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Abstract

Rubella virus (RV) causes severe congenital defects when acquired during the first trimester of
pregnancy. RV cytopathic effect has been shown to be due to caspase-dependent apoptosis in a
number of susceptible cell lines, and it has been suggested that this apoptotic induction could be a
causal factor in the development of such defects. Often the outcome of apoptotic stimuli is
dependent on apoptotic, proliferative and survival signaling mechanisms in the cell. Therefore we
investigated the role of phosphoinositide 3-kinase (PI3K)-Akt survival signaling and Ras-Raf-MEK-
ERK proliferative signaling during RV-induced apoptosis in RKI3 cells. Increasing levels of
phosphorylated ERK, Akt and GSK33 were detected from 24-96 hours post-infection,
concomitant with RV-induced apoptotic signals. Inhibition of PI3K-Akt signaling reduced cell
viability, and increased the speed and magnitude of RV-induced apoptosis, suggesting that this
pathway contributes to cell survival during RV infection. In contrast, inhibition of the Ras-Raf-MEK-
ERK pathway impaired RV replication and growth and reduced RV-induced apoptosis, suggesting
that the normal cellular growth is required for efficient virus production.

Introduction

Rubella virus (RV) is the sole member of the Rubivirus
genus of the Togaviridae. It has a positive-sense single
stranded RNA genome that is 9762 nucleotides (nt) in
length and contains two non-overlapping open-reading
frames (ORFs). The 5' proximal ORF encodes the p200
polyprotein precursor for the nonstructural proteins
(NSPs) p150 and p90 [1,2]. The 3' proximal ORF encodes
the structural proteins: capsid (C), and glycoproteins E1
and E2 [3,4].

RV infection usually causes mild disease with few compli-
cations. However, infection during the first trimester of

pregnancy results in fetal infection, and in more than 75%
of cases this leads to the development of congenital
abnormalities. These abnormalities include sensorineural
deafness, mental retardation, and congenital heart
defects, and are collectively termed congenital rubella syn-
drome (CRS) [5]. The cellular mechanisms activated by
RV, which lead to the disruption of organogenesis, are not
fully understood. However, in permissive cell cultures, the
cytopathic effect (CPE) of RV has been shown to be due to
caspase-dependent apoptosis [6-12]. Apoptosis is a key
component of developmental processes in mammals,
which functions to delete vestigial structures, control cell
number and remodel tissues and organs [13]. Thus, it has
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been proposed that RV-induced apoptosis may cause
irreparable damage to fetal tissues, resulting in the abnor-
malities observed in CRS [12]. However, the outcome of
RV infection is likely to depend on multiple signaling
events that control the balance between cell death and cell
survival.

Eukaryotic cells contain a large number of mitogen acti-
vated protein kinase (MAPK) signaling cascades that are
activated in response to growth factors, cytokines and
stress stimuli such as viral infection and UV irradiation. In
common with apoptotic proteins, MAPKs are highly con-
served and ubiquitously expressed [14,15]. These cascades
integrate external stimuli and transmit signals to the
nucleus resulting in the activation of transcription factors,
which regulate expression of genes required for prolifera-
tion, differentiation, survival and apoptosis. Two well-
studied mitogenic pathways are the phosphoinositide 3-
kinase (PI3K)-Akt pathway and the Ras-Raf-MEK-ERK
pathway, which are central to cell survival and prolifera-
tive signals respectively.

PI3Ks phosphorylate plasma membrane inositol lipids at
the 3' position of the inositol ring. These 3'phosphoin-
soitides recruit proteins such as Akt and phosphoinositide
dependent kinases 1 and 2 (PDK1/2) to the plasma mem-
brane via their pleckstrin homology (PH) domains
[16,17]. At the plasma membrane PDK1/2 activate Akt
through phosphorylation at Ser4”3 and Thr3%8. Activated
Akt promotes cell survival by phosphorylating and inhib-
iting a number of pro-apoptotic proteins including BAD,
caspase-9, GSK-3p and Forkhead transcription factors
[18,19].

The Ras-Raf-MEK-ERK is a classical MAPK pathway where
growth factor-receptor interactions trigger intracellular
activation of the small G-protein Ras. Ras recruits and
directly activates the MAPK kinase kinase (MAPKK) Raf,
which phosphorylates and activates the MAPK kinase
(MAPKK) MEK1/2, which in turn activate the MAPK
ERK1/2. Activated ERK1/2 translocates to the nucleus
where it can activate a number of transcription factors
including c-myc, c-jun, and Elk-1, which regulate cell cycle
progression responses [20].

Activation of PI3K-Akt and Ras-Raf-MEK-ERK signaling
cascades during virus infection is thought to play an
important role not only in cellular growth and survival,
but also in virus replication and growth during both acute
and chronic virus infections [21-25]. This study was car-
ried out to examine the role of PI3K-Akt and Ras-Raf-
MEK-ERK signaling during RV infection in RK13 cells. The
PI3K inhibitor LY294002 and the MEK inhibitor U0126
were used to investigate PI3K-Akt and Ras-Raf-MEK-ERK
signaling respectively during RV replication, growth and
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induction of apoptosis. Apoptosis was measured in RV-
infected cells by caspase activity and cell viability assays,
DNA fragmentation analysis, and trypan blue exclusion
staining. Involvement of PI3K-Akt and Raf-Raf-MEK-ERK
signaling in RV-induced apoptosis was also examined by
expression of constitutively active Akt and MEK in RV-
infected cells.

Results

Phosphorylation of Akt, ERKI/2 and their downstream
targets during RV infection

The effect of RV infection on PI3K-Akt and Ras-Raf-MEK-
ERK pathways was investigated by examining the expres-
sion and phosphorylation profiles of Akt, ERK1/2 and
their downstream targets. Cell lysates from RV and mock
infected RK13 cells were collected 12-96 hours post-infec-
tion (p.i.), separated by SDS-PAGE, and analyzed for total
and phosphorylated Akt and ERK1/2 by Western blotting,.
Phosphorylated Akt and ERK1/2 could be detected in RV-
infected cells from 48 hours p.i., and band intensity
increased from 48-96 hours p.i. compared to total levels
(Fig. 1A). Phosphorylated Akt and ERK2 (but not ERK1)
were detected in the mock-infected cells at 96 hours p.i.
but not before, whereas total levels of Akt and ERK 1/2
were detectable at all time points (Fig. 1A). Treatment of
RV-infected cells with PI3K inhibitor LY294002 and
MEK1/2 inhibitor U0126 completely inhibited activation
of Akt and ERK1/2 respectively (data not shown).

The phosphorylation of Akt and ERK and their down-
stream targets p70S6K, GSK-3f, c-myc and BAD were also
examined by Western blotting between 12-96 hours p.i.
(Fig. 1B). Phosphorylated Akt and ERK1/2 were detectable
in RV-infected cells at 48 and 36 hours p.i. respectively.
p70S6K is phosphorylated by FRAP/mTOR downstream
of Akt at Thr38% and at Thr42!/Ser2, downstream of the
Ras-Raf-MEK-ERK pathway. Phosphorylation at Thr389
was observed at 12, 24, 60, 84 and 96 hours p.i. (Fig. 1B).
Phosphorylation of the Thr42!/Ser42 site was observed at
all time points, although increases in band intensity could
be seen at 12, 24, 60, 84 and 96 hours p.i., mirroring the
phosphorylation at Thr38°. Phosphorylation of Thr#2!/
Ser424 but not Thr389 was observed in the mock-infected
cells, albeit at a lower level than in RV-infected cells.

The phosphorylation of GSK-3B, downstream of Akt,
increased from 12 and 96 hours p.i. and was similar to
that of Akt. Phosphorylation of BAD, another substrate for
Akt, however, could not be detected in RV-infected or
mock-infected cells. The phosphorylation of c-myc, a tran-
scription factor activated by ERK1/2 phosphorylation,
decreased between 12 and 96 hours p.i., in contrast to the
phosphorylation profile of ERK1/2. GSK-3p and c-myc
were also detectable in the mock-infected cells at 96 hours

p.i.

Page 2 of 12

(page number not for citation purposes)



Virology Journal 2005, 2:1 http://www.virologyj.com/content/2/1/1

A
hours pi. 24 48 60 72 84 96
7 ——— -
Mock S8 Total Akt
- W Phospho-Akt (Seri’3)
RV » -..q Total Akt
; “ W Phospho-Akt (Ser?3)
Mock | EESSSSSSSSES Total ERK1/2
" 3 Phospho-ERK1/2 (Thr202/Tyr204)
RV g Total ERK1/2
L I Phospho-ERK1/2 (Thr02Tyr?4)
= RV Mock

hourspi. 12 24 36 48 60 72 84 96 96
.. 7ot Akt

i “ Phospho-Akt (Ser'™)
s e an an o SBERE T CRK1/2

© o we= = w — Phospho-ERK1/2 (Thr2%?/Tyr204)
-.-.-.. Total p70/p85S6K
R 1o 5pho-p70/p85SBK (Thr2!/Sert?4)
- — - Phospho-p70/p85S6K (Thr389)
e - ——— Phospho-GSK3p
E-—-—-—- " Phospho-c-myc
T Ubulin

Figure |

Kinase phosphorylation during RV infection. Serum-starved RK |3 cells were mock infected or infected with RV at an m.o.i. of
4 PFU/cell. At indicated time points cell lysates were collected and proteins (30 pg/lane) were separated by SDS-PAGE, and
analysed by Western blotting using phospho-specific antibodies. Blots were also probed with anti-tubulin antibody to demon-
strate equal loading. A — Total and phosphorylated Akt and ERK (24-96 hours p.i.). B — Total and phosphorylated Akt, ERK,
and p70S6K, and phosphorylated GSK-3f3 and c-myc. The data were consistently repeated in two independent experiments.

The effects of LY294002 and U0126 on cell viability in RV-  assay was used to examine the effect of RV infection and
infected cells LY29002 and U0126 treatment on cellular metabolism
RV induces apoptosis in RK13 cells with characteristic =~ over time. XTT is a tetrazolium salt, which is cleaved by
morphological and biochemical features [6,8,9]. The XTT  the succinate dehydrogenase system of mitochondria in
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The effect of PI3K and MEK /2 inhibition on cell viability dur-
ing RV infection. Serum-starved RK13 cells were mock
infected or infected with RV at an m.o.i of 4 PFU/cell with or
without LY294002 (30 uM) or U0I126 (I5 puM). At indicated
time points cell viability was determined by XTT assay.
Tetrazolium salt (XTT) and electron coupling reagent were
added directly to cells, and after 24 hours the absorbance at
405-690 nm was determined. Data represent mean * S.E.
from three independent experiments.

metabolically active cells, to yield a soluble orange forma-
zan product. A decrease in the intensity of formazan was
used to monitor changes in cellular metabolism and cell
viability in RV-infected cells by spectroscopy.

Cellular viability during RV infection did not appear to be
disrupted, supporting previous observations which
reported that a large number of monolayer cells remain in
tact and do not rapidly undergo apoptosis in RV infected
cells [9,12] (Fig. 2). LY294002 treatment of RK13 cells
reduced cell viability by 20%, which remained constant
throughout the 12-96 hour period. Cell viability was
reduced to 60% in the presence of both RV and LY294002.
Thus the combined effect of PI3K inhibition and RV-infec-
tion caused a significant reduction in cell viability.

As Ras-Raf-MEK-ERK signaling is crucial to the regulation
of cell growth in many cell lines, inhibition of this path-
way often has detrimental effects. A typical dose-response
curve can be seen with MEK inhibitor U0126 in RK13
cells, with cell viability completely abolished by 60-72
hours p.i. (Fig. 2). With the addition of RV, the U0126
curve moved to the right, the effect of the drug was
delayed by approximately 12 hours.

http://www.virologyj.com/content/2/1/1

Inhibition of PI3K results in an increase in the speed and
magnitude of RV-induced apoptosis

To evaluate the role of PI3K-dependent signaling during
RV infection, the effects of PI3K inhibitor LY294002 on
the development of RV-induced apoptosis were exam-
ined, 12-96 hours p.i., by caspase activity assay, trypan
blue exclusion staining, DNA fragmentation and light
microscopy. (Fig. 3A-D). RV-induced apoptotic signaling
has been reported to occur between 12-24 hours p.i., with
peak caspase activity occurring around 72 hours p.i. at a
multiplicity of infection (MOI) of 3 PFU/cell [6]. Fig. 3A
shows that with a MOI of 4 PFU/cell the peak of RV-
induced caspase activity occurs earlier at 60 hours p.i.
When RV infection was carried out in the presence of
LY294002, the maximum caspase activity increased by
53.9 % (P < 0.05) and occurred 12 hours earlier than with
RV alone (Fig. 3A).

This increase in speed and magnitude of RV-induced
apoptosis is more strikingly observed in Fig. 3B, which
shows the number of dead floating cells by trypan exclu-
sion staining in the culture supernatant fluid of RV
infected and LY294002 treated cells. LY294002 treatment
doubles (and at 84 hours p.i. triples) the number of float-
ing cells produced in RV-infected cells. Increases in the
number of apoptotic floating cells are statistically signifi-
cant at 84 and 96 hours p.i. (P < 0.05). Fragmented DNA
patterns can be seen at 72 hours p.i. with both RV and RV
in the presence of LY294002 (Fig. 3C). However, the inter-
esting feature of these apoptotic ladders is that in RV-
infected cells, a significant proportion of genomic DNA is
still intact, whereas when RV-infected cells are also
exposed to LY294002, the majority of the genomic DNA
is fragmented. The morphological changes caused by RV-
infection and LY294002 were examined by light micros-
copy (Fig. 3D). At 72 hours p.i. CPE and induction of
apoptosis by RV can be clearly seen. RV-induced CPE is
characterized in the earlier stages by clumps of apoptotic
cells, surrounded by healthy cells. In the later stages the
cell sheet is completely destroyed and the majority of cells
have become apoptotic floaters [6]. In the presence of
LY294002, RV-infected cells are almost all dead by 72
hours p.i., resembling the later stages of RV-induced CPE.

LY294002-only treatment of RK13 cells did not induce
apoptosis as evidenced by the lack of caspase activity (Fig.
3A), DNA fragmentation (Fig. 3C), and measurable float-
ing cells (data not shown). Morphological examination of
LY294002 treated RK13 cells show the cell monolayers
were in tact with no visible cytotoxicity (Fig. 3D).

Inhibition of MEK/2 reduces RV-induced apoptosis

The role of Ras-Raf-MEK-ERK signaling in RV-induced
apoptosis was investigated using MEK inhibitor U0126 as
described above for LY294002 (Fig. 3A-D). U0126
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Figure 3

The effect of PI3K and MEK /2 inhibition on RV-induced apoptosis. Serum-starved RK |3 cells were mock infected or infected
with RV at an m.o.i of 4 PFU/cell with or without LY294002 (30 uM) or U0126 (15 pM). Cells were harvested and analyzed for
markers of apoptosis. A — At indicated time points, cell lysates were collected and incubated with artificial caspase substrate
Ac-DEVD-pNA. Free pNA due to caspase cleavage was measured at an absorbance of 405 nm. Data represent mean + S.E.
from three experiments, *P < 0.05. B — The number of measurable dead floating cells in the cell culture supernatant was deter-
mined by trypan blue exclusion staining at indicated time points. Data represent mean * S.E. from three experiments, *P <
0.05. C — Total DNA was extracted from detached and monolayer cells at 72 hours p.i. and apoptotic DNA fragments were
resolved on a 1.5% agarose gel, stained with ethidium bromide, and visualized using UV transillumination. Molecular size mark-

ers were run in the left hand lane. D — Light microscopy photographs of cell monolayers at 72 hours p.i., at a magnification of
20X.
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treatment reduced caspase activity in RV-infected cells by
51.9% (P < 0.05), with a low peak occurring at 48 hours
p-i. (Fig. 3A). The number of dead floating cells in RV and
U0126-treated cells was slightly lower than in RV-infected
cells at all time points (Fig. 3B). DNA fragmentation was
observed in both RV-infected cells and RV in the presence
of U0126 (Fig. 3C), although the presence of the drug also
appeared to result in smearing of high molecular weight
DNA, characteristic of necrosis [26,27]. The detrimental
effect of U0126 on RK13 cell morphology is shown in Fig.
3D; this correlates with the rapid decline in cell viability.

Inhibition of MEKI/2 inhibits RV replication and growth
To examine the effect of LY294002 and U0126 on RV rep-
lication and growth, RV-infected and drug-treated cell cul-
ture supernatants were tested for RV capsid gene
expression by RT-PCR, and virus growth by TCIDs assay
24-96 hours p.i.. The capsid gene is the first gene to be
transcribed from the second ORF encoding the structural
proteins. Therefore detection of capsid RNA by RT-PCR is
a good measure of RV replication [1,28]. In RV-infected
cells simultaneously treated with LY294002, levels of RV
capsid RNA increased over time, as in RV-infected cells
(Fig. 4A). In the presence of U0126, however, levels of
capsid RNA were reduced, and remained lower than that
seen at 24 hours p.i. in RV-infected cells.

Both LY294002 and U0126 affected virus growth (Fig.
4B). During RV-infection of RK13 cells with 4 PFU/cell of
virus, virus titers reached 108 TCIDs,/ml by 96 hours p.i.
However, in the presence of U0126 the titer was approxi-
mately 102 lower at 24 hours p.i., 103 lower at 48 hours
p.i.,, and 104 lower at 72-96 hours p.i. LY294002 reduced
virus growth to a similar extent, but unlike with U0126,
by 96 hours p.i. the virus titer recovered slightly.

Constitutively active Akt and MEK1/2 enhance RV-induced
apoptosis

To determine the importance of PI3K-Akt and Ras-Raf-
MEK-ERK in the transduction of cell survival and prolifer-
ative mechanisms during RV-infection, RK13 cells were
transiently transfected with constitutively active forms Akt
and MEK. Significant expression of both proteins was seen
after 24 hours (Fig. 5A). Over-expression of both activated
Akt and MEK enhanced RV-induced caspase activity (Fig.
5B). RV infection in the presence of the empty pUSE-
amp(+) control vector slightly decreased caspase activity.
Caspase activity following Lipofectamine treatment alone
or pUSEamp(+) transfection was below that of the mock-
infected cells (data not shown).

Discussion

We have previously shown that RV induces caspase activa-
tion during the early stages of infection in vitro, prior to
the appearance of morphological apoptotic changes [6].

http://www.virologyj.com/content/2/1/1

In this study we demonstrated that, in common with
other viruses such as Coxsackievirus B3 virus, human
cytomegalovirus, influenza virus A, and respiratory synci-
tial virus (RSV) (Cooray, 2004; Johnson et al., 2001;
Opavsky et al., 2001; Pleschka et al., 2001), signaling
downstream of PI3K stimulates a survival response in the
cell following RV infection and that signaling downstream
of MEK1/2 is required for RV replication, growth and
induction of apoptosis.

Analysis of phosphorylation profiles during RV infection
demonstrated that the presence of the virus stimulated an
increase in the phosphorylation of ERK1/2, Akt, and Akt
target GSK-3p over time. The presence of phosphorylated
Akt (and occasionally ERK2) at 96 hours p.i. in the mock-
infected cells, suggests that cell survival mechanisms may
be activated in older uninfected cell cultures. The phos-
phorylation pattern of downstream target p70S6K did not
follow that of Akt and ERK1/2. Apart from being phos-
phorylated by ERK1/2 and mTOR/FRAP downstream of
Akt, p70S6K can be phosphorylated by an array of differ-
ent proline-directed kinases, including PDK1, PKC(, JNK
and cdc2 which may explain this difference [29-33].

The phosphorylation of c-myc, a downstream target of
ERK1/2, did not follow the same pattern. Levels of phos-
phorylated c-myc decreased as infection progressed, which
was probably due to its targeted degradation or the action
of cellular phosphatases. RV infection has been observed
to slow cell cycle progression both in vivo and in vitro
[12,34]. As c-myc is a transcription factor that stimulates
cell cycle progression, its de-phosphorylation or degrada-
tion as RV infection progresses supports these observa-
tions. The expression and activity of c-myc and other
downstream transcription factors in relation to the cell
cycle during RV-infection requires further investigation.
Phosphorylation of BAD, downstream of Akt, could not
be detected in RV-infected cells (data not shown). How-
ever, BAD is not ubiquitously expressed and therefore
may not be produced in the rabbit kidney epithelial cells
(RK13) used [16].

Inhibition of PI3K signaling with LY294006 significantly
increased the speed and magnitude of RV-induced apop-
tosis as shown by increased caspase activity, dead floating
cells, apoptotic laddering of genomic DNA and decreased
cell viability. Thus, RV-induced apoptotic signaling
appears to be held in check by host cell survival signals
downstream of PI3K. Although inhibition of PI3K did not
affect RV replication, virus growth was affected. The speed
of apoptotic monolayer death may have prevented pro-
duction of optimal virus titers.

The importance of PI3K survival signaling has been

observed with other viruses. Recently phosphorylation of
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Figure 4

The effect of PI3K and MEK /2 inhibition on RV growth and replication. Serum-starved RK13 cells were infected with RV at an
m.o.i of 4 PFU/cell with or without LY294002 (30 uM) or U0126 (15 puM). Cell culture supernatants were extracted from cells
at indicated time points. A — RV RNA was extracted from virus-infected cell culture supernatants and the capsid gene was
amplified by RT-PCR as described under 'Experimental Procedures'. B — Monolayers of RK13 cells in 96-well plates were
infected with RV-infected cell culture supernatants, and virus titers were determined using the TCID;, assay. Results are repre-
sentative of a least two independent experiments.
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Figure 5

Over-expression of Akt and MEK enhances RV-induced apoptosis. RK |3 cells were transfected with eukaryotic expression
vector pUSEamp(+) containing constitutively active HA-tagged MEK| or myristoylated myc-tagged Akt| under the control of a
CMV promoter, or with an empty pUSEamp(+) control. A — Expression of MEK| and Aktl was determined by Western blot-
ting. Cell lysates were collected 24 hours post-transfection and 30 g protein separated by SDS-PAGE and transferred to
nitrocellulose membranes. MEK| and Akt| were detected by anti-HA and anti-myc antibodies respectively. B — RK13 cells in 6-
well plates were transfected with Akt, MEK or pUSEamp(+) control constructs for 24 hours and subsequently infected with RV

or mock-infected. 24 hours later cell lysates were collected and tested for caspase activity using artificial caspase substrate Ac-
DEVD-pNA.
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Akt, GKS3P and PKC({ (another downstream target of
PI3K signaling), has been demonstrated in Vero E6 cells
early during infection with severe acute respiratory syn-
drome (SARS)-associated corona virus (CoV) [35].
However, unlike in this study the survival response due to
PI3K-Akt signaling was deemed to be weak, as LY294002
treatment did not result in an increase in apoptotic DNA
laddering. PI3K, Akt and NF«B have also been shown to
be activated prior to epithelial cell apoptosis in RSV-
infected cells [36]. As with RV, inhibition of PI3K
increased the speed and magnitude of RSV-induced apop-
tosis, although host-cell survival was suggested to occur
prior to apoptotic signaling, as opposed to RV where cas-
pase activation and Akt phosphorylation occur concomi-
tantly [6]. PI3K-Akt signaling has also been shown to
reduce coxsackievirus B3 (CVB3)-induced apoptosis.
However, in contrast to RSV, the replication of CVB3 was
also reduced, suggesting that PI3K-Akt survival signals
may also serve as a defense mechanism against virus infec-
tion [37].

Inhibition of the MEK1/2 in RK13 cells by U0126 resulted
in necrotic monolayer destruction and a significant
decrease in cell viability. XTT assay and light microscopy
demonstrated that RV infection appeared to delay the
effect of U0126. As discussed above, RV infection stimu-
lates ERK activity, downstream of MEK, and may therefore
counteract the effect of the inhibitor. Despite this, U0126
impaired RV replication, growth, and induction of apop-
tosis. Therefore it appears that although RV infection
slows the cell cycle progression, cells must be cycling and
metabolizing normally for RV replication to occur.

ERK1/2 phosphorylation has also been observed during
infection with a number of other viruses, and inhibition
of ERK1/2 signaling by U0126 has consistently been
shown to be detrimental to virus growth. Infection of
Jurkat cells with CVB3, for example, leads to up-regulation
of ERK1/2 phosphorylation, and elevated levels of phos-
phorylated ERK1/2 have been observed in the myocar-
dium of mice susceptible to CVB3-induced myocarditis
[38]. Treatment of cultured cells with U0126 reduced
CVB3 titers and inhibited the release of virus progeny
[38,39]. Similarly, HCMV infection in human embryonic
lung fibroblasts (HELs) has been shown to stimulate
biphasic activation of MEK1/2 and ERK1/2, and treatment
of infected cells with U0126 reduced viral DNA replica-
tion, protein production and virus titer [40]. Influenza A
virus infection in vitro has also been shown to stimulate
biphasic activation of MEK1/2 and ERK1/2, and U0126
treatment prevented export of ribonucleoprotein com-
plexes from the nucleus and inhibited virus production
[24]. Inhibition of MEK1/2 during HIV infection has been
demonstrated to reduce infectivity, but unlike the other
viruses mentioned herein, did not affect protein levels or
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virus production [25]. These findings, along with the
results of this study, suggest that signaling downstream of
MEK1/2 and ERK1/2 is important for viral infectivity and
efficient virus replication and growth in vitro.

Over-expression of Akt and MEK1/2 increased RV-
induced caspase activity in RK13 cells. This response was
not due to the transfection procedure, as the increase in
caspase activity was not observed in the pUSEamp(+) or
lipofectamine controls. Such a response is also seen in
malignant cells, which are more readily killed by apop-
totic stimuli. Thus, the over-expression of these mitogenic
pathways may have resulted in a cell survival response
whereby a negative feedback loop occurred that sensitized
cells to RV-induced apoptosis. In order to study this fur-
ther, it would be necessary to construct stable cell lines
over-expressing active Akt and ERK1/2 as well as their
dominant negative mutants and other signaling proteins.

It is clear from the results of this and previous studies that
the outcome of RV infection in vitro depends on numer-
ous signaling events. It has been suggested that RV capsid
protein, when anchored to the ER can independently
induce apoptosis in culture (Duncan et. al, 2000). How-
ever this has not been confirmed by other groups and
there is conflicting evidence that virus replication and the
presence of the RV NSPs (which are necessary for replica-
tion) is required [10,12,41]. Interestingly the NSP p90 has
been shown to interact with the retinoblastoma (pRB) cell
cycle-regulatory protein and the cytokinesis regulatory
protein citron-K kinase (CK), and it has been suggested
that this may perturb the cell cycle [42,43]. How these
interactions interfere with signaling pathways and modu-
late cellular responses, however, remains to be
determined.

In relation to CRS, study of the expression and localiza-
tion of apoptotic and mitogen activated signaling proteins
in RV-infected fetal tissues would be necessary to confirm
the theory that the pathogenesis of the disease is related to
perturbation of the cell cycle. However as CRS is now rare
in the UK and work with fetal tissues is tightly regulated,
such a study would be hard to carry out. In vivo studies are
difficult, as a reliable animal model does not exist for CRS.
However, it may be possible to extrapolate findings from
cell culture systems. We used RK13 cells because they are
the best cells in which to detect rubella-induced apopto-
sis; further studies are required to confirm our findings in
primary human embryonic cells.

Materials and methods

Chemical Compounds

Stock concentrations of PI3K inhibitor LY294002 [2-(4-
Morpholinyl)-8-phenyl-1-4H-1-benzopyran-4-one|] and
MAPK/MEK inhibitor U0126 [1, 4-Diamino-2, 3-dicyano-
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1, 4-bis (2-aminophenylthio) butadiene] (Calbiochem,
UK) were made up in dimethyl sulfoxide (DMSO). In all
experiments LY294002 and U0126 were used at concen-
trations of 30 uM and 15 uM respectively.

Cell Culture & Viral Infection

Mycoplasma-free rabbit kidney epithelial (RK13) cells
were obtained from the European Collection of Cell Cul-
tures and cultured as previously described (3). RV (wild
type strain RN) was propagated as previously described
(3). For infection, cells were grown to confluence in min-
imal essential medium (MEM) supplemented with 15
mM L-glutamine and 5% FCS (v/v) (Invitrogen, UK) at
37°Cin 5% CO, in air, and serum starved overnight. Cells
were infected with RV at a MOI of 4 plaque forming units
(PFU) per cell and maintained in MEM with 1% FCS until
harvested at indicated time points. Where appropriate
kinase inhibitors (LY294002 and U0126) were added to
the media at the same time as the virus, and were present
during subsequent incubation periods. Mock-infected
cells were treated and harvested in the same manner as
those infected, except that MEM without virus was used
during the infection. RV titers, in the presence of inhibi-
tors, were determined by TCID; assay in RK13 cells as the
sample number was too large to perform plaque assays.
Inhibitor, virus and serum concentrations were optimized
to ensure that the effect of both the virus and the inhibi-
tors could be monitored.

Transfection

Control and expression plasmids [pUSEamp(+), and con-
stitutively active HA-Aktl and Myc-MEK1 in pUSE-
amp(+)] were purchased from Upstate Biotechnology Inc.
(UK). RK13 cells were grown to confluence in 25 cm? tis-
sue culture flasks and transiently transfected with 0.25 pg
of control or expression plasmids. Tranfections were
carried out in serum-free MEM using Lipofectamine Plus
(Invitrogen, UK), according to the manufacturer's instruc-
tions. For optimal transfection, cell monolayers were
incubated with the DNA-liposome mixture for 5 hours at
37°C. Following transfection, the DNA liposome com-
plexes were removed and replaced with fresh medium.
After 24 hours, RV was added to cells, which were main-
tained on MEM with 1% serum (as above). After an addi-
tional 24 hours, cells were analyzed for protein expression
by Western blot analysis, and for apoptosis by caspase
activity assay.

Western Blot Analysis

Polyclonal anti-PI3K p85, anti-HA Tag, anti-myc Tag, and
monoclonal anti-B-tubulin antibodies were from Upstate
Biotechnology inc. (UK). Polyclonal anti-caspase-3 anti-
body was from Sigma (UK). All other primary antibodies
were purchased from Cell Signaling Technology (UK).
Cells were treated as described above and at indicated
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times post-infection (p.i.), washed in PBS and harvested
in cell lysis buffer [50 mM Tris, 150 mM NaCl, 1% Triton-
X-100, 2 mM EDTA, 2 mM EGTA, 100 uM protease inhib-
itor cocktail, and 100 uM each of phosphatase inhibitor
cocktails 1 and 2 (Sigma, UK)]. Protein concentrations
were determined using the BioRad assay (BioRad, Hemel
Hemstead, UK), and equal protein loading was deter-
mined by Coomassie staining (Invitrogen, Paisley, Scot-
land). Lysates were electrophoresed on 12% Bis-Tris
polyacrylamide gels (Invitrogen, UK) and transferred
onto Hybond™ ECL nitrocellulose or PVDF membranes
(Amersham Biosciences, UK). Membranes were blocked
with 5% non-fat dried milk in PBS containing 0.1%
Tween-20, and subsequently incubated with primary anti-
body (1:1000) overnight at 4°C. Specific antibody bind-
ing was detected using horseradish peroxidase conjugated
anti-rabbit or anti-mouse IgG (1:2000) (Dako, UK), and
immunoreactive bands were visualized using the ECL
detection system according the manufacturer's instruc-
tions (Amersham Biosciences, UK).

XTT Assay

RK13 cells were grown to confluence in 96-well tissue cul-
ture plates at 37°C in 5% CO, in air. Cells were treated, in
a final volume of 100 pl, with RV and kinase inhibitors as
described above. At indicated times p.i., 50 ul of labeling
mixture containing XTT (sodium 3'- [1-(phenylaminocar-
bonyl)-3, 4-tetrazolium|-bis (4-methoxy-6-nitro) and
coupling reagent PMS (N-methyl dibenzopyrazine methyl
sulphate) (Roche Applied Science, Mannheim, Germany)
was added directly to the wells to give final concentrations
of 0.3 mg/ml and 2.5 pg/ml respectively. Plates were incu-
bated in a humidified atmosphere (37°C, 5% CO,) for 24
hours. The absorbance of the formazan product was meas-
ured at a test wavelength of 450 nm and a reference wave-
length of 690 nm.

Caspase Activity Assay

DEVD specific caspase activity assay (Promega, UK) was
carried out as previously described (3). Briefly, RK13 cells
were grown to confluence, and treated with RV,
LY294002, and U0126 (as above). Cell lysates were col-
lected at indicated times p.i. and stored at -70°C until
required. For the assay, lysates were incubated with color-
imetric substrate DEVD-p-NA for 4 hours at 37°C, and
absorbance of free pNA cleaved by endogenous caspases-
3 and -7 was measured at 405 nm.

DNA Fragmentation Analysis

Analysis of apoptotic DNA fragmentation was carried out
as previously described (3). Briefly, RK13 cells in 6-well
plates were treated with RV, LY294002 and U0126 as
above, and harvested 72 hours p.i. Total cellular DNA was
extracted from 2 x 10° cells according to the manufac-
turer's instructions (Calbiochem, Nottingham, UK).
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Nucleic acids were precipitated using 3 M sodium acetate,
2-propanol, and ethanol. DNA pellets were dried and re-
suspended in 10 mM Tris pH 7.5, 1 mM EDTA. Ladder
fragments were electrophoretically separated on 1.5%
Tris-Acetate EDTA (TAE) agarose gels. Gels were stained in
ethidium bromide solution (5 mg/ml) and fragmented
DNA was visualized under UV light.

Examination of floating cells

Floating dead cells in the supernatant following infection
with RV or drug treatment (as described above) were
quantified by trypan blue exclusion staining. The mor-
phological changes to the cells were examined by light
microscopy using a Nikon Eclipse TS100 light micro-
scope. Pictures of cells were taken at a magnification of
20X using a Nikon COOLPIX 4500 digital camera and
processed with Adobe Photoshop 7.0 software.

RV Capsid RT-PCR

Total RNA was extracted from 100 pl tissue culture super-
natants, collected at indicated times p.i., using a silica-
guanidinium isothiocyanate method [44]. Prior to reverse
transcription, RV RNA was heated to 95°C for 1 minute
and kept on ice. RNA was transcribed to cDNA using
Superscript III RNase H- reverse transcriptase (Invitrogen,
UK). Reverse transcription was performed in 20 pl reac-
tion volumes containing 200 U enzyme, 10 pl sample
RNA, 0.5 mM of each dNTP, and 5 pmoles external reverse
primer (5'-CCTGTACGTGGGGCCTTTAA-3"). RNA bound
to cDNA in RNA-DNA hybrids was removed by incuba-
tion of the cDNA with RNase H (Roche Diagnostics, UK)
for 20 minutes at 37 °C. PCR amplification was carried out
using a GC-Rich PCR System (Roche Diagnostics, UK). In
the PCR reaction 10 pl cDNA was added to 40 pl of PCR
reaction mix to give final concentrations of 1X GC-Rich
PCR buffer, 1.5 mM MgCl,, 0.2 mM each dNTP, 0.5 M
GC-rich resolution solution™, 0.5 pmole of forward and
reverse primers (5'-TAGGAGGTGCCGCCATATCA-3' and
5'-CCTGTACGTGGGGCCITTAA-3' respectively), and 2U
Taq polymerase and a mixture of proof-reading polymer-
ases. The cycling conditions, as recommended by the
manufacturer were: 95°C for 3 minutes followed by 10
cycles of 95°C for 30s, 57°C for 30s, 72°C for 1 minute;
and 25 cycles of 95°C for 30s, 57°C for 30s, 72°C for 1
minute (plus an additional 5 seconds per cycle), and a
final extension of 72°C for 7 minutes. Amplified capsid
product (1053 b.p.) was electrophoretically separated on
1% Tris-Borate (TBE) agarose gels, stained with ethidium
bromide solution (5 mg/ml) and visualized under UV
light.
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