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Abstract

Background: The Anopheles gambiae heat shock cognate gene (hsc70B) encodes a constitutively
expressed protein in the hsp70 family and it functions as a molecular chaperone for protein folding.
However, the expression of hsc70B can be further induced by certain stimuli such as heat shock
and infection. We previously demonstrated that the An. gambiae hsc70B is induced during o'nyong-
nyong virus (ONNV) infection and subsequently suppresses ONNYV replication in the mosquito.
To further characterize the inducibility of hsc70B by ONNYV infection in An. gambiae, we cloned a
2.6-kb region immediately 5' upstream of the starting codon of hsc70B into a luciferase reporter
vector (pGL3-Basic), and studied its promoter activity in transfected Vero cells during infection
with o'nyong-nyong, West Nile and La Crosse viruses.

Results: Serial deletion analysis of the hsc70B upstream sequence revealed that the putative
promoter is likely located in a region 1615-2150 bp upstream of the hsc70B starting codon.
Sequence analysis of this region revealed transcriptional regulatory elements for heat shock
element-binding protein (HSE-bind), nuclear factor kB (NF-kB), dorsal (Dl) and fushi-tarazu (Ftz).
Arbovirus infection, regardless of virus type, significantly increased the hsc70B promoter activity in
transfected Vero cells.

Conclusion: Our results further validate the transcriptional activation of hsc70B during arbovirus
infection and support the role of specific putative regulatory elements. Induction by three
taxonomically distinct arboviruses suggests that the HSC70B protein may be expressed to cope
with cellular stress imposed during infection.

Introduction global population is at risk of malaria and there are annu-
The Anopheles gambiae mosquito is the principle vector of  ally approximately 250 million cases resulting in a mil-
the malaria parasite Plasmodium falciparum in sub-Saharan  lion deaths [1]. In addition, An. gambiae vectors o'nyong-
Africa. Current estimates suggest that nearly half of the  nyong virus (ONNV), a single-stranded (+) RNA virus
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(Togaviridae; Alphavirus) [2-4]. Symptoms of ONNV
infection in humans include rash, fever and polyarthritis
often resulting in high morbidity rates during epidemics
[5.6].

Although most arthropod-borne viruses (arboviruses) are
vectored by culicine mosquitoes, ONNV is primarily vec-
tored by the anopheline mosquitoes An. gambiae and An.
funestus [7]. In spite of the unusual vector specificity,
ONNV shares a common host cell entry mechanism with
many other arboviruses. Endocytosis and subsequent
fusion with the host's membrane in the endosome are
exploited by ONNV to infect host cells [8]. Alphaviruses,
including ONNV, Sindbis virus, and Chikungunya virus
have class II fusion proteins such as E glycoproteins that
mediate membrane fusion between virus and host cells
during virus entry [8,9]. Class II E glycoproteins mainly
consist of beta sheet-folded domains while class I E pro-
teins are a-helices [10,11]. Since membrane fusion is one
of the protein maturation processes mediated by molecu-
lar chaperones, such as the HSP70 family, it is possible
that HSP70 may enhance or suppress maturation of viral
proteins [12-14].

Members of the HSP70 family contain three conserved
domains: an ATPase domain at the N-terminus, a peptide
binding domain, and a GP-rich region at the C-terminus
that contains an EEVD motif [15-17]. HSP70, a molecular
chaperone, changes its conformation in an ATP depend-
ent manner to mediate proper target protein folding, deg-
radation and translocation [18,19]. The carboxy-terminal
EEVD motif is a unique feature of cytosolic heat shock
proteins that is recognized by chaperone cofactors to ini-
tiate chaperone activity [20-22]. The heat shock cognate
protein 70 (HSC70) is a constitutively expressed member
of the HSP70 family and functions as a molecular chaper-
one under normal cellular conditions. However, the
expression of the HSC70 gene may be increased in
response to environmental and physiological stress [19].

The An. gambiae HSC70B is an ortholog of Drosophila mel-
anogaster Hsc70-4 [23]. cDNA microarray studies demon-
strated that HSC70B is upregulated during ONNV
infection in adult An. gambiae, suggesting an important
role during virus infection [24]. The functional impor-
tance of HSC70B upregulation in ONNV-infected female
An. gambiae was further elucidated by RNAi gene silencing
of the hsc70B transcript [23]. Reduction of the hsc70B
transcript by RNAi silencing enhanced ONNV replication
in vivo. Likewise, enhanced ONNV replication in HSC70B-
knockdown mosquitoes suggests that HSC70 proteins
play an important role in arbovirus suppression and
maintaining homeostasis during infection [23].

http://www.virologyj.com/content/5/1/136

To further elucidate the transcriptional regulation of the
hsc70B locus in response to viral infection, we character-
ized the 5' upstream region of the hsc70B coding sequence
ex vivo using cell culture and luciferase reporter systems.
Herein, we report the identification of a regulatory region
essential for hsc70B transcription. Furthermore, the
kinetic properties of hsc70B transcription during arbovirus
infections were examined with ONNV (Togaviridae;
Alphavirus), West Nile virus (Flaviviridae; Flavivirus) and
La Crosse virus (Bunyaviridae; Orthobunyavirus). The
results showed that the hsc70B promoter region was
responsive to all three arboviruses. Induction of hsc70B
transcription by three taxonomically different arboviruses
suggests that the HSC70B protein may be expressed to
cope with cellular stress imposed during infection. The
biological implications of these data are discussed.

Results

Sequence analysis of the 5' upstream of hsc70B
Transcription factor binding elements along the 5'-
upstream sequence of the hsc70B gene (2559 bp) were
analyzed in silico. The binding sites identified by both the
TFSEARCH and AliBaba2.1 programs are shown in Figure
1. In addition to core promoter sequences (e.g., TATA and
CAT boxes), putative binding sites for heat shock proteins
such as HSE-bind and heat shock transcription factor
(HSF) were also identified. Putative binding sites for NF-
kB, DI, c-AMP response element binding protein (CREB),
signal transducers and activators of transcription protein
(STAT), and fushi-tarazu (Ftz) factors were also identified.

Deletion analysis of the hsc70B promoter

To identify the critical elements required for transcription,
various deletions of the 5' upstream region of the hsc70B
locus were generated and ligated into the pGL3-Basic vec-
tor. The promoter activities of the different deletion con-
structs were compared to that of the full-length construct
(2.6 kb). The full length promoter pGL3-2.6k contains
2599 bp of the 5' upstream region (-2599 to -1); +1
denotes the first base of the starting codon (Figure 2A).
Deletions of 449 bp, 975 bp, 1649 bp and 2267 bp from
the 5' end of the full length promoter produced pGL3-
2.2k, pGL3-1.6k, pGL3-0.9k and pGL3-0.3k, respectively.
The promoter activity of these deletion constructs was
measured by firefly luciferase expression and normalized
by the Renilla luciferase expression. Both pGL3-2.6k and
pGL3-2.2k constructs had luciferase expression levels 5-
fold higher than that of the pGL3-Basic control. The luci-
ferase expression levels of pGL3-0.3k, pGL3-0.9k and
pGL3-1.6k did not differ from that of the control (Figure
2B). These data suggest that elements critical for the tran-
scription of hsc70B reside in the 526 bp region between
2.2 and 1.6 kb upstream of the starting codon.
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GATGGTCAC ABATGTTTCA CAGGCATGGC ATGGCTGGCT CAGCGTACGT TTGTATTTGG TATTCTATTT ATACTGTTGA TGATTTTTTA TGTATACTAC

-2500 ACTTTCACCC TAACAACTAT AGCGCATTAT TAAGAGGATT TATAATACTG TATCGAATAA ACCACATAAL TGACGAACGA AAACATAGGT ATTGGGTGCT

-2400 ACACAAAACT ACACATTCTC TTTTTTATTG TACGCTTCAA AATATCTACA TATTTGGCAT TCAATAAGCA AGTTTCGGGG AAAAGARAGA TAGAATTGCT

STAT

-2300 CTGAGTTGGT TTTAAAACCG ATGAATCCGT TTAACCCTTT TGTACAATTC AATTTTGATT CAGGGCAATG CTTCGACACA TTTCATTTTC ATTCACCAAC

AP-1

AngaHSCUTR F2

-2200 TGCTGAACCG GGCATGTATA AACGCAGCGC AGAACTGTCA GACAACAGCC CTTTCTAGAA AAGTGTGGAA AGAACAGGTT CTATCACTCC ACAAACTGGA

TATA

CAA GA

HSE

-2100 CCGAATGACA CCGAAAATTG ATTCGAAATA AAGTTACGCG AGAAATTAGA TAAACAGCAT ATAACATTAL AGAAAAAAAA TATTCCCTCA TTTGGTAGCG

Hb NF- kB

-2000 TTAAGCCGTA TGAATTTAGC TAGGAGCAAC ACGTACGGTC CTAGCGACAC TAATCGATTA GGAGCAAACG TCACAAGACC ACGTTCTTTG ACTTCCTTTC

CREE

-1900 AACTGTCAAA CGTAGCGCAA TGATCTAACC CGAACGTCAT ATAATTTTGA TTTGGAGGGA TTTTACGCGC TTCCAGCAGC AGTTGGAACG ATTGCAGCGG

NF- kB

-1800 CACTTGGTTT AATTCTTGTT TAACATCCAA GCGAAGAAGA AGCAGACGGT GCGAGCAGAA AATCGCGAGA AGTTCGTTCC AAGTGCAAGT CAGTGACCAG

Dl

AngaHSCUTR F3

-1700 TAAATCGGAA AAAACACATT ATAATCAAAG GTAAGTCATA ATTCAGAAGT TTAAAACAAT TCAGTGTGTA AAAAAAGGGT AATGGTCCAA TGGGTLGGTT

Ftz

-100 ATTTATCTCA GATGTGTGTA CTCCTTGCTG TGAATAAATT GTAAATGGTT TGTGGTTTCT TTTTCTCTCT CTCCCTCACA CGTGTGTTGC GTGTTCGLAG

+1 ATGGCAGCCG CAAAAGCACC AGCAGTCGGT ATTGATCTGG GTACGACCTA CAGCTGTGTC GGAGTGTTCC AGCACGGCAA GGTCGAGATC ATCGCCAACG
H

Figure |

Nucleotide sequence of the hsc70B promoter region. Putative binding sites for transcription factors are underlined. The
binding sites were evaluated in silico by both the TFSEARCH and AliBaba2.| program. Transcription factors predicted by both
programs are marked blue. The consensus sequence of HSE (5'-NGAAN-3") is marked red. The position +1 denotes the first

base of the putative starting codon ATG.

Effect of ONNYV infection on the pGL3-2.6k and pGL3-2.2k
hsc70B promoter plasmid constructs

To determine if differences between the promoter activi-
ties of the pGL3-2.6k and pGL3-2.2k constructs occurred
during arbovirus infection, the constructs were initially
evaluated in the context of ONNV infection. Transfected
with either the pGL3-2.6k or pGL3-2.2k plasmids, Vero
cells were subsequently infected with ONNV (MOI =
0.001). The cells were harvested after cytopathic effects
(CPE) were confirmed at 60 hpi. ONNV infection signifi-
cantly increased the hsc70B promoter activity (Figure 3).
The luciferase activity of both pGL3-2.6k and pGL3-2.2k
constructs in ONNV-infected Vero cells was ~2-fold
higher than uninfected Vero cells.

Effect of arbovirus infection on the hsc70B promoter
activity

Based on the previous results, the pGL3-2.2k construct
was used to assay the effect of arbovirus infection on the
hsc70B promoter. A time course experiment with ONNV
(MOI = 0.001) in Vero cells transfected with the pGL3-
2.2k construct demonstrated increases in hsc70B pro-

moter activities at 48 and 72 hpi. However, at earlier time
points the hsc70B promoter activity was comparable to
that of the uninfected control (Figure 4A). This enhanced
hsc70B promoter activity in ONNV-infected cells appeared
to occur with increasing ONNYV titers at 48 and 72 hpi.
The titers were 1.5 x 102, 3 x 105, 1.4 x 108, and 1.1 x 108
plaque forming units (pfu)/mL at 1, 24, 48 and 72 hpi,
respectively (Figure 4A). Furthermore, CPE in ONNV-
infected Vero cells became evident at 48 hpi, correspond-
ing with the elevated viral titers at later time points (Figure
4B). The hsc70B promoter activity in ONNV infected Vero
cells was 1.4 and 1.6-fold higher at 48 hpi and 72 hpi,
respectively, than that in uninfected Vero cells (Figure
4A).

To determine if the observed transcriptional activation of
hsc70B was virus specific, two taxonomically distinct arbo-
viruses were chosen for additional time course experi-
ments. Vero cells transfected with pGL3-2.2k constructs
were infected with WNV or LACV at MOI = 0.01. The
infected cells were harvested at 1, 24, 36 and 48 hpi. Infec-
tion with either virus also significantly increased the
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Deletion Analysis of the hsc70B promoter. (A) The solid black line represents the full length of the promoter where posi-
tions -2599 and +1 denote the 5' end of the hsc70B promoter and the putative starting codon ATG, respectively. (B) The bars
on the left represent the lengths of the 5' upstream region that were generated by PCR. The bars on the right represent rela-
tive firefly luciferase activities (mean * SD) that were normalized by the Renilla luciferase activity. The relative luciferase activity
indicates the promoter activity of the 5' upstream deletion constructs of hsc70B. The promoter activities of constructs less
than 2.2 kb were significantly lower than the 2.6 kb full length construct.

hsc70B promoter activity as determined by the luciferase
assay (Figure 5).

Discussion

Repression of ONNV replication by the HSC70B protein
was previously shown in An. gambiae [23,24]. Of particu-
lar interest in this result is the transcriptional regulation of
hsc70B expression in response to ONNV infection in An.
gambiae. To map and characterize the promoter activity of
hsc70B, the upstream region up to 2599 bp from the puta-
tive starting codon of hsc70B was subjected to a luciferase
reporter assay. Initially, the 2599 bp upstream sequence of
the hsc70B showed a promoter activity (Figure 2). Subse-
quent deletion analysis of this region revealed that the reg-
ulatory elements critical for hsc70B transcription reside
between 2150 ~ 1615 bp upstream of the hsc70B starting
codon (Figure 2). Deletion of this 535 bp region abol-
ished the promoter activity of hsc70B. This regulatory
region contains several binding sites for transcription fac-
tors such as HSE-bind, CRE, NF-«B, dorsal, and Ftz (Figure
1). HSE is a binding site for heat shock transcription fac-
tors that are activated in response to environmental and
physical stresses such as heat shock and microbial infec-
tion [25,26]. In hsc70B, there is one putative HSE consist-

ing of a block of three repeats of a 5-bp sequence, 5'-
nGAAn-3'. Although the number of HSE blocks can vary
among different HSPs, the 5-bp HSE repeat is highly con-
served in the regulatory region of various heat shock pro-
teins such as hsp70, hsp83, and hsp27 in Drosophila [27].
The second and third repeat in the HSE block of An. gam-
biae hsc70B has a tail-to-tail (5'nTTCnnGAAn3') arrange-
ment with 6-bp gaps between them (Figure 1). In
Drosophila HSPs, there are 5 or less gaps, if any, between
the 5-bp repeats [27]. It will thus be interesting to learn
how the additional gap in An. gambiae hsc70B regulates
hsc70B expression.

CRE is a response element for phosphorylated CREB (c-
AMP response element-binding protein) which regulates
transcription of genes. CREB is involved in human hsp90
gene expression which is constitutively expressed [28].
Thus, CRE may be a key element to induce basic transcrip-
tion of An. gambiae hsc70B gene as it is also a constitutively
expressed member of HSPs. NF-«B is a transcription factor
which responds to stresses including viral infection [29].
Transcription of NF-xB was shown to be increased by
downregulation of HSC70B protein in rat pancreatic aci-
nar AR42]J cells [30]. Ftz is a transcription factor that was
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O uninfected
B ONNV

0 0.2 0.4

0.6

0.8 1

Relative luciferase activity

Figure 3

Induction of the hsc70B promoter in transfected Vero cells by ONNYV infection. The constructs containing the 2.6
kb and 2.2 kb-long 5' upstream regions were evaluated for hsc70B promoter activity during ONNYV infection (MOI = 0.001).
The luciferase activity was measured at 60 h post ONNYV infection when CPE became apparent. The hsc70B promoter activity,
as measured by relative luciferase activity (mean + SD), was significantly elevated in both constructs when compared to unin-
fected controls (2.2 kb uninfected vs. infected: P < 0.01, t = 4.702, df = 6; 2.6 kb uninfected vs. infected: P < 0.01, t = 5.681, df

= 6).

originally isolated in Drosophila. It has many orthologs in
various species and is involved in fushi tarazu gene expres-
sion which functions in embryonic segmentation in Dro-
sophila and sex determination in zebrafish [31,32]. Further
biochemical and molecular characterization using electro-
phoretic mobility shift assays (EMSA) and DNase I protec-
tion assay should elucidate key elements that
transcriptionally regulate An. gambiae hsc70B expression
in response to ONNV infection. These assays will further
improve our understanding of transcriptional regulation
of hsc70B, and facilitate the identification of transcrip-
tional factors and co-factors in the signal transduction
pathway of hsc70B expression.

ONNV was used to infect Vero cells to examine the effects
on hsc70B promoter activity. The different lengths, 2150
bp and 2599 bp, of the 5' upstream sequences were tested
because these two constructs contain the regulatory
sequence for the basic transcription of hsc70B. Both 2150
bp and 2599 bp upstream genomic fragments responded
to ONNYV infection and the promoter activities of both

constructs increased during ONNV infection (Figure 3).
When Vero cells were transfected with either pGL3-2.6k or
pGL3-2.2k reporter plasmid, the promoter activity in the
reporter plasmids was about 2-fold higher in infected cells
than the uninfected control (Figure 3). This suggests that
induction of An. gambiae hsc70B gene, leading to expres-
sion of the HSC70B protein, results from virus infection.
Therefore, it is reasonable to speculate that cellular signals
are transduced to the regulatory region of the hsc70B locus
in An. gambiae.

The 2150-bp 5' upstream sequence was used to further
investigate the effects of ONNV infection on the hsc70B
promoter activity at different time points after infection.
The promoter activity of hsc70B was significantly higher in
infected cells at later time points (48 and 72 hpi) than ear-
lier points (1 and 24 hpi) (Figure 4A). The elevated hsc70B
promoter activity corresponded with increasing viral titers
at 48 and 72 hpi because plaque assays of the cell culture
media showed higher ONNV titers at these later time
points (Figure 4A). These plaque assay data were further
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hsc70B promoter activity (mean * SD) time course experiments during ONNY infection. (A) The hsc70B pro-

moter activity, as measured by luciferase activity, was significantly higher at 48 h (P < 0.01, t = 8.53, df = 4) and 72 hpi (P < 0.01,
t = 27.34, df = 4) in the ONNV infected samples. ONNV titers were also markedly elevated at 48 and 72 hpi. The induction of
the HSC70B promoter corresponds to viral titer. (B) ONNV cytopathic effects in Vero cells; CPE are clearly evident at 48 and

72 hpi.

evaluated by observing CPE in ONNV-infected Vero cells.
CPE became apparent at 48 and 72 hpi in Vero cells while
uninfected control cells did not show cell lysis (Figure
4B). The appearance of CPE in ONNV-infected Vero cells
corresponded to higher ONNV titers at 48 and 72 hpi. It
can be thus inferred that induction of hsc70B transcription
may be triggered in response to cellular stresses burdened
by rapidly replicating viruses. In cells at immediate or
early infection stages, hsc70B expression may not be acti-
vated.

The inducibility of the hsc70B promoter was also exam-
ined using two additional arboviruses, WNV (Flaviviri-
dae) and LACV (Bunyaviridae). Like ONNV, both WNV
and LACV were also able to upregulate the transcription
activity of hsc70B during infection (Figure 5). Due to more
rapid kinetics of replication, both WNV and LACV caused
the hsc70B promoter activity to rise earlier than ONNV.
For example, WNV-infected Vero cells started to show
transcriptional induction as early as 24 hpi. Transcrip-

tional activation of hsc70B by three different arboviruses
suggests that upregulation of hsc70B expression indeed
results from cellular stresses caused by virus infection in
host cells. In addition, activation of the hsc70B promoter
by virus infection was recently shown in shrimp (Penaeus
monodon) [33]. Using a luciferase reporter in Sf21 cells,
Chuang et al. (2007) demonstrated 5.5-fold induction of
the shrimp hsc70B promoter when the Sf21 cells were
infected with Autographa californica multiple nuclear poly-
hedrosis virus (AcMNPV; MOI = 0.1). Therefore, it
appears that induction of hsc70B expression may be a gen-
eral cellular response of host cells to virus infection.

Conclusion

We previously reported that the transcriptional activation
of hsc70B in ONNV-infected An. gambiae renders the mos-
quito an ability to repress ONNV replication [23,24].
These in vivo findings and our current ex vivo characteriza-
tion of the hsc70B regulatory region unequivocally indi-
cate that the induction of HSC70B may be a mosquito
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Increased hsc70B promoter activities (mean £ SD) in Vero cells during West Nile virus (A) and La Crosse virus
(B) infection. The hsc70B promoter activity, as measured by luciferase activity, is higher in infected cells at 36 and 48 hpi.

innate immune response against virus infection. To sup-
port this hypothesis, mosquito cells (e.g., C6/36 cells
from Ae. albopictus) do not show any CPE during arbovi-
rus infection while mammalian cells including Vero cells
display prominent CPE and subsequent cell lysis due to
overreplication of viruses. Evolutionally, mosquitoes may
have acquired the ability to maintain viral titers below a
certain threshold, below which mosquitoes may serve as
arboviral vectors without pathogenesis from viral infec-
tions. Interestingly, a potent antiviral drug, prostaglandin
A, showed antiviral effects against Sendai or Sindbis virus
through induction of HSP70 proteins in AGMK cells (Afri-
can green monkey kidney) or Vero cells, respectively
[34,35]. Therefore, comparative studies on HSP expres-
sion in response to viral infection between mosquito and
mammalian cells will provide a deeper insight into innate
immune responses to viral infection between mosquito
vectors and mammalian hosts.

Methods

Construction of An. gambiae hsc70B promoter-luciferase
reporter gene

The 2599 bp 5' region upstream of the putative starting
codon of the hsc70B gene was amplified from BAC clone
132E18 http://www.ensembl.org by a PCR method using
Phusion High-Fidelity DNA polymerase (NEB, MA). The
primers used were as follows: AngaHsc_F1, 5'-
CCCGAGCTCGATGGTCACAAATGTTTCACAGG-3' and
AngaHsc_R, 5'-CCGCTCGAGCTGCGAACACG-
CAACACAC-3' with a Sacl or an Xhol recognition site
(underlined) incorporated at the 5' end of the primers,
respectively. The PCR conditions were as follows: 98°C
for 30 sec, followed by 30 cycles of denaturation at 98°C
for 10 sec, annealing at 68°C for 30 sec and extension at
72°C for 80 sec, a final extension at 72 °C was performed

for 10 min. The amplified DNA fragment was double-
digested with Sacl and Xhol and subcloned into the pro-
moterless pGL3-Basic vector (Promega) predigested with
Sacl and Xhol to construct pGL3-2.6k. Serial deletions of
the 5'-flanking region of the hsc70B gene were also pre-
pared from pGL3-2.6k using a PCR method with the
primers listed in table 1.

Analysis of 5' upstream sequence of hsc70B

Putative binding sites for transcription factors in the 5'
upstream region of hsc70B were predicted in silico using
the TFSEARCH [36,37] and AliBaba2.1 [38] programs.

Transfection and luciferase activity assay of the hsc70B
promoter activity in Vero cells

Transfection experiments were performed in 24-well
plates using the Lipofectamine reagent according to the
manufacturer's instructions (Invitrogen, CA). Briefly, Vero
cells (ATCC: CCL-81) were seeded and incubated at 37°C
with 5% CO, in Dulbecco's Modified Eagle Medium
(DMEM) for 24 h prior to transfection at a density of 0.5
x 105 cells/well. When the cells reached ~80% confluency,
the culture media was removed and 200 pl of fresh DMEM
without antibiotics or fetal bovine serum (FBS) was
added. The cells were then co-transfected with 400 ng of
pGL3 firefly (Photinus pyralis) luciferase constructs con-
taining varying lengths of the hsc70B upstream region
(e.g.. pGL3-2.6k, pGL3-2.2k, pGL3-1.6k, pGL3-0.9k,
pGL3-0.3k, or pGL3-Basic) and 0.05 ng of a pRL-cmv
Renilla reniformis luciferase construct. The pRL-cmv con-
struct was used as an internal control, in which the Renilla
luciferase expression is driven by the cytomegalovirus pro-
moter (cmv). Because the pGL3-Basic is a promoterless
reporter plasmid containing only the coding sequence of
firefly luciferase it served as a background control. At 3 h
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Primers Primer sequence (5' to 3') Position ~ Usage

AngaHsc_FlI CCCGAGCTCGATGGTCACAAATGTTTCACAGG -2599 Forward primer to construct pGL3-2.6k
AngaHsc_F2 CCCGAGCTCCTTTCTAGAAAAGTGTGGAAAGAACAG -2150 Forward primer to construct pGL3-2.2k
AngaHsc_F3 CCCGAGCTCGGGTAATGGTCCAATGGGTC -1624 Forward primer to construct pGL3-1.6k
AngaHsc_F4 CCCGAGCTCTGTGAAATGTCCTAATTTTTTGCC -950 Forward primer to construct pGL3-0.9k
AngaHsc_F5 CCCGAGCTCGCATCATGCGTTAGGTCTCAG -332 Forward primer to construct pGL3-0.3k
AngaHsc_R CCGCTCGAGCTGCGAACACGCAACACAC -1 Reverse primer to construct all plasmids

Restriction enzyme recognition sites are underlined. Sacl: GAGCTC; Xhol: CTCGAG

post transfection, the transfection mixture was replaced
with a complete medium including 100 U/mL Penicillin-
Streptomycin, and 10% FBS. Cells were harvested at pre-
defined time points post transfection. The luciferase activ-
ities were measured by the Dual-Luciferase Reporter Assay
System (Promega, WI) according to manufacturer's
instructions. Quantification of the luminescent signals
was performed using a Synergy HT microplate reader
(BioTek, USA). In order to account for heterogeneous
transfection efficiencies and cell viabilities among differ-
ent samples, the firefly luminescence values were normal-
ized as a ratio of the Renilla luminescence values. A
minimum of three biological replicates were included for
the time course experiments with ONNV. For time course
experiments with WNV and LACV, the mean values and
standard deviations were calculated from four biological
replicates out of six replicates. The largest and the smallest
values from these replicates were excluded from the anal-
ysis.

Viruses

The SG650 strain of ONNV has previously been described
[23]. The WNV isolate (LA-11-2005) was isolated by BDB
from the brain tissue of a blue jay (Cyanocitta cristata)
found in New Iberia, LA during 2005. A cloacal swab from
the bird tested positive for WNV by the Rapid Analyte
Measurement Platform (RAMP, Adapco, Inc.). Subse-
quent nucleic acid amplification and sequencing of the
PreM-Envelope region of the isolate confirmed the RAMP
identification (GenBank Accession Number DQ646699).
The virus was isolated in Vero cells and had not been fur-
ther passaged. The LACV (78-V-13193) was obtained
from the World Reference Center for Arboviruses at the
University of Texas Medical Branch, Galveston, TX. The
virus had been passed once in suckling mouse brain and
twice in Vero cells.

Virus infection

To determine the effect of viral infection on the promoter
activity of hsc70B, Vero cells cotransfected with pGL3-2.6k
or pGL3-2.2k and pRL-cmv were infected with ONNYV,
WNV or LACV 12 h post transfection. For ONNV, conflu-
ent monolayers of Vero cells were infected at an MOI
(multiplicity of infection) of 0.001. The infected cells were

harvested at predetermined time points (e.g., 1, 24, 48 and
72 h post-infection) during time course experiments. Oth-
erwise, the cells were harvested at 60 h post infection
when CPE were evident. For the WNV and LACV time
course experiments, confluent monolayers of Vero cells
were infected at an MOI of 0.01 and the infected cells were
harvested at 1, 24, 36 and 48 hpi. Viral titers were deter-
mined by a standard plaque assay in Vero cells [39].
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