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Abstract

Lytic bacteriophage 0305¢8-36 forms visually observed aggregates during plaque formation.
Aggregates intrinsically lower propagation potential. In the present study, the following
observations indicate that lost propagation potential is regained with time: (I) Aggregates
sometimes concentrate at the edge of clear plaques. (2) A semi-clear ring sometimes forms beyond
the plaques. (3) Formation of a ring is completely correlated with the presence of aggregates at the
same angular displacement along the plaque edge. To explain this aggregate-derived lowering/
raising of propagation potential, the following hypothesis is presented: Aggregation/dissociation of
bacteriophage of 0305¢8-36 is a selected phenomenon that evolved to maintain high host finding
rate in a trade-off with maintaining high rate of bacteriophage progeny production. This hypothesis
explains ringed plaque morphology observed for other bacteriophages and predicts that aggregates
will undergo time-dependent change in structure as propagation potential increases. In support,
fluorescence microscopy reveals time-dependent change in the distance between resolution-
limited particles in aggregates.

Findings

The life cycle of a virus incorporates evolutionary compro-
mises (trade-offs) between propagation of the virus and
propagation of its host [1-4]. These trade-offs are thought
to be a component in bacteriophage/host co-evolution,
thought to be a major factor in bacterial speciation |[5,6].
Intracellular bacteriophage sequestering via lysogeny [6-
8] is one apparent source of trade-off in favor of host find-
ing. For example, bacteriophage A lysogeny is promoted
by raising the bacteriophage concentration [9,10]. This
observation supports the idea that bacteriophage A
evolved lysogeny, in part, to avoid severe host depletion,
i.e., to increase the long-term host finding rate. Lytic bac-
teriophages do not have access to trade-off of this type.

However, in the case of lytic bacteriophages, extracellular
sequestering by a heterogeneous environment can be a

significant source of trade-off to increase host-finding rate
[11]. In theory, sequestering by lytic bacteriophage aggre-
gation would be yet another source of such trade-off,
potentially specific only for bacteriophage concentrations
high enough to threaten host extinction. However, exten-
sive aggregation has not been observed for well studied
lytic bacteriophages, until recently.

Within the past year, report was made of propagation in
dilute (0.08 - 0.15%) agarose gels to isolate a lytic Bacillus
thuringiensis bacteriophage, 0305¢8-36 [12], which forms
extensive, sometimes millimeter-sized aggregates during
plaque formation [13]. If aggregate formation, along
with reduced virus reproduction, is a selected phenome-
non, then aggregate dissociation must eventually
occurand seed a phase of increased bacteriophage
reproduction. However, no current observation reports
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aggregate-derived seeding of 0305¢8-36 propagation in
either environmental or laboratory culture. The present
study investigates the possible existence of such seeding
within a 0305¢8-36 plaque.

To form cm-sized plaques that do not overlap, bacteri-
ophage 0305¢8-36 was inoculated at four locations in a
pre-formed, upper layer, 0.1% agarose gel that contained
both host cells and growth medium; gelation had been
performed at room temperature (25 + 3°C). This gel was
above a lower layer 1.0% agar gel in a Petri dish [12]. After
incubation at room temperature, four clear, 1.2 - 1.6 cm
plaques were visible by about 8 hr (not shown). When the
plaques were incubated for another 24 hours, they
became larger, 3.8 - 4.8 cm, and acquired the following
additional features.

Most plaques had internal, roughly circular opaque spots
that superficially resembled bacteriophage-resistant host
colonies, but are known to be aggregates of bacteriophage
particles [13]. The distribution of the opaque spots varied.
For example, the plaque in the upper right quadrant in
Figure 1a has a few circular, ~1 mm in diameter, opaque
spots scattered around the center; one is indicated with an
arrowhead. The plaque in the lower left quadrant has
these central opaque spots, but also (unlike the upper
right plaque) has much more numerous, close-packed,
sometimes merged, 1-2 mm spots that, in total, occupy a
much larger "opaque zone" near the outer edge of the
plaque; the inner edge of the opaque zone is indicated
with a white dashed line. One small segment is missing
from this zone, as indicated by interruption of the dashed
line. The reason for variation in the distribution of opaque
zones is not known.

Of the four plaques in Figure 1, all but the upper right
plaque have opaque zones near the plaque edge. All three
plaques with opaque zones, but not the upper right
plaque, also have a semi-clear ring that is (a) interrupted
in some places and (b) parallel to and outside of the edge
of the clear plaque. A black dashed line at the right of the
lower right plaque indicates a segment of this semi-clear
ring. The key observation is the following: Wherever
a semi-clear ring exists, an opaque zone also exists at the
same angular displacement along the circumference of
the plaque (ring/zone correlation). This observation is
made by inspecting the plaques of Figure 1 and was also
made for all of over 100 other plaques (not shown). Aring
extends a little further than the corresponding opaque
zone, along the plaque edge. In Figure 1, the ring/zone
correlation is most dramatic for the lower right plaque,
which has three interruptions in the semi-clear ring and
the same three interruptions in the opaque zone. The
ring/zone correlation implies cause-effect between ring
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Figure |

In-plaque aggregation/dissociation of bacteriophage 0305¢8-
36. A 0.1% agarose overlay was mixed with host cells,
poured over a 1.5% agar gel and gelled in a Petri plate, as
described in the text. Four plaques were initiated by stabbing
and the Petri plate was incubated for 32 hr. at room temper-
ature (25 £ 3°C). Light scattering was photographed. The
white dashed lines indicate opaque zone segments that are
near the edge of a mostly clear plaque. The black dashed line
indicates a semi-clear ring segment. The arrowhead indicates
an opaque spot. The arrow indicates a comparatively turbid
region between clear plaque and semi-clear ring.

and zone. Furthermore, the turbid zones must be the
cause of the semi-clear rings because the turbid zones
are in a part of the plaque that formed earlier than the
semi-clear rings.

If the bacteriophage that lyses cells in the semi-clear ring
is the original bacteriophage, then the bacteriophage par-
ticles in a turbid zone have seeded propagation in the con-
jugate semi-clear ring. By the following criteria, the
bacteriophages in the semi-clear ring are, indeed, particles
of the original bacteriophage, not particles of a mutant or
an induced prophage or a contaminant bacteriophage:

(a) After re-propagation of 0305¢8-36 from opaque spot,
opaque zone, clear interior, semi-clear ring and interme-
diate regions, plaques were the same as plaques after the
original propagation within the limits of variability found
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for the original propagation and illustrated in Figure 1
(data not shown). (b) By pulsed field gel electrophoresis,
DNA from the various regions of plaques migrates at the
rate of mature 218.948 Kb 0305¢8-36 DNA [14]. (c)
Finally, analysis of the complete nucleotide sequence of
0305¢8-36's genome reveals no lysogeny module [15].

Thus, the aggregates seed growth of 0305¢8-36 in the
semi-clear ring. How, then, does this seeding effect occur
when an opaque zone is separated from its conjugate
semi-clear ring by 1-3 mm of plaque-supporting clear gel
(Figure 1) that also has aggregates and the same total
concentration of bacteriophage particles, within a factor
of 2 [13,14]? To provide a likely answer to this question,
we note that (a) formation of an aggregate, by necessity,
initially causes propagation potential to drop and
(b) aggregates in opaque zones are older than aggregates
in the clear zone further away from the center of the
plaque. Therefore, we hypothesize that, as bacteriophage
0305¢8-36 aggregates age, something about them changes
to make constituent bacteriophages more prone to
dissociate and infect cells. That is the likely answer to the
above question.

In fact, large (> 1 um) 030508-36 aggregates are already
known to increase in elasticity with time [13]. To further
investigate possible time-dependent changes of these
aggregates, we investigated the time-dependence of the
separation of resolution-limited, aggregate-associated
particles after dissection of aggregates from a single
plaque at a single radius, but at different times. This study
revealed that the distance between the particles decreased
from 1.6 + 0.97 um at 10.5 hr. to 0.54 + 0.4 um at 32 hr.
and 0.2 + 0.2 um at 50 hr (images not shown). Details are
not known for how this decrease in distance causes
infective particle dissociation. Perhaps, (a) the decrease in
inter-particle distance places stress on the tail and
associated fibers that bridge particles in an aggregate and
(b) this stress is relieved by dissociation.

In analogy with 0305¢08-36 plaques, ringed plaques
(sometimes called either "target" or "bulls-eye" plaques)
have previously been observed, although no explanation
for this morphology was presented [16,17]. The
present study raises the possibility that plaque rings, in
general, are caused by aggregation/dissociation as hypoth-
esized here. One of the previous ringed plaque-forming
bacteriophages has, in fact, been shown to aggregate by
electron microscopy [17].

Current theories of host evolution assume no change in
bacteriophage reproduction capacity as the concentration
of a lytic bacteriophage increases (see, for example, refs
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[18,19]). We propose that concentration-dependent,
aggregation-based 0305¢08-36 sequestering, followed by
dissociation, is (a) part of an evolutionary trade-off for the
purpose of increasing host finding rate and (b) a
phenomenon that changes the concept of how some lytic
bacteriophages both optimize their reproduction [19] and
participate in host evolution.
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