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Abstract

Background: Interferon-y acts to multiply the potency with which innate interferons (o/f)
suppress herpes simplex virus type | (HSV-I) replication. Recent evidence suggests that this
interaction is functionally relevant in host defense against HSV-1. However, it is not clear which
WABC:s of the innate immune system, if any, limit HSV-1 spread in an IFN-y dependent manner. The
current study was initiated to determine if natural killer (NK) cells provide innate resistance to
HSV-1 infection, and if so to determine if this resistance is IFN-y-dependent.

Results: Lymphocyte-deficient scid or rag2-- mice were used to test four predictions of the central
hypothesis, and thus determine if innate resistance to HSV-I is dependent on 1. NK cell
cytotoxicity, 2. NK cells, 3. WBCs, or 4. the IFN-activated transcription factor, Stat |. Loss of NK
cell cytotoxic function or depletion of NK cells had no effect on the progression of HSV-1 infection
in scid mice. In contrast, viral spread and pathogenesis developed much more rapidly in scid mice
depleted of WBCs. Likewise, loss of Stat | function profoundly impaired the innate resistance of
rag2-- mice to HSV-1.

Conclusion: Lymphocyte-deficient mice possess a very tangible innate resistance to HSV-I
infection, but this resistance is not dependent upon NK cells.

Background

Severe infections with herpesviruses such as herpes sim-
plex virus type 1 (HSV-1) have been observed in natural
killer (NK) cell-deficient individuals [1-3]. This observa-
tion has fostered the belief that NK cells play a central role
in innate resistance to HSV-1 infection. This hypothesis is
further supported by the mechanism of action of the viral
ICP47 protein. ICP47 binds the cellular antigen trans-
porter, TAP1, and thus prevents MHC class I molecules
from being transported to the surface of HSV-1 infected
cells [4]. This inhibition of MHC class I transport appears
to explain the long recognized fact that HSV-1 infection

renders cultured cells vulnerable to NK cell-mediated lysis
[5-7]. Indeed, expression of ICP47 is sufficient, in and of
itself, to downregulate MHC class I and induce NK cell-
mediated lysis of human cells [8]. Numerous in vitro and
in vivo studies also support the tenet that NK cells play an
integral role in innate resistance to HSV-1 infection [9-
13].

Against this background, it is not surprising that most cur-
rent texts and reviews indicate that NK cells are essential
for host resistance to HSV-1 infection [14-18]. However,
this tenet is based upon equivocal evidence. A handful of
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animal studies from the last 25 years indicate that NK cells
are not essential for host resistance to HSV-1 [19-21].
More recently, a similar conclusion was reached based on
the comparison of HSV-1 infection in rag2-/- mice versus
rag2-- y-/-mice [22]. However, loss of y. not only prevents
NK cell development, but also renders mice null for the
function of interleukins (IL)-2,-4,-7,-9,-15, and -21. Given
its pleiotropic effects [23-25], the y./- mutation does not
provide a compelling basis for drawing inferences about
any one component of the innate immune system.
Numerous NK cell studies are confounded by similar
caveats. For example, NK cell depletion has been found to
impair host resistance to HSV-1 infection [12,26], but
activated T cells also express "NK cell" markers [27].
Therefore, the effect of anti-asialo GM1 and anti-NK1.1
antibodies on host resistance to HSV-1 may be due, at
least in part, to their capacity to blunt the T cell response
to viral infections [27].

Interferon (IFN)-y multiplies the potency with which the
innate IFNs, IFN-o. and/or IFN-B, suppress HSV-1 replica-
tion [28]. This cooperative inhibition by IFN-o/B and
IFN-y effectively prevents virus-infected cells from synthe-
sizing new HSV-1 virions [29]. The profoundly accelerated
rate of HSV-1 spread in receptor-deficient mice suggests
that the interaction between the IFN-o,/3-and IFN-y-sign-
aling pathways is functionally relevant in innate resistance
to HSV-1 [22,30]. Consistent with this hypothesis, IFN-y
expression is evident in HSV-1 infected tissues just 24
hours post inoculation (p.i.; Fig. 7 of Ref. [31]). T cells, NK
cells, and professional antigen-presenting cells (APCs) are
the primary IFN-y-producers in the body [32,33]. CD8+T
cells play a major role in immune surveillance of HSV-1
latently infected ganglia, and can directly suppress HSV-1
reactivation in neurons in a manner that is MHC class I-
restricted and IFN-y-dependent [34-38]. However, it is
unknown if NK cells and/or professional APCs confer
innate resistance to HSV-1 infection via the secretion of
IFN-y at early times p.i.

The following study was initiated to determine if NK cells
provide innate resistance to HSV-1 infection via their
capacity to rapidly deliver IFN-y to sites of viral replica-
tion. Scid or rag2-/- mice were used to test four predictions
that follow from this central hypothesis. Specifically,
experiments were performed to determine if innate resist-
ance to HSV-1 is dependent on 1. NK cell cytotoxicity, 2.
NK cells, 3. WBCs, or 4. the I[FN-activated transcription
factor, Stat 1 [39,40]. The use of lymphocyte-deficient
mice assured that this analysis of innate resistance was not
confounded by the dominant effects of the adaptive
immune response. The results demonstrate that although
scid and rag2-- mice possess a measurable resistance to
HSV-1, this innate resistance is not dependent upon NK
cells.

http://www.virologyj.com/content/2/1/56

Results

Immune status of BALB/c scid mice

Lymphocyte maturation is not completely blocked in
some strains of scid mice [41-43]. Thus, B and T lym-
phocyte function were evaluated in scid mice. Assessment
of B cell function indicated that BALB/c mice had serum
IgG levels of 6.4 + 1.3 mg/ml, whereas serum IgG was
undetectable in scid mice (Fig. 1A). Flow cytometric anal-
ysis indicated that BALB/c mice contained an average 110
million WBCs per spleen, of which 21% were CD4+ T
cells, 10% were CD8* T cells, and 2.5% were CD3-
CD49b* NK cells (Fig. 1B). In contrast, scid mice con-
tained an average 8 million WBCs per spleen, of which
<0.1% were CD4+ or CD8+ T cells and 45% were CD3-
CD49b+* NK cells (Fig. 1B).

Adoptive transfer was performed to verify that adaptive
resistance to HSV-1 could be restored to scid mice. Follow-
ing ocular inoculation with HSV-1 strain KOS, scid mice
shed high titers of virus between 1 and 7 days p.i. (Fig.
1C). On day 7 p.i., scid mice were i.v. administered either
a. vehicle, b. total WBCs, c. purified B cells, or d. purified
T cells from naive BALB/c donors (Fig. 1C). Vehicle-
treated scid mice continued to shed high levels of virus
(Fig. 1C) and succumbed to the infection within 17 + 2
days p.i. (Fig. 1D). Scid mice reconstituted with total
WBCs shed 30-fold less virus than vehicle-treated controls
on day 14 p.i. (Fig. 1C) and 8 of 8 survived the infection
(Fig. 1D). Scid mice reconstituted with purified B cells
eventually died, but the mean time of survival was
increased to 22 + 3 days (Fig. 1D). Reconstitution with
purified T cells controlled HSV-1 infection in 8 of 8 scid
mice, but viral shedding continued for ~3 days longer
than scid mice reconstituted with total WBCs (Fig. 1C).
Thus, all measures indicated that scid mice are effectively
devoid of B and T lymphocyte function.

Innate resistance to HSV-1 is not dependent on NK cell
cytotoxicity

To determine if innate resistance to HSV-1 is dependent
on NK cell cytotoxic function, infection with HSV-1 strain
KOS was compared in BALB/c scid mice versus non-obese
diabetic (NOD) scid mice. Consistent with previous
reports [44,45], WBCs isolated from the spleens of NOD
scid mice were functionally deficient in NK cell cytotoxic
activity relative to BALB/c mice and BALB/c scid mice (Fig.
2A). Following ocular inoculation with 2 x 105 pfu/eye,
HSV-1 strain KOS replicated to high and equivalent titers
in BALB/c scid mice and NOD scid mice between 1 and 14
days p.i. (not shown). No differences were observed in the
progression of viral pathogenesis or the duration of sur-
vival of BALB/c scid mice versus NOD scid mice (Fig. 2B).
Flow cytometry demonstrated that approximately one-
third of the peripheral WBCs of NOD scid mice possessed
the CD3-CD49b+* phenotype of NK cells (Fig. 2C) [46,47].
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Immune status of BALB/c scid mice. A. ELISA measurement of serum IgG levels in BALB/c and BALB/c scid mice (n =5
per group; dashed line denotes lower limit of detection). B. Flow cytometric measurement of the abundance of CD4* T cells,
CD8* T cells, and CD3- CD49b* NK cells in the spleens of BALB/c versus scid mice (n = |0 per group). "Other WBCs" refers
to the fraction of spleen cells not labeled by antibodies against CD3, CD4, CD8, and CD49b. C and D. Effect of adoptively
transferred naive lymphocytes on scid mouse resistance to HSV-I. C. Viral titers per eye (dashed line denotes lower limit of
detection) and D. duration of survival of scid mice inoculated with 2 x 105 pfu/eye HSV-1 strain KOS. On day 7 p.i., scid mice (n
= 8 per group) received an i.v. injection of medium (vehicle) or medium containing 5 x 10¢ B cells, T cells, or unfractionated
WABC:s (total WBCs) obtained from naive BALB/c donors.
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Figure 2

Innate resistance to HSV-1 is not dependent on NK cell cytotoxicity. A. Cytotoxic activity of WBCs from BALB/c,
BALB/c scid, or NOD scid mice, as determined by percent maximum 5!Cr release achieved when 104 YAC-1 (target) cells were
incubated with 250,000 spleen WBCs (n = 3 per group). B. Duration of survival of BALB/c scid mice and NOD scid mice fol-
lowing ocular inoculation with 2 x 105 pfu/eye HSV-1 strain KOS (n = 5 per group). C. NK cell frequency in the spleens of
BALB/c, BALB/c scid, or NOD scid mice (n = 2 per group).
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Efficacy of NK cell depletion with anti-asialo GMI antibody. The frequency of CD3- CD49b* NK cells in the spleens of
A. BALB/c mice and B. BALB/c scid mice that received i.p. injections of 1.0 mg per day control rabbit IgG, as compared to scid
mice treated with C. 0.32 or D. 1.0 mg per day of rabbit anti-asialo GM|. Mice were treated with antibody on Days 0 and 3,
and spleen WBCs were isolated on Day 4 for flow cytometric analysis with FITC-labeled anti-CD3 and PE-labeled anti-CD49%b.
The frequency of NK cells (upper left quadrant) and CD3* T cells are indicated on each graph. Results are representative of

three independent experiments.

Thus, despite the lack of in vitro cytotoxic activity (Fig. 2A),
NOD scid mice still possessed significant numbers of NK
cells that could control HSV-1 infection via other mecha-
nisms (e.g., [FN-y secretion).

Innate resistance to HSV-1 is not dependent on NK cells
Preliminary experiments indicated that two treatments
with 0.32 or 1.0 mg rabbit anti-asialo GM1 reduced the
number of NK cells in BALB/c scid mouse spleens by >10-
and >50-fold, respectively, whereas control rabbit IgG
produced no such effect (Fig. 3). Thus, anti-asialo GM1
antibody was used to determine if NK cells are necessary
for innate resistance to HSV-1.

BALB/c mice and BALB/c scid mice were treated with PBS,
control IgG, or anti-asialo GM1 and were inoculated with
2 x 105 pfu/eye of HSV-1 strain KOS. In BALB/c mice, KOS
replicated to similar viral titers in mice treated with PBS,
control rabbit IgG, or anti-asialo GM1, with one notable
exception (Fig. 4A). On days 5 and 7 p.i., BALB/c mice
treated with rabbit anti-asialo GM1 shed ~5-fold more
virus than PBS-treated controls (Fig. 4A; p < 0.05, denoted
by asterisks). Between days 9 and 14 p.i., viral shedding
was detected in none of the BALB/c mice (Fig. 4A). Like-
wise, viral pathogenesis was limited, and 100% of BALB/c
mice survived infection with HSV-1 strain KOS (Fig. 4B).

BALB/c scid mice shed infectious KOS continuously dur-
ing the 14-day sampling period (Fig. 4A). Treatment with
rabbit anti-asialo GM1 had no effect on the titers of infec-
tious KOS recovered from the eyes of BALB/c scid mice
between 1 and 14 days p.i. (Fig. 4A). Scid mice treated
with PBS survived for 16 + 1 days p.i. (Fig. 4B). Treatment
with rabbit anti-asialo GM1 did not shorten the duration
of survival of KOS-infected scid mice (Fig. 4B). Paradoxi-
cally, treatment with rabbit anti-asialo GM1 or control
rabbit IgG increased the duration of survival of KOS-
infected BALB/c scid mice to 24 + 1 and 35 + 3 days p.i.,
respectively (Fig. 4B; p <0.001). Multiple experiments
confirmed this unexpected effect that rabbit immu-
noglobulin (with no reactivity against HSV-1) prolonged
the survival of KOS-infected scid mice. The interpretation
of these data was complicated by this caveat. However, it
was clear that NK cell depletion did not fundamentally
alter the progression of HSV-1 infection in scid mice dur-
ing the first week p.i.

Innate resistance to KOS is dependent on peripheral WBCs
Cyclophosphamide (CyP) is an alkylating agent that is
rapidly converted in vivo into metabolites that cause lethal
DNA damage in dividing cells [48,49], and transiently
reduce peripheral WBC counts by ~90% in mice [31]. To
determine if WBCs are necessary for innate resistance to
HSV-1, BALB/c mice and scid mice were treated with PBS
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Effect of NK cell depletion on innate resistance to HSV-1. BALB/c mice and BALB/c scid mice, inoculated with 2 x 05
pfu/eye HSV-I strain KOS, received i.p. injections of PBS, control IgG or anti-asialo GMI (1.2 mg) on days -1, 2,4, 6,8 and 10
p.i. A. Viral replication in the eyes of BALB/c mice and scid mice treated with PBS, control IgG or anti-asialo GM| (mean *
SEM; n = 9; dashed line denotes lower limit of detection). Asterisks denote times at which anti-asialo GM|-treated BALB/c
mice shed more virus than PBS-treated BALB/c mice (p < 0.05, ANOVA and Tukey's post hoc t-test). B. Duration of survival
of HSV-1 infected BALB/c mice and scid mice treated with PBS, control IgG or anti-asialo GM (n = 9 per group).

or CyP and were inoculated with 2 x 105 pfu/eye of HSV-
1 strain KOS. On day 4 p.i., peripheral WBC counts
(WBCs per ml x 10°) in each group were, as follows:
BALB/c + PBS = 6.6 + 0.5; scid + PBS = 2.3 + 0.2; BALB/c +
CyP = 0.8 + 0.1; and scid + CyP = 0.4 £ 0.1. Similar viral
titers were recovered from the eyes of all mice at 24 hours
p.i. (Fig. 5A). However, BALB/c mice treated with CyP
shed 30- to 1000-fold more virus than PBS-treated BALB/
¢ mice between 5 and 9 days p.i. (Fig. 5A; p < 0.05,
denoted by asterisks). Likewise, CyP-treated scid mice
shed 2- to 7-fold more virus than PBS-treated scid mice
between 5 and 9 days p.i. (Fig. 5A). Viral titers were not
determined in CyP-treated mice on 11 and 14 days p.i.

because the extent of ocular pathogenesis precluded a reli-
able measurement.

BALB/c mice treated with PBS uniformly survived ocular
HSV-1 infection (Fig. 5B). In contrast, 0% of CyP-treated
BALB/c mice survived HSV-1 infection (Fig. 5B). The
death of these mice was not a direct consequence of CyP's
toxicity, because 100% of uninfected BALB/c controls sur-
vived the same course of CyP treatment (Fig. 5B). PBS-
treated scid mice survived ocular inoculation with HSV-1
strain KOS for 18 + 1 days (Fig. 5C). In contrast, CyP-
treated scid mice succumbed to HSV-1 infection within 12
+ 1 days (Fig. 5C; p < 0.001). This reduced duration of sur-
vival was not a direct consequence of CyP's toxicity,
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Figure 5

Effect of WBC depletion on innate resistance to HSV-1. BALB/c mice and BALB/c scid mice, inoculated with 2 x 105
pfu/eye HSV-I strain KOS, received i.p. injections of PBS or cyclophosphamide (CyP; 125 mg/kg) on days -1, I, and 3 p.i. Unin-
fected BALB/c mice and uninfected scid mice received i.p. injections of CyP at the same time points (n = 8 per group). A. Viral
replication in the eyes of BALB/c mice and scid mice treated with PBS or CyP (mean + SEM; n = 8; dashed line denotes lower
limit of detection). Asterisks denote times at which CyP-treated BALB/c mice shed more virus than PBS-treated BALB/c mice

(p < 0.05, ANOVA and Tukey's post hoc t-test). B and C. Duration of survival of HSV-1 infected B. BALB/c mice and C. scid
mice treated with PBS or CyP versus uninfected, CyP-treated controls (n = 8 per group).
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Table I: Duration of survival of HSV-1 infected scid mice.
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Treatment?
Expt. Virus PBS rabbit 1gG NK-depleted® WBC-depleted®
| d KOS 158+08(n=9)f 349+28(n=9) 235+09(n=9) ND ¢
2 KOS-GFP 19.0+09 (n=5) 368+38(n=5) 35.0+0.6 (n=15) ND
3e KOS 18.1 £0.8 (n=8) ND ND 12.1 £0.7 (n =8)
4 KOS-GFP 237+1.8(n=6) ND ND 140 £ 0.6 (n=5)

Summary

192£1.7(n=28) 359%1.3(n=14)

293£58(n=14) 13.1£0.9 (n=15)

a BALB/c scid mice were treated with PBS, control rabbit IgG, rabbit anti-asialo GMI, or cyclophosphamide (CyP) as described in Materials and

Methods.

b BALB/c scid mice were treated with rabbit anti-asialo GMI.
¢ BALB/c scid mice were treated with cyclophosphamide.
dThe results of Experiment | are presented in Figure 4.

e The results of Experiment 3 are presented in Figure 5.

fMean * SEM days of survival after ocular HSV-1 inoculation of scid mice (n= number of mice per treatment).

g2 Not determined in this experiment.

because 7 of 8 uninfected scid mice survived CyP treat-
ment (Fig. 5C). Therefore, depletion of total WBCs in scid
mice was correlated with decreased innate resistance to
HSV-1 infection.

Effect of NK cell versus WBC depletion on innate
resistance to HSV-I

The innate resistance of scid mice to HSV-1 infection was
not adversely affected by NK cell depletion, but was
impaired by CyP-induced depletion of total WBCs (Table
I). To assure that inter-experimental variance was not the
source of these differences, the effect of NK cell versus
total WBC depletion was directly compared in scid mice
infected with KOS-GFP, a GFP-expressing recombinant
virus [50]. Scid mice were treated with PBS, rabbit IgG,
anti-asialo GM1, or CyP and were inoculated with 2 x 105
pfu/eye HSV-1 strain KOS-GFP. GFP expression provided
a measure of the extent of KOS-GFP spread in scid mice
(Fig. 6A). Anti-asialo GM1 antibody treatment caused a
>20-fold reduction in NK cell abundance, as determined
in n = 2 KOS-GFP-infected scid mice sacrificed on day 5 p.i
Despite effective depletion of NK cells, neither treatment
with control rabbit IgG nor anti-asialo GM1 had a meas-
urable effect on KOS-GFP spread in the eyes or periocular
skin of scid mice during the first 6 days p.i. (Fig. 6A). In
contrast, CyP treatment enhanced the spread of KOS-GFP
into the periocular skin of scid mice on day 6 p.i. relative
to the other treatment groups (Fig. 6A).

PBS-treated scid mice infected with HSV-1 strain KOS-GFP
survived for 22 + 1 days p.i. (Fig. 6B). NK cell depletion
with anti-asialo GM1 did not decrease the duration of sur-
vival of HSV-1 infected scid mice (Fig. 6B). Rather,
treatment with control IgG or anti-asialo GM1 increased

the duration of survival of KOS-GFP infected scid mice
(Fig. 6B; 38 + 3 and 35 + 2 days p.i, respectively). In con-
trast, treatment with CyP significantly reduced the dura-
tion of survival of HSV-1-infected scid mice (Fig. 6B; p <
0.001; 14 + 0.2 days p.i.). The reduced duration of survival
was not due to CyP's toxicity, because 7 of 7 uninfected
scid mice survived CyP treatment (Fig. 6B). Thus, while
depletion of total WBCs was correlated with decreased
innate resistance to HSV-1 infection, depletion of NK cells
had no such effect.

Innate resistance to HSV-1 infection is dependent on Stat |
Stat 1 is an IFN-activated transcription factor that is essen-
tial for the intracellular response of cells to the cytokines
IFN-0/B and IFN-y [39,40]. Lymphocyte-deficient rag2-/-
mice, which were genetically stat1+/+ versus stat1-/-, were
inoculated with 2 x 105 pfu/eye HSV-1 strain KOS-GFP. As
controls, wild-type strain 129 and stat1-/- mice were also
inoculated with KOS-GFP. At 24 hours p.i.,, GFP expres-
sion (Fig. 7A) and infectious KOS-GFP (Fig. 7B) were
detected in the eyes of all mice. Between 48 and 96 hours
p-i., GFP-expression steadily decreased in the eyes of strain
129 mice and rag2-/- mice infected with KOS-GFP (Fig.
7A). In contrast, GFP expression continued to spread in
the eyes of stat1-/- mice and rag2-/-stat1-/- mice such that 25
to 50% of the ocular surface was GFP-positive by 72 hours
p.i. (Fig. 7A). Likewise, stat1-/- and rag2-/-stat17/- mice shed
~300-fold more virus on day 3 p.i. than wild-type or rag2-
/~mice (Fig. 7B). This rapid response at the site of inocula-
tion was not lymphocyte-dependent, because wild-type
mice and rag2-/- mice shed equivalent, low titers of KOS-
GFP on day 3 p.i. (Fig. 7B). Viral titers were not deter-
mined in statl”/- mice or rag2-/-statl”/- mice on day 7 p.i.
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Effect of NK cell versus WBC depletion on innate resistance to HSV-1. BALB/c scid mice, inoculated with 2 x 105 pfu/
eye HSV-I strain KOS-GFP, received i.p. injections of PBS, control IgG or anti-asialo GMI (1.7 mg) on days -1, 2, 5 and 9 p.i.

Cyclophosphamide (CyP; 125 mg/kg) was administered on days -1, |, and 3 p.i. A. Eyes of KOS-GFP-infected scid mice on day
6 p.i (2% magnification, illuminated with 360—400 nm light which excites GFP fluorescence). One representative image was cho-
sen per group. B. Duration of survival of HSV-1 infected scid mice treated with PBS or CyP (n = 7 each) or control IgG or anti-
asialo GMI (n =5 each), as compared to uninfected, CyP-treated scid mice (n = 7). Control IgG and anti-asialo GM| treatment
groups initially contained n = 7 mice, but two mice per group were sacrificed on day 5 p.i. for flow cytometry to determine the

efficacy of NK cell depletion.

because the extent of ocular pathogenesis precluded a reli-
able measurement.

Strain 129 (wild-type) mice uniformly survived KOS-GFP
infection (Fig. 7C). In contrast, 0% of rag2-- mice survived
and their duration of survival was 25 + 2 days p.i. Thus,
the duration of survival of KOS-GFP-infected rag2-/- mice
was similar to KOS-GFP-infected scid mice (i.e., 21 + 3
days; Table I). Rag2-/- stat1-/- mice succumbed to HSV-1
infection much more rapidly than rag2-/- mice, and sur-
vived for only 7.8 + 0.4 days after inoculation with KOS-

GFP (Fig. 7C). Likewise, stat17/- mice also succumbed to
HSV-1 by 7.8 + 0.8 days p.i., presumably because the viral
infection overwhelmed these mice before an adaptive
immune response could be mounted. Collectively, the
results indicate that innate resistance to HSV-1 infection is
intimately dependent on Stat 1-induced gene expression.

Discussion

The current study was initiated to determine if innate
resistance to HSV-1 is dependent on NK cells and their
capacity to deliver IFN-y to sites of viral infection. Despite
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Figure 7

Effect of Stat | on innate resistance to HSV-1. Wild-type (strain 129) mice, rag2-- mice, stat/-- mice, and rag2-stat |-
mice were inoculated with 2 x 105 pfu/eye of HSV-I strain KOS-GFP. A. Eyes of KOS-GFP-infected mice on days I, 2, 3, and 4
p.i (4% magnification, illuminated with 360—400 nm light which excites GFP). A representative mouse from each group was
sequentially imaged on days | through 4 p.i. B. Replication of HSV-1| strain KOS-GFP in the eyes of mice (mean + SEM; n= 6;
dashed line denotes lower limit of detection). Asterisks denote times at which stat/-- mice shed more virus than stat/** mice
(p < 0.05, ANOVA and Tukey's post hoc t-test). C. Duration of survival of HSV-1 infected mice (n = 6 per group).
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the fact that 45% of peripheral WBCs in scid mice are NK
cells (i.e., CD3- CD49b+; Ref. [46,47]), NK cells made no
measurable contribution to innate resistance to HSV-1.
Thus, the focus of this study rapidly shifted away from the
effector mechanisms that NK cells use to control HSV-1
infection, and shifted towards a series of experiments to
validate that lymphocyte-deficient mice indeed possess a
measurable innate resistance to HSV-1. The results are dis-
cussed, as follows.

Role of NK cells in innate resistance to HSV-1

Despite a large differential in NK cell cytotoxicity, NOD
scid mice possessed an innate resistance to HSV-1 infec-
tion that was equivalent to BALB/c scid mice. One inter-
pretation of the results is that NK cell function is not
essential for innate resistance to HSV-1. However, the fact
that peripheral WBCs of NOD scid mice lack detectable
NK cell cytotoxic activity in vitro does not prove that NOD
scid mice are devoid of NK cell function in vivo. Indeed,
one-third of peripheral WBCs in NOD scid mice were
found to be CD3- CD49b* NK cells. Thus, we were hesitant
to use the behavior of HSV-1 in NOD scid mice as the basis
for concluding that NK cells play no role in innate resist-
ance to HSV-1. Likewise, we question the validity of com-
parisons of HSV-1 infection in mice that exhibit "high" or
"low" natural cytotoxicity in vitro, because there is no evi-
dence that these mice lack NK cell function in vivo [21,51].

T cells that become activated in response to viral infec-
tions express the "NK cell" markers asialo GM1, NK1.1,
and CD49b (i.e., antigen recognized by DX5 monoclonal
antibody; Ref. [47]). Thus, depletion of asialo GM1+ T
cells or NK1.1+T cells may account for the capacity of anti-
asialo GM1 or anti-NK1.1 to impair the resistance of
BALB/c and C57BL/6 mice to HSV-1 infection [12,26,27].
Consistent with this hypothesis, anti-asialo GM1
increased ocular viral titers in BALB/c mice on days 5 and
7 p.i., but produced no such effect in scid mice (Fig. 4). In
BALB/c scid mice, NK cell depletion had no effect on (a)
ocular viral titers or (b) the rate of KOS-GFP spread to the
periocular skin. An important caveat of the NK cell deple-
tion experiments was that control IgG or anti-asialo GM1
had the unanticipated effect of prolonging the survival of
HSV-1 infected scid mice. Neither 1gG preparation pos-
sessed neutralizing activity or reactivity with HSV-1 anti-
gens by ELISA. This effect raises questions about the
homeostatic mechanisms and Fc-y-receptor dependent
processes that are influenced when IgG is introduced into
a scid mouse for the first time in its life [52-55]. However,
the relevant point for this study is that a >95% reduction
in NK cell abundance does not impair the capacity of a
scid mouse to limit HSV-1 spread from the site of
inoculation.

http://www.virologyj.com/content/2/1/56

Role of peripheral WBCs in innate resistance to HSV-1
The lack of effect of NK cell depletion on innate resistance
to HSV-1 is only relevant if scid mice possess a measurable
innate resistance to HSV-1. CyP-induced depletion of
total WBCs in scid mice was associated with 1. increased
HSV-1 spread from the site of inoculation (evident by day
6 p.i.) and a 2. reduced duration of survival. CyP impairs
the immune response of normal mice to HSV-1 [31]. This
study provides the first evidence that CyP can also be used
to blunt the innate immune response to HSV-1. CyP has a
narrow therapeutic window; there is only a 4-fold differ-
ence between the minimum effective dose and a fatal
dose. Thus, we suspect that antibody-based depletion of
the relevant WBC effector(s) would cause a more
profound decrease in innate resistance to HSV-1. Based on
recent evidence, professional APCs such as dendritic cells
may be the relevant cellular targets whose depletion
accounts for CyP's capacity to impair innate resistance to
HSV-1 [56,57]. Further study is needed to test this
hypothesis.

Role of Stat | in innate resistance to HSV-1

The biological functions of IFN-¢/p and IFN-y are depend-
ent on the phosphorylation of Stat 1, which results in Stat
1 dimerization, nuclear translocation, and transcriptional
activation of IFN-stimulated genes [39,58]. HSV-1 infec-
tion was compared in rag2-/- mice versus rag2-/-stat1-/- mice
to determine if innate resistance to HSV-1 is dependent on
Stat 1-induced gene expression. Profound differences in
viral titers and viral spread were evident in stat1-/- versus
stat1+/+ mice by 3 days p.i. The rapidity with which HSV-1
infection spread in the absence of Stat 1 (i.e., a relevant
effector) underscored the remarkable lack of effect that
NK cell depletion had on innate resistance to HSV-1. The
defect in Stat 1 rendered rag2-/- stat1-/- mice incapable of
limiting HSV-1 spread, and these mice succumbed to the
viral infection just 7.8 + 1 days p.i. In contrast, the weakly
virulent KOS-GFP strain [50] caused a slowly progressing
infection in rag2-/- mice that was not lethal until 25 + 2
days p.i. Thus, Stat 1 plays an integral role in innate resist-
ance to HSV-1 infection. Likewise, a similar phenotype of
uncontrolled HSV-1 spread has been observed in IEN-a/
BR/- IFN-yR/- double knockout mice [22,30]. Thus, the
available evidence suggests that IFN-o/f and IFN-y are
important activators of Stat 1-induced resistance to HSV-1
in vivo. However, further studies are necessary to
determine if chemokines and pro-inflammatory cytokines
are also important contributors to Stat 1-dependent
innate resistance to HSV-1.

Conclusion

It has become evident that host IFNs are essential media-
tors of innate resistance to HSV-1 infection. Co-activation
of IFN-0/P and IFN-ysignaling pathways produces a coop-
erative inhibition that renders host cells highly resistant to
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the replication of herpesviruses [59-62]. In the case of
HSV-1, IFN-y achieves this effect by multiplying the
potency with which IFN-a/f inhibits viral replication
[28]. The uncontrolled spread of HSV-1 in IFN-o. /BR+/-
IFN-yR/- mice strongly suggests that this interaction is
functionally relevant in vivo [22,30]. However, it remains
to be determined which cells of the innate immune sys-
tem, if any, are responsible for the rapid delivery and
secretion of IFN-vy at sites of HSV-1 infection.

Several clinical case reports indicate that NK cells (a major
potential source of IFN-y) are essential for innate defense
against HSV-1 infection in humans [1-3]. Yet, NK cells do
not make a measurable contribution to the innate resist-
ance of mice to HSV-1. How does one resolve this para-
dox? One possibility is that the mouse model may grossly
underestimate the importance of NK cells in human
resistance to HSV-1. The viral ICP47 protein binds human
TAP1 with an extraordinarily high-affinity, and thus
renders human cells MHC class I-bare and susceptible to
NK cell-mediated lysis in vitro [4,8,63]. However, ICP47
binds mouse TAP1 with ~100-fold lower affinity than
human TAP1, and does not efficiently disrupt MHC class I
transport in mouse cells [64]. Thus, while NK cells may be
integral to the mechanisms by which the human immune
system recognizes HSV-infected cells (i.e., MHC class I-
bare), the parallel mechanism may simply be non-func-
tional in mice. Therefore, we conclude that while 1. NK
cells are dispensable for the innate resistance of mice to
HSV-1 infection, 2. further investigation is necessary to
determine what role, if any, NK cells play in human resist-
ance to HSV-1 infection.

Methods

Viruses, cells, and mice

The wild-type HSV-1 strains KOS [65] and KOS-GFP, a
KOS strain engineered to express GFP [50], were gener-
ously provided by Dr. Priscilla Schaffer and Dr. John Bal-
liet (Harvard University Medical School, Boston, MA).
The viruses were propagated in Vero cells (American Type
Culture Collection, Manassas, VA) and stored as viral
stocks at -70°C until used. Vero cells were propagated in
Dulbecco's modified Eagle medium (DMEM) containing
10% fetal bovine serum (FBS), hereafter referred to as
"complete DMEM." YAC-1 cells (American Type Culture
Collection) were propagated in RPMI-1640 containing
10% FBS.

Female BALB/c, BALB/c scid, and NOD scid mice were
obtained from the Jackson Laboratory (Bar Harbor, ME).
Female strain 129 mice, rag 27/~ mice, stat1-/- mice, and
rag2-/- stat1-/- mice were purchased from Taconic Farms
(Germantown, NY). These studies were reviewed and
approved by an IACUC, and animals were handled in
accordance with the NIH Guide for the Care and Use of

http://www.virologyj.com/content/2/1/56

Laboratory Animals. Prior to ocular inoculation, mice were
anaesthetized by intraperitoneal (i.p.) administration of
xylazine (6.6 mg/kg) and ketamine (100 mg/kg). Mice
were inoculated by scarifying the cornea with the blunted
tip of a 25-gauge needle, blotting tear film from the eyes,
and by placing 4 pl of complete DMEM containing 2 x 105
pfu/eye of virus on each eye. Viral titers were determined
by swabbing the ocular surface of both eyes at times after
inoculation with a cotton-tipped applicator. The tip of the
applicator was removed, incubated in 0.4 ml complete
DMEM for 1 hour on ice, and viral titers were determined
in the supernatant by a microtiter plate plaque assay. Fol-
lowing anaesthetization of mice, fluorescent images of
mouse eyes infected with HSV-1 strain KOS-GFP were
taken at 2x or 4x magnification on a Nikon TE300 fluo-
rescent microscope (Nikon Instruments, Lewisville, TX).

Flow cytometric analysis of natural killer cells and T
lymphocytes

Randomly chosen BALB/c, BALB/c scid, and NOD scid
mice were tested to confirm that they were deficient for T-
and B-cell function. Serum from mice was tested for
immunoglobulin G (IgG) levels using an ELISA kit spe-
cific for the Fc fragment of mouse IgG (Bethyl Laborato-
ries, Montgomery, TX). Flow cytometric analysis was used
to measure the abundance of CD4+ T cells and CD8* T
cells in the spleens of selected mice, as described below.

Cells were harvested from the spleens of mice and red
blood cells were removed by hypotonic lysis in 0.84%
NH,Cl. WBCs were labeled with fluorescent-labeled mon-
oclonal antibodies obtained from BD Biosciences (San
Jose, CA) according to the manufacturer's directions. For
each mouse analyzed, 1 x 10° WBCs were labeled with
either 1. nothing, 2. fluorescein-isothiocyanate (FITC)-
labeled anti-CD3 (clone 17A2) + phycoerythrin (PE)-
labeled anti-CD4 (clone GK1.5), 3. FITC-labeled anti-
CD3 + PE-labeled anti-CD8 (clone Ly-2), or 4. FITC-
labeled anti-CD3 + PE-labeled anti-CD49b (clone DX5).
Additionally, controls were included for gating and com-
pensation, and these included WBCs labeled with 5. noth-
ing, 6. FITC-labeled IgG,, isotype control (clone G27-35),
7. PE-labeled IgG,, isotype control (clone G27-35), 8. PE-
labeled 1gG,, isotype control (clone G155-178), or 9. PE-
labeled IgM isotype control (G155-258). Flow cytometry
was performed immediately after antibody labeling on a
FACSCalibur using CellQuest Pro software (BD Bio-
sciences). A minimum of 10,000 events was recorded per
sample. When NK cell depletion was monitored in mice,
a minimum of 25,000 events were recorded per sample.
The threshold between fluorescence-positive and -nega-
tive was set such that >99.5% of WBCs incubated with
control antibodies were considered negative.
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Adoptive transfer of lymphocytes to BALBIc scid mice
Unfractionated and purified WBCs were obtained from
naive BALB/c donors for adoptive transfer to BALB/c scid
mice, as follows. Spleens and cervical lymph nodes were
removed from ten naive BALB/c mice and dissociated to
yield a single cell suspension. WBCs were purified using
Lympholyte M according to the manufacturer's directions
(CedarLane Laboratories Ltd., Hornby, Ontario, Canada).
Purified lymphocytes were obtained by passing BALB/c
spleen WBCs through immunoaffinity B cell and T cell
columns according to the manufacturer's directions
(Cytovax Biotechnologies Inc., Edmonton, Alberta, Can-
ada). Adoptive transfer of WBCs was achieved by intrave-
nous (i.v.) tailvein injection of BALB/c scid mice with 0.5
ml complete RPMI-1640 containing nothing (vehicle), 5
x 10¢ unfractionated WBCs (total WBCs), 5 x 10° purified
B cells, or 5 x 10¢ purified T cells.

NK cell cytotoxicity assay

YAC-1 cells (1 x 104 cells) were labeled with >1Cr and
incubated with BALB/c, BALB/c scid, and NOD scid spleen
WBCs in round bottom 96-well plates for 6 hours at 37°C
at effector : target ratios of 100:1, 50:1, 25:1, 12.5:1, and
6.25:1 (n = 3 per group). One hundred microliters of
supernatant were collected from each culture for determi-
nation of 5ICr release from target cells. Controls for the
assay included 1 x 104 cells target cells incubated alone in
culture medium (spontaneous release) and target cells
incubated with 0.5% Triton X-100 (maximal release). The
percent cytotoxicity in each group of three replicate cul-
tures was calculated, as follows:

mean CPM release per group - mean spontaneous CPM release

Y%lysis = 100 x -
mean maximal CPM release - mean spontanecous CPM release.

NK cell depletion and cyclophosphamide treatment
Between days -1 and 10 p.i., BALB/c mice and BALB/c scid
mice were given four to six i.p. injections of normal rabbit
IgG (Rockland Immunochemicals, Gilbertsville, PA) or
rabbit IgG containing anti-asialo GM1 antibody (Wako
Chemicals USA, Richmond, VA). The efficacy of NK cell
depletion was validated by flow cytometric comparison of
NK cell (CD3- CD49b*) frequency. Cyclophosphamide
(Mead Johnson Oncology Products, Princeton, NJ) was
diluted with phosphate-buffered saline (PBS) such that a
volume of 0.25 ml delivered i.p. would achieve a dose of
125 mg/kg (e.g., 11 mg/ml for 22 g mice). Vehicle-treated
controls received 0.25 ml PBS. Intraperitoneal injections
of PBS or cyclophosphamide were administered on days -
1, +1, and +3 after viral inoculation.

Statistical analysis

Analysis of numerical data and statistical analyses were
performed with the software packages Microsoft Excel
(Redmond, WA) and Modstat (Modern Microcomputers,
Mechanicsville, VA). Unless otherwise indicated, all data
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are presented as means + standard errors of the means
(SEM). Viral titers were transformed by adding a value of
1 to the number of pfu per eye such that negative results
(i.e. no plaques detected) could also be analyzed on a log-
arithmic scale. The significance of differences in viral titers
between three or more groups was statistically evaluated
by one way analysis of variance (ANOVA) followed by
Tukey's post hoc t-test. The significance of differences in
duration of survival between each treatment group and
PBS-treated controls was evaluated by a two-way t-test.
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