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Abstract

Background: Cholesterol-rich microdomains like lipid rafts were recently identified as regions
within the plasma membrane, which play an important role in the assembly and budding of different
viruses, e.g., measles virus and human immunodeficiency virus. For these viruses association of
newly synthesized viral proteins with lipid rafts has been shown.

Results: Here we provide evidence for the association of the envelope protein (Env) of the 4070A
isolate of amphotropic murine leukaemia virus (A-MLV) with lipid rafts. Using density gradient
centrifugation and immunocytochemical analyses, we show that Env co-localizes with cholesterol,
ganglioside GMI and caveolin-| in these specific regions of the plasma membrane.

Conclusions: These results show that a large amount of A-MLV Env is associated with lipid rafts
and suggest that cholesterol-rich microdomains are used as portals for the exit of A-MLV.

Background

Cholesterol-rich microdomains like rafts and caveolae are
specialized regions of the plasma membrane and play an
important role for several cellular processes e.g., signal
transduction, and for the life cycle of certain viruses (e.g.,
the entry and exit steps). These domains are enriched in
cholesterol, sphingomyelin, ganglioside GM1 and caveo-
lin proteins [1]. The cholesterol molecules are intercalated
between the lipid acyl chains and cause a decrease of the
fluidity of these membrane regions leading to their resist-
ance against treatment with non-ionic detergents like Tri-
ton X-100 at 4°C [1]; therefore, these regions are also
referred to as detergent resistant microdomains (DRMs).
The specific lipid composition of DRMs leads to the selec-
tive incorporation and concentration of specific cellular
proteins (reviewed in [1]).

Recently, the envelope protein (Env) of the ecotropic
murine leukaemia virus (E-MLV) as well as of human
immunodeficiency virus type 1 (HIV-1) were shown to
associate with DRMs after transport to the plasma mem-
brane [2,3]. Similarly, Gag proteins of HIV-1 prefer DRMs
as cellular destinations after synthesis in the cytoplasm [4-
6]. As HIV-1 and E-MLV bud from plasma membrane
regions where the viral capsid and envelope proteins are
enriched [7,8] the DRM-association of the viral proteins
led directly to the idea that DRMs are platforms for assem-
bly and budding (reviewed in [9]).

Glycosyl phosphatidylinositol (gpi) anchoring and fatty
acylation have been shown to direct proteins to lipid rafts
(reviewed in [10,11]). Mutation of HIV-1 Env or E-MLV
Env palmitoylation sites [2,3] or the HIV-1 Gag myris-
toylation site [4] impaired the association of these
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proteins with DRMs. Furthermore, knock out of Env
palmitoylation sites led to a decreased viral titer due to a
reduced Env incorporation into the viral particles [3].

Viral budding from DRMs should lead to a viral mem-
brane composition, which resembles the lipid composi-
tion of DRMs and differs from the average distribution of
lipids in the plasma membrane [9]. For example, the
enrichment of the membrane of HIV-1 with sphingomye-
lin and cholesterol [12,13] strongly supports a role for
DRMs in HIV-1 budding (reviewed in [9]). In a recent
report, we showed that a 1.4 fold increase of the choles-
terol content of the plasma membrane of NIH3T3 cells
resulted in a more than 3-fold increase of viral membrane
cholesterol of amphotropic MLV (A-MLV) released from
these cells [14]. We suggested that this phenomenon
could be due to the involvement of DRMs in assembly
and budding of A-MLV. To address this issue, we have
here performed density gradient centrifugation, immuno-
cytochemical staining and co-localization experiments
using A-MLV Env expressing NIH3T3 and 293 cells.

Results

Triton X-100 insolubility of A-MLV Env

To investigate the association of A-MLV Env with DRMs
via density gradient centrifugation, 293T cells were tran-
siently transfected with a pHIT-derived plasmid encoding
the A-MLV envelope protein [15]. Moreover, expression
plasmids encoding enhanced green fluorescent protein
(eGFP) (pEGFP-N1, Clontech) were transiently trans-
fected in 293T cells and used as non-DRM marker. Forty-
eight hours after transfection, the cells were treated for 10
minutes with 1% TX-100 at 4°C and the resulting cell
lysates were loaded on discontinuous density gradients.
Due to the insolubility of DRMs, these membrane regions
as well as their associated proteins float to the top of the
gradient [16].

Confirming the routine of the fractionation experiments,
unmodified eGFP, which is localized in the cytoplasm,
was exclusively found in the soluble fractions 5 and 6 (Fig
1A). Therefore, these fractions were considered as deter-
gent soluble fractions. A-MLV Env floated predominantly
to the DRM fractions 2, 3, and 4. Fractions 5 and 6 con-
tained high background signals, in which no A-MLV Env
specific band could be detected (Fig 1A).

Additional fractionation experiments were performed
using A-MLV producing NIH3T3 cells. Analysis of the
resulting Dot Blots revealed that at least 60% of the viral
Env protein was localized within the detergent insoluble
fractions when the cells were treated with TX-100 at 4°C
(Fig 1B and 1C). As unspecific background was found
only in detergent soluble fractions (Fig 1A), an overesti-
mation of the amount of DRM associated A-MLV Env is
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unlikely. In addition, TX-100 treatment of the cells at
37°C dissolved rafts and drastically reduced the percent-
age of Env associated with the detergent insoluble frac-
tions (Fig 1D). In summary, these data imply that a large
fraction of A-MLV Env is localized in DRMs.

A-MLYV Env exhibits properties of DRM-associated
proteins

To verify A-MLV Env association with DRMs at the cell
level, a set of immunocytochemical experiments were per-
formed employing DRM (caveolin-1 (cav-1)) and non-
DRM (CD71) markers. Moreover, the cell surface receptor
for cholera toxin, the glycolipid GM1, was detected with
fluorescent labelled subunits of the cholera toxin, which
represents a standard method for DRM identification
[17]. Cav-1 is a major component of caveolae, which are
flask-shaped invaginations of the plasma membrane
involved in endocytic processes. Cav-1 is also present in
lipid rafts, which are thought to be precursors of caveolae
("pre-caveolae") [18]. The transferrin receptor (CD71) is
localized in clathrin coated pits or in other plasma mem-
brane regions, but is absent from DRMs [17,19].

Wild-type A-MLV releasing NIH3T3 cells grown on cham-
ber slides were washed with PBS or 0.5% TX-100 at 4°C
and subsequently fixed to the glass surface with parafor-
maldehyde. The cells were treated with filipin, a choles-
terol-binding fluorescent dye [20], and stained for the
DRM markers GM1 and cav-1 using FITC labelled cholera
toxin or anti cav-1 antibody, respectively, and for CD71
using an anti CD71 antibody. A-MLV Env was detected
using an anti-Env antibody (83A25 [21]). The relatively
mild TX-100 treatment was sufficient to disperse CD71,
which is not associated with DRMs, over the plasma mem-
brane while the DRM markers GM1 and cav-1 as well as
A-MLV Env remained as discrete spots (Fig 2A, compare
left and middle columns).

In another set-up, the cells were first treated for 30 min
with 5 mM methyl-beta-cyclodextrin (MBCD) at 37°C
and subsequently with 0.5% TX-100 at 4°C prior to para-
formaldehyde fixation and immunocytochemical staining
(Fig. 2A, right column). MDCB is known to extract choles-
terol from plasma membranes and is widely used to dis-
rupt DRMs [22]. Enzymatic cholesterol determination
revealed that approximately 60% of the cholesterol was
removed from the plasma membrane upon MBCD treat-
ment (data not shown). Due to disruption of the DRM
structure, a combined MBCD/TX-100 treatment should
result in dispersal of DRMs and proteins concentrated
therein. Indeed, the combined MBCD/TX-100 treatment
resulted in even distribution of GM1 as well as A-MLV Env
fluorescence in the plasma membrane while cav-1 still
was detectable in discrete spots in MBCD/TX-100 treated
cells (Fig. 2A, right column). With respect to the
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A-MLYV envelope protein associates with detergent resistant microdomains (DRMs). A) 293T cells producing A-
MLV were treated with TX-100 at 4°C and loaded on a discontinuous sucrose gradient. Western blot analyses were per-
formed. Fraction | corresponds to the top and fraction 6 corresponds to the bottom of the tube. Fractions | to 4 contain the
DRMs, fractions 5 to 6 the non-DRM membrane fractions. A-MLV Env is found predominantly in the DRM fractions 2, 3 and 4.
EGFP, which is localized in the cytoplasm, remains in the soluble fractions 5 and 6. B) NIH3T3 cells releasing A-MLV were
treated with TX-100 at 4°C and loaded on a discontinuous sucrose gradient. Dot blot analyses were performed. Fraction |
corresponds to the top and fraction 6 corresponds to the bottom of the tube, respectively. B is the background of the dot
blot. Fractions were processed in parallel for immunological detection of cav-1 and A-MLV Env. C) Quantification of the dot
blot shown in B) using image analysing software. The amounts shown are determined as percentages of the total of all dots;
DRM (fractions | to 3), non-DRM (fractions 4 to 6). D) Detergent soluble supernatant (non-DRM) and insoluble pellet (DRM)
of A-MLV producing NIH3T3 cells treated with TX-100 at 4°C or 37°C were investigated for the amount of envelope protein
using dot blot analysis. The results of two independent experiments are shown. The amounts shown are determined as per-
centages of the total of all dots.
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Immunocytochemical investigations of the association of proteins with DRMs. A) NIH3T3 cells producing A-MLV
were treated with PBS, TX-100 or MBCD as indicated and subsequently subjected to TX-100 extraction and stained for cav-I,
GMI, CD7I and A-MLV Env as indicated. B) Background of the secondary antibody used for cav-| staining. C) Background of
the secondary antibody used for A-MLV Env staining. D) NIH3T3 cells (Env negative) stained for A-MLV Env, negative control
(see text for details). Photographs were taken using an oil immersion objective, original magnification 1000x.
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distribution in the plasma membrane, TX-100 resistance,
and MBCD extraction, A-MLV Env exhibits similar proper-
ties as the DRM marker GM1 and distinct properties com-
pared to CD71. These findings are in agreement with the
results obtained from density gradient centrifugations
showing that A-MLV Env to a high degree is associated
with DRMs.

A-MLYV Env co-localizes with DRM markers

Finally, we performed co-localization studies of Env pro-
teins with DRM markers in immunocytochemical experi-
ments. Again, we used a combination of TX-100 treatment
and immunocytochemical stainings. Wild-type A-MLV
producing NIH3T3 cells grown on chamber slides were
washed with PBS or 0.5% TX-100 at 4°C and subse-
quently fixed to the glass surface by paraformaldehyde
treatment. The cells were incubated with filipin, a choles-
terol-binding fluorescent dye [20], and DRM markers
GM1 and cav-1 were detected using FITC labelled cholera
toxin or anti cav-1 antibody, respectively. A-MLV Env was
detected using an anti-Env antibody (83A25 [21]). As
expected for a DRM-associated protein and from the
results of the Dot Blot analysis (Fig. 1B and 1C), approxi-
mately 50% of A-MLV Env co-localized with cholesterol-
rich spots (Fig. 3A). In accordance with the experiment
shown in figure 2A, A-MLV Env did not disperse in the
plasma membrane after TX-100 treatment (Fig. 3A). In
addition, A-MLV Env also co-localized with cav-1 and
GM1 resulting in yellow spots in merged photographs
(Fig. 3B and 3C). No co-localization was observed when
cells were stained for A-MLV Env and the non-DRM
marker CD71 (data not shown).

Taken together, the immunocytochemical data confirm
that of A-MLV Env to a large extent is associated with
DRMs.

Discussion

A number of previous investigations have shown that the
plasma membrane of animal cells is a heterogeneous lipid
bilayer that contains distinct cholesterol-rich micro-
domains like DRMs, which are responsible for a number
of biological functions e.g., concentrating and sorting of
proteins [1]. A variety of viruses like HIV-1 and measles
virus exploit DRMs for their assembly and budding [6,23]
after association of certain structural proteins with DRMs.

Here we show that the major portion of plasma mem-
brane A-MLV Env is associated with DRMs. Using bio-
chemical and immunocytochemical methods we found
that approximately 60-80% of A-MLV Env is localized in
these microdomains. Similarly, Li et al. have reported that
the closely related envelope protein of the Moloney
murine leukaemia virus (MoMLV), which shows 62%
identity to A-MLV Env on the protein level [2,24], is asso-
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ciated with rafts. Similar to MoMLV Env, A-MLV Env is not
completely localized within DRMs. This is not uncom-
mon for DRM-associated proteins as it has been shown
for, e.g., HIV-1 p17 and gp41 [6].

The immunocytochemical method used here for investi-
gation of the DRM association of A-MLV Env was shown
to be suitable. The markers for DRM (cav-1, GM1) and
non-DRM regions (CD71) of the plasma membrane
exhibited the properties expected when the cells were
treated with the non-ionic detergent TX-100. These exper-
iments showed that A-MLV Env resembles GM1 or cav-1
upon treatment with TX-100. MBCD is known to dissolve
DRMSs by extracting cholesterol from the plasma mem-
brane. As expected for a DRM associated protein, choles-
terol extraction and subsequent treatment of the cells with
TX-100 dispersed GM1 and A-MLV Env spots at the
plasma membrane. In contrast, cav-1-positive spots were
still detectable even when these were depleted of choles-
terol (data not shown). This is in accordance with a previ-
ous investigation demonstrating that only a negligible
amount of cav-1 could be released through MBCD treat-
ment [22]. Probably, MBCD resistance of caveolin-spots is
due to the fact that the caveolin proteins build up a close
network on the luminal side of the plasma membrane
[25]. Furthermore, A-MLV Env co-localizes with the DRM
markers cholesterol, cav-1 and GM1 confirming that A-
MLV Env to a high degree is associated with DRMs.

Retrovirus assembly and release is solely driven by the
viral Gag polyprotein [28], thus virus-like particles are
formed in the absence of any other viral proteins or
genome. Since, the spatial neighbourhood of Envand Gag
proteins is a prerequisite for release of functional viral par-
ticles, the localisation of A-MLV Env within DRMs may be
indicative of viral budding from these regions. This model
is supported by the fact that a 1.4 fold increase of the cho-
lesterol content of the plasma membrane of NIH3T3 cells
resulted in a more than 3-fold increase of viral membrane
cholesterol of amphotropic MLV (A-MLV) released from
these cells [14].

Our finding may have consequences for the understand-
ing of A-MLV assembly and budding, which is known to
be a specific and coordinated process. In the case of A-
MLV, previous data indicated that the viral components
assemble and bud at the cellular plasma membrane
(reviewed in [8]). Recent investigations of Sandrin et al.,
however, demonstrate intracellular co-localization of A-
MLV Env and MoMLYV core proteins in the endocytic path-
way in late endosomes including multivesicular bodies
(MVBs). They suggest that the interaction of MLV Env and
core proteins in these compartments could influence virus
particle formation [27]. According to general belief DRM
like microdomains are already formed in the Golgi, and it
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Figure 3

A-MLYV Env co-localization with cholesterol, GMI and cav-1. A) A-MLV Env co-localization with cholesterol. NIH3T3
cells producing wild-type A-MLV were treated with filipin for cholesterol detection (left column) and with an A-MLV Env spe-
cific antibody (second column) after fixation and treatment with PBS (top) or TX-100 at 4°C (bottom). Co-localization result in
pink spots (merged images, third column). The column on the right shows the result of the co-localization finder plugin of the
Image] program [30] merged with the original A-MLV Env staining. Turquoise colour indicates co-localization of A-MLV Env
with cholesterol. B) A-MLV Env and cav-1 co-localization monitored by fluorescence microscopy. Immunofluorescent detec-
tion of cav-1 (left) and the A-MLV Env (middle) after treatment with TX-100 at 4°C in NIH3T3 cells producing A-MLV. Co-
localization result in yellow spots (right). C) A-MLV Env (left) and GMI (middle) were detected by immunofluorescence in A-
MLV producing NIH3T3 cells after PBS (top) or TX-100 treatment at 4°C (bottom). Co-localization result in yellow spots
(right). All photographs were taken using a fluorescence microscope and oil immersion objective, original magnification 1000x.
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is thus possible that A-MLV Env and core proteins are
already sorted intracellularly in the same compartment
and transported together to the plasma membrane.

Co-localization has been suggested to be sufficient for
incorporation of cellular proteins into virions [26]. Since
cav-1 and A-MLV Env co-localize in mouse NIH3T3 cells
the putative presence of cav-1 in A-MLV virions would
indicate that A-MLV buds from cav-1 containing DRMs.
Interestingly, we have found that cav-1 is incorporated
into A-MLYV virions, whereas no CD71 could be detected
(Beer and Wirth, unpublished data). However, whether
cav-1 plays a specific role in viral protein sorting to the
plasma membrane and viral assembly is presently not
known, but this issue is subject of current investigations.

Nevertheless, based on the specific properties of individ-
ual DRMs, like rafts or caveolae, rafts seem to be most
suitable for virus assembly and budding. The invagination
of caveolae within the plasma membrane of the cells, their
involvement in endocytic processes and, moreover, their
compact coat of caveolin-oligomeres [25] presumably
exclude caveolae as suitable regions for viral budding and
suggest rafts as budding platforms for A-MLV.

Conclusions

Taken together, our findings provide evidence that A-MLV
Env is localized in DRMs, similar to the Env of the closely
related E-MLV [2,26] and lentiviral HIV-1 Env [6] These
results suggest that rafts are budding platforms for A-MLV
in NIH3T3 and 293T cells.

Methods

Cells

NIH3T3 (ATCC CRL-1658) and 293T (ATCC CRL-11268)
cells were propagated in DMEM supplemented with
glutamine and 10% FCS. Antibody producing hybridoma
cells were grown in RPMI 1640 medium supplemented
with glutamine and 1% ultra low IgG FCS (Gibco). All
cells were grown at 37°C, 5% CO2 and 95% humidity.

Plasmids, transfection and helper virus approach
pMLVampho contains the complete genome of A-MLV
cloned into pBluescript (Genethon, France received via J.-
C. Pages). A-MLV producing NIH3T3 cells resulted from
transfection of pMLVampho [29] and a subsequent infec-
tion of NIH3T3 cells with replication-competent MLV-A.

Antibodies and antibody production

Hybridoma cell lines were used for the production of rat
monoclonal immunoglobulin G (IgG) antibodies against
MLV SU (83A25, kindly provided by L.H.Evans [21]). To
concentrate the antibodies, the cell suspension was centri-
fuged at 2000 x g for 10 minutes. 29.1 g ammoniumsulfat
per 100 ml were added and the supernatant stirred for 1
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hour at 4°C. After centrifugation (27000 x g, 4°C, 1 h),
the pellet was resuspended in PBS and the antibody solu-
tion dialyzed against PBS. For Western and dot blot anal-
ysis rabbit anti rat IgG coupled to horseradish peroxidase
(HRP) (Sigma) was used. Antibody to mouse CD71 was
purchased from ebioscience and to caveolin from BD Bio-
science. Fluorescein isothiocyanate (FITC)-conjugated
goat anti rat IgG was obtained from Sigma and Texas Red
labelled goat anti rabbit IgG was purchased from Calbio-
chem. Texas Red conjugated goat anti rat IgG and FITC-
conjugated goat anti rabbit IgG were obtained from Jack-
son Immunoresearch.

Triton X-100 extraction and sucrose gradient

To investigate the association of the A-MLV envelope pro-
tein with cholesterol-rich microdomains, 293T cells were
transfected with either pEGFP-N1 (Clontech) or A-MLV
Env encoding plasmids [15] using the calcium phosphate
precipitation method. 48 hours after transfection, the cells
were washed with 1xPBS, overlaid with 1xPBS and
washed from the cell culture flask surface. The cells were
pelleted with 300xg at 4°C and resuspended in icecold
1xPBS containing 1% TritonX-100 and 1 mM Pefabloc
(Sigma). The cells were incubated 30 min on ice and
adjusted to 40% sucrose or OptiPrep and loaded into
SW60Ti-tubes. The samples were overlaid with a discon-
tinuous sucrose or OptiPrep gradient (35% - 5%). The
gradient was centrifuged at 4°C with 40000 rpm for 20 h
in a SW60Ti rotor. Six fractions were collected from the
top of the tube.

An equal volume of acetone was added to the fraction and
incubated at -20°C. The precipitated proteins were pel-
leted by centrifugation and dried at room temperature.
The pellet was resuspended in 1xSDS gel loading buffer.
The fractions were analysed for their egfp-N1 or A-MLV
Env protein content using a 12% SDS gel and Western
Blot. Anti-gfp antibody was obtained from Abcam
(AB290). A-MLV Env was detected using antibodies pro-
duced by the hybridoma cell line 83A25.

Dot immunoassay

To investigate the association of proteins with cholesterol-
rich microdomains via Western or Dot Blot the extraction
of TX-100 soluble proteins was performed as described
previously [6] with the following modifications. NIH3T3
cells were washed with PBS, overlaid with 4°C cold 0.5%
Triton X-100 in the presence of a protease inhibitor cock-
tail (Pefabloc, Sigma) and gently shaked at 4°C for 1 min.
The supernatant was removed and stored on ice. The
remaining cells were suspended in PBS and homogenized
in a RiboLayser tube at 6000 rpm. The stored soluble pro-
tein fraction was adjusted to 40% sucrose in TKM buffer
(50 mM Tris-HCI, pH 7.4; 25 mM KCl; 5 mM MgCl,; 1
mM EDTA) and loaded into SW40Ti-tubes. The sample
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was overlaid with 35% to 5% sucrose (5% steps). The gra-
dient was overlaid with the homogenized cell pellet. The
gradient was centrifuged at 4 °C with 38000 rpm for 20 h.
Six fractions were collected from the top of the tube. 100
ul portions of each fraction were diluted with 400 pl PBS,
filled into the wells of a Bio Dot apparatus (BioRad) and
gently suctioned onto nitrocellulose membranes (Milli-
Pore). The membrane strips were blocked for 1 h with
Tris-buffered saline containing 10% horse serum and 3%
bovine serum albumin. To detect A-MLV envelope and
cav-1 proteins the membrane was incubated over night
with antibodies against the proteins in blocking buffer at
a 1:200 (Env) and 1:5000 (cav-1) dilution. The secondary
antibodies, rabbit anti rat and goat anti rabbit coupled to
HRP, were used at a 1:1000 dilution. The dot blots were
developed with TMB stabilized substrate for HRP
(Promega). The spot intensities were quantified using
Easy Win 32 (Herolab).

MBCD treatment

To extract cholesterol out of the cellular plasma mem-
brane NIH3T3 cells were overlaid with 5 mM Methyl-$3-
cyclodextrin (MBCD, Sigma). After slightly shaking at
37°C for 30 min, the cells were used for further treatment
with Triton X-100.

Immunofluorescent staining

NIH3T3 cells were seeded onto chamber slides (Nunc)
and grown to 80% confluency. After washing once with
PBS, the cells were overlaid with 200 pl PBS or 0.5% Tri-
ton X-100 (4°C) and incubated for 1 minute at 4°C (gen-
tly shaking at 8 rpm). Afterwards the cells were
immediately overlaid with 4% paraformaldehyde and
incubated for 15 min at RT. After washing with PBS and
blocking with Tris-buffered saline containing 10% horse
serum and 3% bovine serum albumin antibodies against
A-MLV Env, and cav-1 were added. The cells were overlaid
with secondary antibodies after washing with PBS. After a
final washing step with PBS the slides were mounted with
immunofluorescence mounting medium (Dako).

For co-localization studies the cells were blocked a second
time after incubation with the secondary antibody and
stained for GM1 with FITC-conjugated cholera toxin (Cal-
biochem, 8 ug/ml), for cholesterol with filipin (Sigma, 50
pg/ml) or cav-1 as described above.

A fluorescence microscope (Axiovert TV135, Zeiss; filter
sets: filipin - XF113, 387/450 nm (Em/Ex), FITC - 495/
520 nm, Texas Red - 595/615 nm; Omega filters) at
1000x magnification was used for the detection of the
stained proteins. Images were taken using a cooled CCD
camera (PXL 1400, Photometrics), digitalized, pseudo-
coloured and merged (IPLab Spectrum). Brightness and
contrast were adjusted.
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