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Abstract
Background: Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The
factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that
express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent,
endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the
induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral
protein expression. The receptor requirements for HSV-induced FFWO are not known. We used
the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor
usage, membrane fusion, and selection of entry pathway.

Results: Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO
cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions,
nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells
supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM.
The kinetics of ANG path entry was rapid (t1/2 of 5–10 min) regardless of entry route. However,
HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient
and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but
not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO.

Conclusion: HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic
pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular
receptors, one or more viral determinants is important for the selection of entry pathway. HSV-
induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane.
Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may
have different roles in triggering viral membrane fusion.
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Background
Productive entry of HSV into host cells proceeds following
endocytosis [1] or by direct penetration at the cell surface
[2]. The viral and cellular factors that determine which
pathway is utilized are not clear. The viral envelope glyco-
proteins gB, gD, and gH-gL are required for entry by both
endocytic and non-endocytic routes [3-7]. Expression of a
cellular entry receptor is required for both penetration at
the plasma membrane and for penetration following
endocytosis [1,7-9]. Such receptors function individually
and can mediate entry into non-permissive cells, such as
Chinese hamster ovary (CHO) cells [10]. The viral ligand
for HSV entry receptors is gD [11-17]. In the absence of a
gD-receptor, HSV is still endocytosed by CHO cells, but
fails to penetrate the endosomal membrane and is
degraded [7].

The known gD-receptors include nectins, which belong to
a subgroup of the immunoglobulin (Ig) superfamily [17-
20]. They are broadly distributed cell-cell adhesion mole-
cules that are components of cadherin-based adherens
junctions [21]. Nectin-1 and nectin-2 are ~40% identical,
and their N-terminal Ig-like variable (V) domains are crit-
ical for gD-binding [11,22-26] and for viral entry [11,23-
28]. All HSV strains tested to date [11,17,29] are able to
utilize nectin-1 as an entry receptor. Nectin-2 mediates
entry of several laboratory strains and clinical isolates of
HSV-1 and HSV-2, including HSV-1 isolates from the CNS
of patients with herpes simplex encephalitis [19,29].
Amino acid changes in gD at residues 25, 27, or 28 confer
the ability to utilize nectin-2 [19,24,30,31]. Additional
gD-receptors include HVEM, a member of the TNF-recep-
tor superfamily [10] and heparan sulfate that has been
modified by 3-O-sulfotransferase-3 [32]. Nectin-3 [33]
and B5 [34] also mediate HSV entry, but their viral lig-
and(s) is not clear.

Following endocytosis from the cell surface, HSV entry
into a subset of cell types also requires intracellular low
pH [1,7,9,35,36]. CHO cells expressing gD-receptors are a
widely used, well-characterized model system to study
pH-dependent, endocytic entry. Inhibitors of endosomal
acidification block HSV entry at a step subsequent to
endocytic uptake but prior to penetration of the capsid
into the cytosol [7]. It has been proposed that HSV utilizes
distinct cellular pathways to enter its relevant target cells
[35]. Alphaherpesviruses undergo pH-dependent, endo-
cytic entry into certain epithelial cells [1,9,35], including
primary human epidermal keratinocytes [35], yet utilize a
pH-independent entry pathway into neurons [35,37,38].
Recently, Whitbeck et al. showed that in vitro binding of
HSV to liposomes could be triggered by a combination of
receptor-binding and low pH [39].

Direct study of the membrane fusion activity of herpesvir-
ions has proven difficult. Fusion-from-without (FFWO) is
the induction of target cell fusion by addition of intact vir-
ions to the monolayer surface in the absence of viral pro-
tein expression. Virus-cell fusion during entry and virion-
induced FFWO are analogous inasmuch as both involve
similar effector (virion) membranes and target mem-
branes. Several syncytial strains of HSV-1, such as ANG
path, are capable of triggering FFWO [40]. HSV-induced
FFWO is cell type-dependent [40], but the receptor
requirements of FFWO are not known. In the present
study, ANG path is used as a tool to investigate the influ-
ence of viral and cellular proteins on the route that HSV
takes into cells. The ANG path-CHO cell model system
allows examination of the inter-relatedness of gD-receptor
usage, HSV-induced fusion, and selection of entry path-
way.

Results
HSV-1 strain ANG path can utilize nectin-1 or nectin-2 for 
entry into CHO cells
First we determined that nectin-1 or nectin-2 can each
function to mediate HSV-1 ANG path entry into CHO
cells. All strains of HSV-1 and HSV-2 can utilize nectin-1
for entry. The HSV-1 strain ANG path and its parent ANG
have alterations in gD at positions 25 and 27 that are pre-
dictive of nectin-2 utilization [19,24,41,42]. ANG utilizes
both nectin-1 and nectin-2 for entry into CHO cells
[17,19]. Monolayers of CHO cells expressing nectin-1 or
nectin-2 were infected with serial dilutions of HSV-1 ANG
path. As expected, ANG path failed to infect receptor-neg-
ative CHO cells (Fig. 1A), but formed syncytia on CHO
nectin-1 and CHO-nectin-2 cells (Fig. 1B and 1C). Similar
results were obtained using a beta-galactosidase reporter
assay for HSV entry (data not shown). The ANG path syn-
cytia that formed on CHO-nectin-2 cells were ~50% larger
than those that formed on CHO-nectin-1 cells (Fig. 1B
and 1C). The larger plaque size may reflect enhanced
entry activity and/or cell-to-cell spread mediated by nec-
tin-2.

HSV-1 strain ANG path has enhanced plating efficiency on 
nectin-2 cells relative to nectin-1 cells
Plaque-forming strains of HSV such as KOS and KOS-rid1
do not form substantial plaques on receptor-expressing
CHO cells. Hence, to determine the plating efficiency of
ANG path we employed the syncytial HSV-1 strain MP
[43] for comparison. Unlike many other strains, HSV-1
MP enters receptor-negative CHO cells with low efficiency
[10]. The expression of nectin-1, but not nectin-2,
enhances MP entry [17,19] in the CHO cell background.
MP is not a FFWO strain.

The plating efficiency of ANG path on CHO-nectin-2 cells
was approximately two logs greater than on CHO-nectin-
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1 cells (Table 1). The plating efficiency on CHO-nectin-2
cells was approximately two logs less than that obtained
on Vero cells. MP formed syncytia on wild type CHO cells
at reduced efficiency (approximately two logs) as com-
pared to Vero cells (Table 1). The presence of nectin-2 did
not enhance MP infection above the CHO cell back-
ground, but instead reduced the plating efficiency for rea-
sons that are not clear. MP had a 2 log enhanced plating
efficiency on CHO-nectin-1 cells relative to CHO-nectin-
2 cells (Table 1), which is consistent with previous
reports. Importantly, as CHO-nectin-1 cells support MP
entry and syncytium formation, the reduced efficiency of
ANG path entry is not due to receptor expression levels or
some other defect of the CHO-nectin-1 cells. Also in sup-
port of this notion, CHO-nectin-1 cells are equivalent to
CHO-nectin-2 cells in their ability to support entry of
HSV-1 rid1 [29]. Together, the results indicate that ANG
path can use either nectin-1 or nectin-2 for entry into the
CHO cell lines, but it utilizes nectin-2 more efficiently.

HSV-1 ANG path entry mediated by nectin-1 or nectin-2 
receptors occurs via distinct cellular pathways
The entry of wild type strains of HSV-1 and HSV-2 into
CHO cells expressing gD-receptors is blocked by agents
that affect endosome acidification [1], and is conse-
quently considered pH-dependent. Entry of ANG path
into CHO-nectin-1 cells was inhibited significantly by the

weak base ammonium chloride (Fig. 2A). Surprisingly,
entry of ANG path into the nectin-2-expressing cells was
refractory to inhibition by the low-pH-altering agents.
Similar results were obtained with MOIs ranging from 0.1
to 100 (data not shown). Thus, ANG path stands out as
the only HSV strain known to enter a CHO cell line
(CHO-nectin-2 cells) by a pH-independent pathway. This
suggests that nectin-1 and nectin-2 direct HSV-1 ANG
path to distinct entry pathways in the CHO cell.

ANG path enters CHO-nectin-2 cells by pH-independent 
fusion with the plasma membrane
The pH-independence of entry does not necessarily indi-
cate entry at the plasma membrane. For example, entry of
Epstein Barr virus into B cells is pH-independent, yet it
proceeds via an endocytic pathway [44,45]. In addition,
Milne et al. demonstrated that HSV enters murine
melanoma cells by a pH-independent, endocytic pathway
[8]. To assess directly the role of endocytosis, we used cell
treatments that selectively block HSV entry by endocyto-
sis. First, we analyzed the effect of high sucrose (hyper-
tonic) medium, which inhibits endocytic uptake of HSV
from the plasma membrane, but has no effect on HSV
penetration at the plasma membrane [1]. Treatment of
CHO-nectin-1 cells with hypertonic medium during virus
entry inhibited syncytium formation of HSV-1 ANG path
(Fig. 2B). In contrast, hypertonic treatment of CHO-nec-
tin-2 cells had no inhibitory effect (Fig. 2B), suggesting
that ANG path penetrates the CHO-nectin-2 plasma
membrane in a pH-independent, non-endocytic manner.
Thus, deposit of the HSV capsid under the plasma mem-
brane of CHO cells can lead to productive entry.

CHO-nectin-2 cells can support either endocytic or non-
endocytic entry of HSV depending on the virus strain
The phosphatidyl inositol 3-kinase inhibitor wortmannin
selectively inhibits pH-dependent, endocytic entry of HSV
[7,9,35,36], possibly at a step involving endosomal traf-
ficking [7]. To study the effect of wortmannin on ANG
path entry, we included the HSV-1 strain KOS-rid1 [46] as
a control because it also utilizes both nectin-1 and nectin-
2 for entry [17,19]. Wortmannin inhibited rid1 entry into
CHO-nectin-2 cells, but had little inhibitory effect on

Syncytium formation of HSV-1 strain ANG path on CHO cells expressing nectin-1 or nectin-2Figure 1
Syncytium formation of HSV-1 strain ANG path on CHO 
cells expressing nectin-1 or nectin-2. HSV-1 ANG path was 
added to wild type CHO (A), CHO-nectin-1 (B) or CHO-
nectin-2 cells (C) for 24 h. Based on the titration of ANG 
path on Vero cells, the MOIs were 1000 (A), 100 (B), or 1 
(C). Visualization of syncytia was facilitated by immunoperox-
idase staining with HR50 antibody to HSV. Magnification, 4×.

Table 1: Plating efficiency of HSV-1 syncytial strains

Cell type

Vero CHO CHO-nectin-1 CHO-nectin-2

Virus Titer (PFU/ml)

ANG path 8.2 × 107 0 9.8 × 103 1.2 × 106

MP 7.5 × 107 1.9 × 104 7.0 × 105 3.2 × 102

Viruses were titered by limiting dilution. Similar results were obtained in at least three independent experiments.
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ANG path entry into these cells (Fig. 3A). Entry of both
ANG path and rid1 viruses into CHO-nectin-1 cells was
inhibited by wortmannin in a concentration-dependent
manner (Fig. 3B). We also tested treatment of CHO-nec-

tin-2 cells with monensin, a carboxylic ionophore that
inhibits endosome acidification. Monensin inhibited rid1
entry into CHO-nectin-2 cells as previously reported [1],
but ANGpath entry was refractory to this treatment (Fig.
3C). These results confirm that nectin-1 supports a pH-
dependent, endocytic pathway for ANG path, and that
nectin-2 supports pH-independent fusion of ANG path
with the plasma membrane of CHO cells. As a single cell
line, CHO-nectin-2, supports distinct entry pathways for
two different HSV-1 strains, this indicates that HSV con-
tains one or more determinants for the selection of entry
pathway. Further, receptor-expressing CHO cells can sup-
port HSV entry by multiple pathways.

Rapid entry kinetics of HSV-1 ANG path by either 
endocytic or non-endocytic pathways
The kinetics of entry of a single virus strain by two distinct
pathways in the CHO cell background was measured. The
entry of ANG path mediated by either nectin-1 or nectin-
2 was rapid, with a t1/2 of 5–10 min (Fig. 4). By 30 min
p.i., greater than 95% of infectious virus had disappeared
from the surface of cells regardless of which receptor was
present or which pathway was used (Fig. 4).

CHO cell entry pathways of HSV-1 rid1 and ANG path medi-ated by nectin-2Figure 3
CHO cell entry pathways of HSV-1 rid1 and ANG path medi-
ated by nectin-2. CHO-nectin-2 (A, C) or CHO-nectin-1 
cells (B) were treated with the indicated concentrations of 
wortmannin (A, B) or monensin (C) for 30 min. HSV-1 
strains rid1 or ANG path were added (MOI of 1) for 6 h in 
the continued presence of agent. Entry (beta-galactosidase 
activity) was measured as in the legend to Figure 2.

Dependence of ANG path entry on intracellular low pH and endocytosisFigure 2
Dependence of ANG path entry on intracellular low pH and 
endocytosis. (A) Effect of alteration of intracellular pH on 
ANG path entry. CHO cells expressing either nectin-1 or 
nectin-2 were treated with the indicated concentrations of 
ammonium chloride (NH4Cl) for 30 min. HSV-1 strain ANG 
path was added (MOI of 10) for 6 h in the continued pres-
ence of NH4Cl. Cells contain the lacZ gene under the control 
of an HSV-inducible promoter. Entry was measured as the % 
of beta-galactosidase activity relative to that obtained in the 
absence of agent. Data shown are means of quadruplicate 
determinations with standard deviation. (B) Effect of inhibi-
tion of endocytic uptake on ANG path infection. ANG path 
was added to CHO-nectin-1 or CHO-nectin-2 cells (100 
PFU/well) in control medium (A) or hypertonic medium con-
taining 0.3 M sucrose. At 30 min post-infection, medium was 
removed, extracellular virus was acid-inactivated, and plates 
were incubated for 24 h. Syncytia were detected by immu-
noperoxidase staining and quantified. Shown are representa-
tive data from at least three independent experiments.
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ANG path virion-induced fusion of CHO cells is mediated 
by nectin-2
ANG path is among the subset of syncytial HSV-1 strains
that cause fusion-from-without. Addition of ANG path to
Vero cells at high multiplicity causes rapid cell fusion
(FFWO) in the absence of viral protein synthesis
[40,47,48]. Receptor-negative CHO cells are an ideal
model system to test the role of gD-receptors. Since ANG
path utilizes nectin-2, but not nectin-1, for fusion with
plasma membrane during entry, we asked whether nectin-
2 would selectively trigger FFWO when ANG path virions
were added to the surface of CHO cells. Fusion-from-
without was not detected when ANG path virions were
added to receptor-negative CHO cells (Fig. 5A). Similarly,
FFWO was not detected when ANG path virions were
added to CHO-nectin-1 cells (Fig. 5B), even after over-
night incubation with an MOI of 1000 (data not shown).
However, by 3 h p.i. in the presence of cycloheximide,
ANG path virions induced dramatic FFWO of CHO-nec-
tin-2 cells (Fig. 5C). Fusion of cells was evident as early as
30 – 45 min p.i. (data not shown). As there was no viral
protein synthesis, it is likely that the viral particles them-
selves triggered the fusion of cells.

To demonstrate that nectin-2 was specifically responsible
for triggering FFWO, CHO-nectin-2 cells were pretreated

with antibody to nectin-2 and assessed for fusion. The
anti-nectin-2 polyclonal antibody R143 inhibited ANG
path virion-induced FFWO of CHO-nectin-2 cells (Fig.
5D). The control anti-nectin-1 antibody R154 had no
inhibitory effect on this fusion process (Fig. 5D). Thus,
HSV-induced FFWO depends on an appropriate gD-recep-
tor in the target membrane. The results suggest that the
ability of nectin-2 to mediate rapid, pH-independent
entry at the plasma membrane (Fig. 2 and Fig. 4) corre-
lates with its ability to trigger rapid, pH-independent
FFWO (Fig. 5).

The HSV-1 FFWO strain HFEM does not cause detectable 
nectin-2 mediated pH-independent fusion
We examined HSV-1 HFEMsyn to determine whether the
entry and fusion phenotypes of ANG path were shared by
another strain. Like ANG path, HFEMsyn has a syncytial
phenotype and causes FFWO [49]. Receptor-negative
CHO cells were refractory to infection by HSV-1 HFEMsyn
(Fig. 6A). Both CHO-nectin-1 cells and CHO-nectin-2
cells supported syncytium formation by HFEMsyn (Fig.
6B and 6C). HFEMsyn utilized nectin-2 three logs less effi-
ciently than nectin-1. HFEM entry into either CHO-nec-
tin-1 or CHO-nectin-2 cells was inhibited by both
ammonium chloride and monensin (Fig. 6D and 6E),
indicating pH-dependent entry in both cell types. ANG

Kinetics of ANG path entry via distinct entry routesFigure 4
Kinetics of ANG path entry via distinct entry routes. HSV-1 
ANG path was bound to CHO-nectin-1 or CHO-nectin-2 
cells in 24 well dishes for 1 h at 4°C (100 PFU/well). Cells 
were washed with PBS and then shifted to 37°C. At the indi-
cated times post-infection, extracellular virus was inactivated 
by treatment with sodium citrate buffer (pH 3.0). Cells were 
washed with PBS and incubated for 24 h at 37°C. Cells were 
fixed in methanol:acetone, and syncytia were quantified by 
immunoperoxidase staining. Data shown are the mean of 
quadruplicate samples +/- standard deviation.

Receptor-dependence of fusion-from-without induced by HSV-1Figure 5
Receptor-dependence of fusion-from-without induced by 
HSV-1. ANG path virions (MOI of 50) were added to recep-
tor-negative CHO cells (A) or CHO cells expressing either 
nectin-1 (B) or nectin-2 (C) in the presence of 1 mM 
cycloheximide. Cells were incubated at 37°C for 3 h, and 
were then fixed with methanol and stained with Giemsa. 
Magnification, 4×. Approximately 27% of CHO-nectin-2 cells 
were fused under these conditions. Results with receptor-
negative CHO cells (< 1% fusion) were indistinguishable from 
CHO-nectin-1 cells. (D) Antibodies to nectin-2 block ANG 
path-mediated fusion-from-without. Anti-nectin-1 polyclonal 
antibody R154 or anti-nectin-2 polyclonal antibody R143 was 
added to CHO-nectin-2 cells in 24 well dishes at 4°C for 30 
min. HSV-1 ANG path was added to the monolayers for 
37°C for 3 h in the presence of a 1:500 dilution of antibody. 
Cells were fixed, photographed, and quantified for ANG 
path-induced FFWO. Experiments were repeated at least 
three times with similar results.
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path may have a unique determinant that enables entry by
fusion with the plasma membrane of CHO-nectin-2 cells.

Unlike ANG path, HFEMsyn triggered detectable FFWO
on the CHO-nectin-1 cells, but not the CHO-nectin-2 cells
(Fig. 6F and 6G). Nectin-1 can thus trigger HSV-induced
FFWO. The results suggest that FFWO does not correlate
with plasma membrane fusion during entry. Instead, the
ability of a FFWO strain to efficiently utilize a given recep-
tor may correlate with its ability to cause FFWO triggered
by that receptor.

Discussion
A given animal virus can enter cells by multiple pathways
[50]. HSV can enter its host cells by endocytosis or by
direct penetration at the plasma membrane. How a partic-

ular pathway is selected is of fundamental importance.
CHO cells that express gD-receptors support pH-depend-
ent, endocytic entry of HSV. We identified a laboratory
strain of HSV-1, ANG path, that can enter CHO cells by
pH-independent fusion with the plasma membrane in a
receptor-specific manner. Our results indicate that gD-
receptors are required for FFWO. Viral determinants, cel-
lular gD-receptors, and the background of the target cell
all contribute to the entry route taken by HSV.

Host cell determinants of HSV entry pathway
Previous studies have indicated a role for the target cell in
determination of HSV entry pathway [1,8,9,35]. Murine
melanoma cells are non-permissive for HSV entry. Expres-
sion of a gD-receptor results in endocytic uptake of HSV
from the cell surface and subsequent pH-independent
penetration from an endosome [8]. In contrast, initial
endocytic uptake from the surface of CHO cells occurs
independently of the known gD-receptors [7]. CHO cells
may contain unidentified cellular receptors needed for
internalization of HSV from the surface. BHK-derived, J
cells that express nectin-1 support pH-independent entry
of HSV [9]. Fusion of nectin-1 with either carboxy-termi-
nal sequences of epidermal growth factor or with a glyco-
sylphoshatidylinositiol anchor resulted in chimeric
receptors that support pH-dependent entry into J cells [9].
Thus, alternate forms of nectin-1 can mediate different
entry routes.

The current study indicates that nectin-1 and nectin-2 dif-
fer functionally in their ability to target incoming ANG
path virions in CHO cells. These receptors interact with
distinct yet overlapping regions of gD [19,24,30,31,51].
In our experimental system, nectin-1 and nectin-2 may
mediate pH-dependent and pH-independent membrane
fusion, respectively. We are currently investigating the
receptors and entry pathways that ANG path utilizes in
other target cells.

Viral determinants of HSV entry pathway
HSV contains one or more determinants for the selection
of entry pathway (Fig. 3). Candidate determinants include
gB, gD, and gH-gL which are essential for entry [3-6].
Compared to the wild type HSV-1 KOS strain, the gB [47]
and gD [42] of ANG path have 10 and 7 amino acid dif-
ferences, respectively. Alterations in gD at positions 25
and 27 [52] as well as ectodomain and cytoplasmic tail
mutations in gB [47,48] have been proposed to be impor-
tant for FFWO activity. The role of these residues in the
selection of entry route is currently being evaluated.

The composition of the ANG path virion allows direct
triggering of fusion by nectin-2, at least in the context of
the CHO cells tested. One possibility is that ANGpath
interaction with nectin-2 is sufficient to functionally sub-

Entry and FFWO activities of HSV-1 strain HFEMsynFigure 6
Entry and FFWO activities of HSV-1 strain HFEMsyn. As in 
the legend to Figure 1, syncytium formation of HFEMsyn was 
determined on wild type CHO (A), CHO-nectin-1 (B) or 
CHO-nectin-2 cells (C). Images represent MOIs of 1000 (A, 
C) or 1 (B). Effect of lysosomotropic agents on HFEMsyn 
entry. Virus entry into CHO-nectin-1 or CHO-nectin-2 cells 
in the presence of ammonium chloride (D) or monensin (E) 
was assayed as in the legend to Figure 2. Cells were infected 
with HFEMsyn at equivalent multiplicities based on the plat-
ing efficiency of HFEMsyn on the respective cell types. Based 
on Vero cell titer, this corresponds to MOIs of 1 and 450 for 
CHO nectin-1 and CHO-nectin-2 cells, respectively. Recep-
tor-triggered FFWO of HFEMsyn. As in the legend to Figure 
5, HFEMsyn was added to CHO-nectin-1 (F) or CHO-nectin-
2 cells (G).
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stitute for the combination of nectin-1 interaction and
exposure to intracellular low pH. Analysis of the differ-
ence between these receptor interactions may lead to a
better understanding of how membrane fusion is trig-
gered during HSV entry. Interestingly, ANG path entry
into Vero cells is also unique in that it is highly resistant
to inhibition by soluble, ectodomain forms of gD [53].

Fusion-from-without as a model for membrane fusion 
during HSV entry
A current model of HSV entry posits that gD binding to
receptor triggers a cascade of events culminating in fusion
[54-57]. The viral and cellular requirements for HSV entry
have been largely recapitulated in a cell-to-cell fusion
assay [31,58-66]. In this surrogate assay, transfected cells
that express gB, gD, gH and gL on the cell surface are
mixed with untransfected target cells. Comparisons of
cell-cell fusion with virus-cell fusion must be drawn cau-
tiously. Herpesviral envelopes are derived from internal
cellular membranes, not the plasma membrane. It is pos-
sible that glycoproteins displayed on the plasma mem-
brane of transfected cells have distinct roles in fusion (i.e.,
are activated differently) than glycoproteins that are actu-
ally incorporated into virions.

FFWO is an underutilized model to analyze the mem-
brane fusion activity of HSV particles. Although a high
MOI is required to detect FFWO, virus-cell fusion during
entry and FFWO have significant similarities. The effector
membrane and target cell membrane are analogous for
both fusion processes. Furthermore, FFWO, like HSV
entry, is gD-receptor dependent.

Conclusion
Two members of the nectin family of HSV receptors, nec-
tin-1 and nectin-2 can target the same laboratory strain of
HSV to endocytic and non-endocytic pathways, respec-
tively. The combination of ANGpath and nectin-2 at the
surface of a CHO cell line triggers rapid, pH-independent
membrane fusion that can lead to viral entry or FFWO. An
appropriate gD-receptor is required for HSV-induced
FFWO. This is similar to the receptor requirement for the
membrane fusion processes that accompany viral entry or
cell-to-cell fusion. Together, the results indicate that viral
factors, in addition to cellular factors such as nectins, con-
tribute to the selection of HSV entry route. This report
demonstrates that the ANG path-CHO cell system can
serve as a model to study the molecular connections
between receptor usage, membrane fusion, and choice of
entry pathway.

Methods
Cells and viruses
Vero cells (American Type Culture Collection; ATCC;
Rockville, Md.) were propagated in Dulbecco's Modified

Eagle's Medium (Invitrogen, Grand Island, NY) supple-
mented with 8% fetal bovine serum (FBS; Gemini Bio-
Products, West Sacramento, Calif.). CHO-K1 cells stably
transformed with the Escherichia coli lacZ gene under the
control of the HSV ICP4 promoter are designated CHO
IEβ8 [10]. CHO IEβ8 cells stably transformed to express
nectin-1 (M3A cells) or nectin-2 (M2A cells) [13,17,19]
(provided by G. Cohen and R. Eisenberg, University of
Pennsylvania) were propagated in complete medium,
Ham's F12 nutrient mixture (Invitrogen) supplemented
with 10% FBS, 150 μg/ml puromycin (Sigma, St. Louis,
Mo.), and 250 μg/ml G418 sulfate (Fisher Scientific, Fair
Lawn, NJ). 100% of cells expressed nectin-1 or nectin-2
on the cell surface as determined by immunofluorescence.
Cells were subcultured in non-selective medium prior to
use in all experiments.

HSV-1 strains ANG path [67] and KOS were obtained
from T. Holland, Wayne State University. HSV-1 MP [43]
was obtained from ATCC. HSV-1 HFEM [68] and KOS-
rid1 were obtained from P. Spear, Northwestern Univer-
sity. Rid1 is a KOS derivative with a Q27P mutation in gD
[46]. Virus stocks were grown and titered on Vero cells.

Plaque assay
At 18 – 24 h p.i. culture medium was removed, and cells
were fixed with ice-cold methanol-acetone solution (2:1
ratio) for 20 min at -20°C and air-dried. Virus titers or
syncytium formation were determined by immunoperox-
idase staining with anti-HSV polyclonal antibody HR50
(Fitzgerald Industries, Concord, Mass.).

Beta-galactosidase reporter assay for HSV entry
Confluent cell monolayers grown in 96 well dishes were
infected with HSV-1 and incubated at 37°C for 6 h. 0.5%
Nonidet P-40 (Sigma) cell lysates were prepared, chlo-
rophenol red-b-D-galactopyranoside (Roche Diagnostic,
Indianapolis, In.) was added, and beta-galactosidase
activity was read at 595 nm with a microtiter plate reader
(BioTek Instruments, Winooski, Vt.). Mean results and
standard deviations were calculated for four replicate sam-
ples.

Inhibition of uptake from cell surface
HSV was prebound to cells in 24 well dishes (100 PFU/
well) in culture medium containing 20 mM HEPES and
0.2% BSA at 4°C for 2 h. Cells were treated with medium
containing 0.3 M sucrose (hypertonic), or control com-
plete medium for 30 min at 37°C. Cells were washed with
phosphate buffered saline (PBS), and the remaining sur-
face-bound virions were inactivated by sodium citrate
buffer (pH 3.0) for 2 min at 37°C. Cells were incubated in
normal medium for 24 h, and then syncytia were quanti-
fied.
Page 7 of 10
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Treatments with lysosomotropic agents
Performed as reported previously [1]. Briefly, cells were
treated with medium containing ammonium chloride or
monensin for 30 min at 37°C. Virus was added, and cells
were incubated in the constant presence of agent for 6 h.
Beta-galactosidase activity indicated successful entry.

Virion-induced fusion-from-without assay
Confluent cell monolayers grown in 24 or 96 well dishes
were pretreated with growth medium containing 0.5 mM
cycloheximide (Sigma) for 15 min. Cell-free supernatant
preparations of HSV-1 ANG path were added to cells at
multiplicities from 1 to 500 for up to 3 h at 37°C in the
constant presence of cycloheximide. Cells were rinsed
with PBS, and then fixed in 100% methanol. Monolayers
were air dried, and then nuclei were stained with Giemsa.

To measure inhibition of fusion by anti-receptor antibod-
ies, cells were chilled to 4°C for 10 min. Rabbit polyclonal
serum against nectin-1 (R154) or nectin-2 (R143)
(obtained from R. Eisenberg and G. Cohen, University of
Pennsylvania) were added for 30 min at 4°C at a 1:500
dilution in culture medium adjusted to 20 mM HEPES.
HSV-1 ANG path was added, and plates were incubated
for 3 h at 37°C in the presence of antibody.

Micrographs were taken with a Zeiss Axiovert 40C micro-
scope equipped with a Canon PowerShot G6 digital cam-
era. Digital images were processed with Adobe Photoshop
CS2 version 9.0. To quantitate fusion, photomicrographs
of random fields from triplicate wells (> 500 cells/well)
were scored. The number of nuclei present in clusters of 5
or more divided by the total number of nuclei yielded the
% fusion.
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