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Abstract
Background: A recent publication reported that a tyrosine-dependent sorting signal, present in
cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of
the spike protein. This motif is missing from the spike protein of the severe acute respiratory
syndrome-coronavirus (SARS-CoV), resulting in high level of surface expression of the spike
protein when it is expressed on its own in vitro.

Presentation of the hypothesis: It has been shown that the severe acute respiratory syndrome-
coronavirus genome contains open reading frames that encode for proteins with no homologue in
other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and
in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain,
is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike
protein and through this interaction, it may be able to cause the spike protein to become
internalized, resulting in a decrease in its surface expression.

Testing the hypothesis: The effects of 3a on the internalization of cell surface spike protein can
be examined biochemically and the significance of the interplay between these two viral proteins
during viral infection can be studied using reverse genetics methodology.

Implication of the hypothesis: If this hypothesis is proven, it will indicate that the severe acute
respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a
different mechanism from other coronaviruses. The interaction between 3a and S, which are
expressed from separate subgenomic RNA, would be important for controlling the trafficking
properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly,
viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain
advantages during the replication of the severe acute respiratory syndrome-coronavirus.

Background
The recent severe acute respiratory syndrome (SARS) epi-
demic, which affected over 30 countries, resulted in more
than 8000 cases of infection and more than 800 fatalities

(World Health Organization, http://www.who.int/csr/
sars/country/en/). A novel coronavirus was identified as
the aetiological agent of SARS [1]. Analysis of the nucle-
otide sequence of this novel SARS coronavirus (SARS-
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CoV) showed that the viral genome is nearly 30 kb in
length and contains 14 potential open reading frames
(ORFs) [2-4]. These viral proteins can be broadly classi-
fied into 3 groups; (i) the replicase 1a/1b gene products
which are important for viral replication, (ii) the struc-
tural proteins, spike (S), nucleocapsid (N), membrane
(M) and envelope (E), which have homologues in all
known coronaviruses, and are important for viral assem-
bly, and (iii) the "accessory" proteins that are specifically
encoded by SARS-CoV. Much progress have been made in
characterizing these SARS-CoV proteins [5,6], but the
molecular determinant for the severe clinical manifesta-
tions of SARS-CoV infection in contrast to the mild dis-
eases caused by most coronaviruses, remains to be
determined. In addition, the exact roles of "accessory"
proteins of SARS-CoV are still poorly understood.

The subject of this hypothesis relate to the S protein and
one of the "accessory" proteins, the SARS-CoV 3a protein.
The S protein, which forms morphologically characteristic
projections on the virion surface, mediates binding to cel-
lular receptor and the fusion of viral and host membranes,
both of these processes being critical for virus entry into
host cells [7,8]. As such, S is known to be responsible for
inducing host immune responses and virus neutralization
by antibodies [9,10]. 3a (also termed ORF3 in [2] and
[11], as X1 in [3], and as U274 in [12,13]) is the largest
"accessory" protein of SARS-CoV, consisting of 274 amino
acids and 3 putative transmembrane domains. Three
groups independently reported the expression of 3a in
SARS-CoV infected cells [13-15] and it was also detected
in a SARS-CoV infected patient's lung specimen [14]. Anti-
bodies against 3a were also found in convalescent patients
[11,12,14].

This article hypotheses that the endocytotic properties of
3a allow it to modulate the surface expression of S and
explores a functional significance for the interaction
between S and 3a, which has been observed experimen-
tally [13,15].

Presentation of the hypothesis
The cellular fate of the S protein has been well mapped
[16,17]: S is cotranslationally glycosylated and oligomer-
ized at the endoplasmic reticulum. Its N-linked high man-
nose side chains are trimmed, modified and become
endoglycosidase H-resistant during the transportation to
the Golgi apparatus. Only this fully-matured form of S can
be assembled into virions and/or transported to the cell
surface. The latter could cause cell-cell fusion and the for-
mation of syncytia. Recently, Schwegmann-Wessels and
co-worker reported that a novel sorting signal for intracel-
lular localization is present in the S protein of most coro-
naviruses, but absent from SARS-CoV S [18]. Site-directed
mutagenesis studies confirmed that a YxxΦ motif (where

x is any amino acid and Φ is an amino acid with a bulky
hydrophobic side chain) retains the S protein of TGEV
intracellularly when it is expressed alone. On the other
hand, SARS-CoV S is transported efficiently to the cell sur-
face unless such a motif is introduced into its cytoplasmic
tail by mutagenesis.

The YxxΦ motif has been implicated in directing protein
localization to various intracellular compartments [19-
21]. Furthermore, most YxxΦ motifs are capable of medi-
ating rapid internalization from the plasma membrane
into the endosomes. Interaction between the adaptor pro-
tein complex 2 (AP-2) with the YxxΦ motif present in the
cytoplasmic domain of the internalizing protein concen-
trated the protein in clathrin-coated vesicle, which then
budded from the plasma membrane resulting in internal-
ization. However, it appears that the YxxΦ motif can also
bind other adaptor protein complexes, like AP-1, 3 and 4,
and the differential binding to the different adaptors will
determine the pathway of a cargo protein containing a
particular YxxΦ motif [21]. Coincidently, a YxxΦ motif in
the cytoplasmic domain of 3a has previously been identi-
fied [13]. Furthermore, the juxtaposition of the YxxΦ
motif and a ExD (diacidic) motif was found to be essential
for the transport of 3a to the cell surface, consistent with
the role of these motifs in the transportation of other pro-
teins to the plasma membrane [22]. 3a on the cell surface
can also undergo internalization [13].

Analyzing the experimental results present in these publi-
cations collectively, it is possible to postulate a functional
role for the evolution of the SARS-CoV 3a protein. The
SARS-CoV S protein lacks the YxxΦ motif but it can bind
to the 3a protein which has internalization properties. In
SARS-CoV infected cells, S is rapidly transported to the cell
surface. But if 3a is expressed in the same cell, it is also
transported to the cell surface where it can bind S. The
interaction between 3a and S enables both proteins to
become internalized, resulting in a decrease in the expres-
sion of S on the cell surface. Thus, this viral-viral interac-
tion confers the functional role for the YxxΦ motif found
in other coronaviruses to the SARS-CoV S. This hypothesis
also implies that the precise mechanisms used by TGEV
and SARS-CoV to reduce the expression of S are different
although in both cases, the YxxΦ motifs will be crucial. In
TGEV, the YxxΦ motif in S caused it to be retained intrac-
ellularly, while in SARS-CoV, S that is transported to the
cell surface becomes internalized again after it interacts
with the 3a protein.

Testing the hypothesis
Using mammalian cell culture system and biochemical
methods, it will be possible to determine the exact effects
of 3a on the trafficking properties of S. Mutagenesis stud-
ies can be used to map the protein domains that are
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important for the interaction between 3a and S and for the
defining the manner by which 3a contributes to the reduc-
tion of cell surface expression of S. Given that a full-length
infectious clone of SARS-CoV has been assembled [23],
the use of reverse genetics would certainly reveal more
about the interplay between 3a and S during SARS-CoV
infection.

Implication of the hypothesis
This hypothesis, if proven, will indicate that the interac-
tion between SARS-CoV-unique 3a protein and S results
in a reduction of S on the cell surface through the endocy-
totic properties of 3a [13]. During SARS-CoV infection,
expression of S on the cell surface of an infected cell medi-
ates fusion with un-infected neighboring cells, leading to
syncytium formation. It follows that reducing the cell sur-
face expression of S will delay this cell-damaging effect
and prevent the premature release of unassembled viral

RNA. It may also enhance virus packaging as it appears
that the assembly of coronavirus occurs intracellularly,
probably in the intermediate compartments between the
endoplasmic reticulum and Golgi apparatus [24]. Clearly,
this has certain advantages for the virus at certain stages of
its life cycle. In addition, a reduction in the cell surface
expression of S may also help the infected cell evade the
host defense system and reduce the production of anti-S
neutralizing antibodies. Conversely, host or viral factors
that disrupt the interaction between S and 3a would favor
the expression of S on the cell surface and enhance cell-
cell fusion, a process that is important for viral spreading.

Table 1 shows a comparison of the amino acid sequences
of the cytoplasmic tails of the S protein of different coro-
naviruses, including SARS-CoV, which is distantly related
to the established group 2 coronaviruses [25], as well as
two recently identified novel human coronaviruses,

Table 1: Amino acid sequences of the cytoplasmic tail of spike (S) proteins of coronaviruses are compared with the YxxΦ (where x is 
any amino acid and Φ is an amino acid with a bulky hydrophobic side chain) motifs found in SARS-CoV 3a protein and other cellular 
proteins that are known to undergo endocytosis.

Protein Amino acid sequences in the cytoplasmic taila

TGEV Sb TM-CLGSCCHSICSRRQFENYEPIEKVHVH
PRCoV Sb TM-CLGSCCHSIFSRRQFENYEPIEKVHVH
CCoV Sb TM-CLGSCCHSICSRGQFESYEPIEKVHVH
FCoV Sb TM-CLGSCCHSICSRRQFENYEPIEKVHVH
PEDV Sb TM-CCGACFSGCCRGPRLQPYEAFEKVHVQ
HCoV-229E Sb TM-CFASSIRGCCESTKLPYYDVEKIHIQ
HCoV-NL63 Sb TM-CLTSSMRGCCDCGSTKLPYYEFEKVHVQ
BCoV Sc TM-ICGGCCDDYTGHQELVIKTSHDD
HCoV-OC43 Sc TM-KCGGCCDDYTGYQELVIKTSHDD
HEV Sc TM-KCGGCCDDYTGHQEFVIKTSHDD
MHV Sc TM-KKCGNCCDECGGHQDSIVIHNISSHED
RtCoV Sc TM-KCGNCCDEYGGRQAGIVIHNISSHED
HCoV-HKU1 Sc TM-KCHNCCDEYGGHHDFVIKTSHDD
SARS-CoV Sc TM-GACSCGSCCKFDEDDSEPVLKGVKLHYT
IBV Sd TM-KKSSYYTTFDNDVVTEQYRPKKSV
SARS-CoV 3ae TM-38aa-YNSVTDTIVVTEGD-101aa
TfRe 19aa-YTRFSLARQVDGDNSHV-26aa-TM
LDLR (proximal)e TM-17aa-YQKTTEDEVHICH-20aa
LDLR (distal)e TM-34aa-YSYPSRQMVSLEDDVA
CD-M6PRe TM-34aa-YRGVGDDGLGEESEERDDHLLPM
ASGPRe MTKEYQDLQHLDNEES-24aa

aSequences were obtained from National Center for Biotechnology Information (NCBI). Yxxx tetrapeptides are underlined and abbreviations used 
are: TM, transmembrane domain, aa, amino acids.
bS proteins of group 1 coronaviruses: TGEV, transmissible gastroenteritis virus (AJ271965); PRCoV, porcine respiratory coronavirus (Z24675); 
CCoV, canine coronavirus (D13096); FCoV, feline coronavirus (AY204704); PEDV, porcine epidemic diarrhea virus (AF353511); HCoV-229E, 
human coronavirus 229E (AF304460); HCoV-NL63, human coronavirus NL63(AY518894).
cS proteins of group 2 coronaviruses: BCoV, bovine coronavirus (AF220295), HCoV-OC43, human coronavirus OC43 (AY585228), HEV, porcine 
hemagglutinating encephalomyelitis virus (AY078417), MHV, murine hepatitis virus (AF201929), RtCoV, rat coronavirus (AF207551), HCoV-HKU1, 
human coronavirus HKU1 (AY597011), SARS-CoV, SARS coronavirus (AY283798).
dS protein of group 3 coronavirus: IBV, infectious bronchitis virus (M95169).
eSARS-CoV 3a protein (AY283798) and other cellular proteins that are known to undergo endocytosis. Abbreviations: TfR, transferrin receptor 
(P02786), LDLR, low-density lipoprotein receptor (P01130); CD-M6PR, cation-dependent mannose 6-phosphate receptor (P24668); ASGPR, 
asialoglycoprotein receptor (P07306).
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HCoV-NL63 [26] and HCoV-HKU1 [27]. The YxxΦ motifs
are clearly present in all group 1 coronaviruses and also in
IBV, which belongs to group 3. However, no YxxΦ motif
is present in SARS-CoV and MHV, both group 2 coronavi-
ruses. In addition, there is a YGGR motif in the S protein
of RtCoV and YxxH motifs in the S proteins of the other
group 2 coronaviruses, BCoV, HEV and HCoV-HKU1.
However, these motifs may not be able to function as sig-
naling motifs because both R and H are not hydrophobic
amino-acids. Therefore, HCoV-OC43 is the only one of
these group 2 coronaviruses that encodes a S protein with
a YxxΦ motif. It is still unclear how the localization of S is
modulated in those viruses that lack YxxΦ motifs in the S
proteins and further studies will be needed to understand
the different signaling pathways that are important for
regulating the trafficking properties of S. Indeed, the dily-
sine endoplasmic reticulum retrieval signal, which is a dif-
ferent type of sorting signal from the YxxΦ motif, in the
cytoplasmic tail of IBV was reported to be important for
intracellular retention of S [28].

It therefore appears that the cell surface expression of S
protein of SARS-CoV can be reduced like that for other
coronaviruses, but the mechanism may be different. The
trafficking of SARS-CoV S may be mediated through 2 sep-
arate viral proteins, expressed from separate subgenomic
RNA, and regulated by numerous complex cellular proc-
esses including the efficiency of transcription and transla-
tion, post-translation modification and stability of the
viral proteins, as well as their interactions with host fac-
tors. Indeed, it is crucial to determine how this unique
pathway benefits replication of the SARS-CoV. It is also
interesting to note that sequence comparison of isolates
from different clusters of infection showed that both S
and 3a showed a positive selection during virus evolution
[29,30], implying that these proteins play important roles
in the virus life cycle and/or disease development and is
consistent with the proposal that 3a has evolved to mod-
ulate the trafficking properties of the spike protein.
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