a variety of automatic and manual
recombination detection and verification approaches. Automatic scanning identified 3, 10, and 17
recombination sites in the P1, CP, and full-length sequences, respectively. Manual analyses
confirmed 10 recombination sites in three full-length SMV sequences. To our knowledge, this is the
first report of recombination between distinct SMV pathotypes. These data imply that different
SMV pathotypes can simultaneously infect a host cell and exchange genetic materials through
recombination. The high incidence of SMV recombination suggests that recombination plays an
important role in SMV evolution. Obtaining additional full-length sequences will help elucidate this
role.

Findings
Soybean mosaic virus (SMV) is a member of the genus Poty-
virus, the family Potyviridae. It is one of the most devastat-
ing viral pathogens of soybean crops causing severe
symptoms such as mosaic, mottling, chlorosis and rugos-
ity in leaves, as well as reductions in plant growth with
yield losses of up to 100% [1-4]. Like all potyviral
genomes, the SMV genome is a single-stranded, positive-
sense RNA molecule that is approximately 10 kb in length

and contains a single open reading frame [4-6]. It encodes
a large polyprotein that is co- and post-translationally
cleaved into 11 final protein products [4-6]. SMV is found
in all soybean-growing regions of the world. In the United
States, at least 98 SMV isolates have been documented
[7,8]. Based on their differential interactions with SMV
resistant cultivars, these isolates are classified into seven
distinct strain groups, G1 through G7 [7,8]. Similarly, five
(A to E) and eight (Sa to Sh) SMV strains have been
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reported in Japan and China, respectively [9-11]. Though
the pathotypic relationships between the SMV groups in
the United States and the strains in China and Japan are
not clear, these data clearly suggest a high genetic diversity
of SMV.

The two major factors that contribute to the variability
and evolution of RNA viruses are mutation introduced by
the viral RNA-dependent RNA polymerase and recombi-
nation between different viral RNA molecules [12]. The
mutation rate varies between virus species, and the recom-
bination frequency is dependent on the degree of
sequence similarity between the sequences involved, the
length of viral genome and the presence of recombination
hot spots [12-14]. Mutation has been demonstrated to be
responsible for the emergence of new SMV isolates that
differentiate from their parental isolates by breaking
resistance in soybean under both field and laboratory
conditions [15-17]. However, the role of RNA recombina-
tion in SMV evolution still remains unknown.

We evaluated RNA recombination in SMV. All partial SMV
sequences encoding the N-terminal most (P1 protease)
and the C-terminal most (capsid protein; CP) as well as
full-length SMV sequences were retrieved from GenBank
[Additional file 1]. The alignments were performed using
ClustalW [18]. Subsequently, the automatic recombina-
tion scans of the sequence alignments were performed
using Recombination Detection Program v.3.31 (RDP3)
with default settings [19]. RDP3 scans all possible triplet
combinations of sequences to identify and statistically test
the recombination signals [19]. When two (parental)
sequences are joined to form a recombinant (daughter)
sequence, recombination signals may be detected in the
parental, daughter, any descendant, and other closely
related isolates. Thus, it is possible that a single recombi-
nation event can be counted several times. RDP3 over-
comes this complication by automatically combining
recombination signals to identify a minimum set of
unique recombination events that account for the
observed similarity patterns among sequences.

Our RDP3 analyses identified many unique recombina-
tion events in full-length, P1, and CP alignments (Figure
1) [Additional file 2]. However, because of the apparently
large number of ancestral and overlapping recombination
signals in full-length SMV sequences, final assignments of
parental and daughter designations in the identified
unique recombination events were affected by the order
in which the sequences were analyzed. This ambiguity was
likely caused by the limited number of full-length genome
sequences for many SMV strains. Manual examination of
the RDP3 results did not reveal a better set of the unique
recombination events, suggesting the complex similarity
patterns among SMV sequences could arise through

recombination in diverse ways (data not shown). In
accordance with the parsimony principle, we have pre-
sented the output that explains the relationships between
SMV sequences in all alignments by the smallest number
of recombination events (Figure 1B) [Additional file 2].

We further examined more recent, in evolutionary terms,
recombination events in full-length SMV sequences. Puta-
tive non-recombinant and recombinant sequences were
identified using Simplot [20] with 200 bp window and 20
bp step sizes. Location and significance of each putative
recombination site was tested using the χ2 test, or the
informative sites analysis, implemented in Simplot [21-
23]. The recombination site was placed where the highest
significant χ2 value was obtained. Two blocks of
sequences, on either side of the recombination site, each
from a single parent, were compared to assess the likeli-
hood of recombination at the given site. First, non-SMV
potyvirus and, subsequently, a distantly related isolate of
SMV were used as outgroups in χ2 tests to increase the
number of informative sites and to narrow down the loca-
tion of the recombination. Essentially, locations of the
putative recombination sites identified by the Simplot
coincided with the locations of the unique recombination
events identified by RDP3 (data not shown). Recombina-
tion sites in CN18, HZ, and HH5 sequences were sup-
ported with a P-value < 0.05 by the χ2 test. However, no
recombination sites were manually assigned to these iso-
lates since a large number of un-uniformly distributed
informative sites supported grouping of these isolates
with the outgroup in all tests, indicating that isolates
CN18, HZ, and HH5 were too diverged from all other
SMV sequences for the χ2 test (data not shown). Neverthe-
less, a number of significant recombination events were
identified in G5, G7H, and G7f sequences.

Two SMV isolates, G5 and G7H, though belonging to two
different pathotypes, were previously reported to be
closely related to each other based on full-length genome
sequence comparison [24]. Consistently with this finding,
isolate G7H indeed clustered with isolate G5 and not with
pathotype G7 isolates in a phylogenetic tree constructed
from the full-length SMV genome sequences (Figure 1A).
Recombination sites, 'w', 'x' and 'z' in G5 and 'w', 'y', and
'z' in G7H were supported statistically with a P-value <
0.05 by the χ2 test. Following were the locations of these
sites in respect to the G5 and G7H sequences: 'w' 4199 –
4208, 'x' 5441 – 5546, 'y' 5546 – 5603, and 'z' 6362 –
6410. Similarity patterns and phylogenetic trees con-
structed for the sequence alignment regions demarcated
by the recombination sites confirmed two recombination
events in each of the isolates: 'w' and 'x' in G5 and 'y' and
'z' in G7H (Figure 2) [Additional file 3] [Additional file 4].
These recombination sites in G5 and G7H were supported
statistically with a P-value < 0.001 [Additional file 3]
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[Additional file 4]. These phylogenetic and recombina-
tion analysis results suggest that majority of G5 and G7H
genome sequences were derived from a common ancestor
more closely related to the G2 group of isolates, while
fragments between recombination sites 'w' and 'x' in G5
and 'y' and 'z' in G7H are more closely related to G7x and
G7d (Figure 2). The high-confidence phylogenetic group-
ing of G7H with G7d and G7x is consistent with the loca-
tion of factors distinguishing G7 pathotype from G2 and
G5 pathotypes somewhere between recombination sites
'y' and 'z', in the genome region encoding the C-terminal
part of 6K2-VPg and the N-terminal part of NIa-Pro.

Analyses of the G7f genome revealed six recombination
events, 'a' through 'f', that occurred in the formation of
this isolate. G7f was most similar to G7x and G7d isolates
along most of its genome, but was more similar to G2
between recombination sites 'a' and 'b', 'c' and 'd', 'e' and
'f' [Additional file 5]. The following were the nucleotide
position numbers of recombination event locations in
respect to the G7f sequence: 'a' 5102–5114, 'b' 5252–
5285, 'c' 6021–6026, 'd' 6140–6176, 'e' 8846–8858, 'f'
9008–9035. In χ2 tests, all 6 recombination sites were sup-
ported with P-value < 0.0025. However, either mutation,
coupled with strong selection, or recombination could
result in an isolate being most similar to two different iso-
lates in the neighbouring regions [25]. Selection of muta-
tions would be expected to act at the amino acid sequence
level as, to the best of our knowledge, avirulence determi-
nants have only been reported to act at this level [26-32].
On the other hand, recombination may or may not affect
the amino acid sequence of the resulting chimera. In this

study, most sites that supported grouping of G7f with G2
were silent [Additional file 6] [Additional file 7], provid-
ing support for recombination rather than selection
hypotheses to explain these similarities. All manually
identified G5, G7H, and G7f recombination sites were
recapitulated by manual GENECONV test implemented
in RDP3 (data not shown).

The manually generated and verified results presented
here provide the strong evidence of recombination in
SMV. The most parsimonious output of RDP3 for full-
length sequences [Additional file 2] partially, but better
than other RDP3 outputs, coincided with the manual
sequence comparisons results, emphasizing the need for
the manual verification of automatically generated
results. Furthermore, the G5 and G7H recombination
analysis results suggest recombination analysis as a tool
for directing experiments to identify avirulence determi-
nants and develop novel crop protection strategies. How-
ever, utility of recombination detection in SMV is still
limited by the lack of representative full-length genome
sequences for most of SMV strains. Availability of repre-
sentative sequences with associated pathogenicity profiles
will allow elucidating the evolutionary history of SMV
and deriving testable hypotheses about SMV-soybean
interactions.

In spite of limitations to analyzing SMV recombination,
application of conceptually different, complementary
approaches allowed us to detect recombination sites pre-
viously missed by Chare and Holmes [33]. Our work
showed, for the first time, that recombination occurred

Recombination in full-length SMV sequencesFigure 1 (see previous page)
Recombination in full-length SMV sequences. A. Phylogenetic relationships of SMV isolates to each other and to PPV as 
an outgroup. Phylogenetic tree was constructed using full-length nucleotide sequences of isolates L [GenBank: EU871724], L-
RB [GenBank: EU871725], G2 [GenBank: S42280.1], N [GenBank: D00507.2], Aa [GenBank: AB100442.1], Aa15-M2 [Gen-
Bank: AB100443.1], G5 [GenBank: AY294044.1], G7H [GenBank: AY294045.1], G7d [GenBank: AY216987.1], G7 referred as 
G7x [GenBank: AY216010.1], and G7 referred as G7f [GenBank: AF241739.1], CN18 [GenBank: AJ619757], HH5 [GenBank: 
AJ310200], HZ [GenBank: AJ312439], as well as PPV [GenBank: M92280.1], as the outgroup, and the Neighbour Joining func-
tion of ClustalX [34]. Topologies of the Bayesian [35] as well as the1000 times bootstrapped least squares [36] and maximum 
likelihood [37] phylogenetic trees were same (data not shown). Bootstrap values for the Neighbour Joining and the maximum 
likelihood phylogenetic trees, out of 1000 replicates, are given at the nodes before and after the slanted line, respectively. For 
presentation purposes, the line marked with a star was shortened from 0.35145 to 0.04145. Automated RDP3 recombination 
analysis identified recombination events in all SMV isolates [please also see Additional file 1]. Filled circles demarcate likely 
times, when in evolution of SMV manually verified recombination events took place, while empty circles demarcate significant 
(P-value < 0.05) recombination events where the likely recombinant isolates were determined to be too far diverged from all 
available SMV sequences for the χ2 analysis of recombination and thus recombination analyses results were considered incon-
clusive. B. Locations of unique recombination events identified by RDP3, in relation to the full-length sequence alignment 
[please also see the Additional file 1]. Each full-length genome is represented by a long black bar and the corresponding under-
lined isolate name, given to the left of the bar. The figure shows a total of 17 unique recombination events, demarcated by the 
bars below the genomes the recombinant fragments have been integrated into. When an ancestral unique recombination event 
can be found in more than one daughter sequence, the recombination event is displayed with all corresponding daughter 
sequences. Locations of the unique recombination events identified by RDP, corresponding to the manually verified recombina-
tion sites, are shown with grey bars [please also see Additional file 1].
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during SMV evolution among distinct viral isolates and
thus provided evidence that at least two distinct viral SMV
pathotypes can simultaneously infect a host cell and
exchange genetic materials through RNA recombination.
The high frequency of recombination detected in SMV
suggests that recombination plays an important role in
SMV evolution and this should be considered when novel
antiviral strategies are developed.
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Additional material

Additional File 1
List of full-length and partial (P1, CP) sequences of SMV analysed for 
recombination. A list of all sequences and the corresponding Genbank 
accession numbers are provided.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-5-143-S1.pdf]

Additional File 2
Summary of unique recombination events identified by the Recombi-
nation Detection Program v.3.31 (RDP3). Our RDP3 automated anal-
yses using RDP, GENECONV, Bootscan, MaxChi, Chimera, and SiScan 
methods [19] identified many highly significant recombination signals in 
full-length, P1, and CP alignments [please see Additional file 1 for the list 
of accession numbers for all analyzed sequences]. However, when two 
(parental) sequences are joined to form a recombinant (daughter) 
sequence, recombination signals will be detected in all descendants of the 
parental and daughter isolates as well as related sequences, provided the 
recombination signals have not been obscured by subsequent recombina-
tion events or strong selection. All detected recombination signals were 
automatically combined by RDP3 into sets of unique recombination 
events. The final set of the unique recombination events depended on the 
order in which the sequences were analyzed. This effect of sequence anal-
ysis order on the generated set of unique recombination events was partic-
ularly strong for the full-length sequences, where a large number of 
ancestral and overlapping recombination signals were found. This ambi-
guity was likely increased by the lack of full-length genome sequences rep-
resenting many of the SMV strains. Manual investigation of the RDP3 
results did not suggest that any one set of the unique recombination events 
was better than another: the complex similarity patterns between SMV 
sequences could arise through recombination in a number of ways (data 
not shown). Therefore, in accordance with the parsimony principle, we 
presented the output that explains the relationships between SMV isolates 
by the smallest number of recombination events. The largest number of 
unique recombination events was consistently detected by RDP3 in full-
length sequences despite the fact that the smallest number of these 
sequences was analyzed. This may have to do with the fact that complete 
evolutionary history is preserved in full-length sequences, but not the par-
tial sequences such as P1 and CP that were also analyzed here. More full-
length SMV sequences must be obtained in order to describe the broad pic-
ture of how recombination affected evolution of SMV. Obtaining addi-
tional sequences will also aid in resolving uncertainties about parental and 
daughter isolate identities and narrowing down the locations of undeter-
mined break points (recombination sites).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-5-143-S2.pdf]
Phylogenetic trees for the alignment regions demarcated by G5 and G7H recombination sitesFigure 2 (see previous page)
Phylogenetic trees for the alignment regions demarcated by G5 and G7H recombination sites. Non-recom-
binant, as determined by the manual recombination analysis (see manuscript text), as well as G5 and G7H sequences were 
included in the phylogenetic tree construction. The designations for the fragments are given at the top, to the left of each tree. 
Bayesian [35] as well as bootstrapped Neighbour Joining [34], least squares [36], and maximum likelihood [37] trees were con-
structed for each region. Topologies of the trees generated by the four methods for the same region were same, with excep-
tion of how C2 and N sequences related to each other and to L and L-RB isolates from recombination site 'y' to the end of the 
alignment. Shimodaira-Hasegawa (SH) test [38] was used to select the best of the competing but very similar topologies for 
each sequence region (date not shown). The tree topology that obtained the highest SH score of 1 is presented for each 
region. Bootstrap values out of 1000 replicates, produced by the Neighbour Joining and the maximum likelihood methods are 
given at the nodes, before and after the slanted line, respectively. A star given instead of the number indicates that the respec-
tive method did not agree with the topology of the optimal tree identified by the SH test at that particular node. Topologies of 
all trees were tested against each other and the topologies of the trees presented here were found optimal (SH score: 1). SH 
scores of 0 were obtained when topologies of the trees from between recombination sites were tested against sequence align-
ments for the regions on the basis of which the given tree was not generated. The same SH score of 0 was obtained when the 
tree topologies for the regions from the beginning of the sequence alignment to 'w' and from 'z' to end of the sequence align-
ment were tested against sequence alignments between the recombination sites. Collectively, these results indicated that the 
different topologies cannot substitute for each other in explaining the variability of SMV sequences between G5 and G7H 
recombination sites that we identified.
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Additional File 3
Supplemental Figure 1. Similarity plots with G5 as the query isolate. 
Lists of isolates included in the analyses with their corresponding line 
colors are shown in the legend box. Locations of sites 'w', 'x', 'y', and 'z' 
are demarcated with vertical lines and the green underlined letters. 
Regions used for "find sites" analyses are marked with rectangles; names 
for the query, first and second parental, as well as outgroup isolates, with 
respective numbers of informative sites, supporting each grouping, and the 
χ2 values are given for each recombination site in matching colors.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-5-143-S3.pdf]

Additional File 4
Supplemental Figure 2. Similarity plots with G7H as the query isolate. 
Lists of isolates included in the analyses with their corresponding line 
colors are shown in the legend box. Locations of sites 'w', 'x', 'y', and 'z' 
are demarcated with vertical lines and the green underlined letters. 
Regions used for "find sites" analyses are marked with rectangles; names 
for the query, first and second parental, as well as outgroup isolates, with 
respective numbers of informative sites, supporting each grouping, and the 
χ2 values are given for each recombination site in matching colors.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-5-143-S4.pdf]

Additional File 5
Supplemental Figure 3. Similarity plot with G7f as the query isolate. List 
of isolates included in the analysis with their corresponding line colors are 
shown in the legend box. Location of each statistically significant recom-
bination site is demarcated with a vertical line and a green underlined let-
ter, adjacent to the line. Names for the query, first and second parental 
isolates, and outgroups with corresponding numbers of informative sites, 
supporting each grouping are given in red and blue, respectively. The 
χ2values for each recombination site are given in italicized underlined 
font, adjacent to the vertical line demarcating each respective recombina-
tion site.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-5-143-S5.pdf]

Additional File 6
Supplemental Table 1. Effect of informative site nucleic acid differences 
on amino acid composition in analyses of G7f recombination events with 
remotely related non-SMV potyvirus sequence (PPV) as outgroup. Inform-
ative sites that are also found in analyses with Aa as outgroup [see Addi-
tional file 7] are given in italics.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
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