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Abstract

Background: Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children,
especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization
antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection.

Results: In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem
linear neutralizing epitopes (mTLNE) was proposed. The three well identified EV71 linear neutralizing epitopes in
capsid proteins, VP1-SP55, VP1-SP70 and VP2-SP28, were sequentially linked by a Gly-Ser linker ((G4S)3), and
expressed in E.coli in fusion with the Trx and His tag at either terminal. The recombinant protein mTLNE was soluble
and could be purified by standard affinity chromatography. Following three dosage of immunization in adult mice,
EV71-specific IgG and neutralization antibodies were readily induced by recombinant mTLNE. IgG subtyping
demonstrated that lgG1 antibodies dominated the mTLNE-induced humoral immune response. Especially, cytokine
profiling in spleen cells from the mTLNE-immunized mice revealed high production of IL-4 and IL-6. Finally, in vivo
challenge experiments showed that passive transfer with anti-mTLNE sera conferred full protection against lethal
EV71 challenge in neonatal mice.

Conclusion: Our results demonstrated that this rational designed recombinant mTLNE might have the potential to
be further developed as an EV71 vaccine in the future.
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Introduction
Human enterovirus 71 (EV71), a typical single-stranded,
positive-sense RNA virus, belongs to the Enterovirus genus
of the Picornaviridae family. In recent years, EV71 has
emerged as the most important causative agent of Hand,
Foot and Mouse disease (HFMD) affecting mostly young
children, especially those younger than 5 years old. The
clinical symptoms of EV71 infection include simple exan-
thema, serious aseptic meningitis, acute flaccid paralysis
as well as brainstem encephalitis [1]. Although present in
most countries, the largest outbreaks of disease have been
seen in the Asia-Pacific region over the past 15 years [2-6],
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and many areas have experienced cyclical epidemics that
occur every 2–3 years [7-10]. EV71 infection has now been
recognized as an important global public health issue.
Vaccination probably offers the best option for disease

control, but there is no available licensed vaccine against
EV71. Several vaccine candidates including formaldehyde-
inactivated whole-virus vaccine, live-attenuated vaccine,
virus-like particles (VLPs), DNA vaccine and subunit
vaccine, have showed promise for clinical use [11-20].
Especially, inactivated EV71 vaccines manufactured in
mainland China have undergone phase III clinical trials
with ideal efficacy [21].
The genome of EV71 is about 7.4 kb in length, which

first encodes a long polyprotein with a single open reading
frame followed by a poly A tract. Then, the polyprotein is
divided into three different precursor proteins (P1, P2 and
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P3). The P1 precursor protein is further cleaved to four
structural proteins, including VP0 (the precursor of VP2
and VP4), VP3 and VP1, which make up the capsid;
whereas P2 and P3 are cleaved to non-structural proteins
that are involved in genome replication and translation
[22]. Among the capsid protein, VP1, VP2, and VP3 are ex-
ternal, and well exposed to host immune system. Neutraliz-
ing antibodies against EV71 have been demonstrated as the
most important factors in limiting the severity of infection
[23]. Several linear neutralizing epitopes have been identi-
fied within the capsid proteins of EV71. Foo and colleagues
have characterized two neutralizing epitopes in VP1, SP55
(amino acids 163–177) and SP70 (amino acids 208–222),
both were capable of eliciting neutralizing antibodies and
conferred protection against homologous and heterologous
EV71 strains in neonatal BALB/c mice [24]. Moreover,
monoclonal antibody targeting the linear epitope on
VP1 protein, spanning amino acids 215–219, provided
full protection against EV71 challenge in vivo [25,26].
Recently, screening with overlapping synthetic peptides
covering the entire capsid protein of EV71 identified SP28
(amino acids 136–150 of VP2) as potential neutralizing epi-
tope [27]. Epitope-based vaccines containing well-defined
protective epitopes are supposed to stimulate effective and
specific protective immune responses while avoiding poten-
tial undesirable side-effect [28,29]. Various epitope-based
vaccine candidates against virus infection have been well
demonstrated with ideal immunogenicity and protection
[30-32], and several promising pre-clinical and clinical
trials for vaccines that involve peptide-based strategies are
currently being carried out [33,34], yet only a few epitope-
based EV71 vaccines have been described [24,35,36].
In this study, a novel EV71 epitope-based vaccine candi-

date was designed through tandem connecting the three
known EV71 neutralizing epitopes with the Gly-Ser linker
and expressed in E.coli. This recombinant multiple tandem
linear neutralizing epitopes, named mTLNE, was evidenced
to evoke humoral and cellular immune responses and
passive transfer with anti-mTLNE sera conferred full
protection against lethal EV71 challenge in mice.

Results
Expression and characterization of recombinant mTLNE
The three known EV71 linear neutralizing epitopes
(VP1-SP55, VP1-SP70 and VP2-SP28) were sequentially
connected by a linker ((Gly4Ser)3) and inverted into the
expression plasmid pET32a (Figure 1A). Trx was fused at
the N-terminal to enhance solubility and immunogenicity,
and the C-terminal His-Patch was included for purifica-
tion on metal-chelating resin. As shown in Figure 1B, the
expressed mTLNE was approximately 30 kDa (lane 1 and
2), and the control Trx was about 20.8 kDa (lane 4 and 5)
as expected. The majority of recombinant proteins retained
in supernatant after sonication (lane 2), indicating that
mTLNE was mainly in the form of solubility in E.coli.
After a single purification with Ni-NTA agarose, recombin-
ant mTLNE was isolated as a single band (lane 3). Thus,
soluble mTLNE was highly expressed in E.coli and easily
purified by standard affinity chromatography.
Western blotting assay was performed to characterize the

antigenicity of mTLNE. The result showed that mTLNE
could be recognized by mouse anti-EV71 polyclonal anti-
body (Figure 2A). Further analysis with ELISA confirmed
that recombinant mTLNE could specifically react with
mouse and rabbit antisera against EV71 (Figure 2B),
meanwhile the control protein Trx had only an insig-
nificant background reading. These data suggested that
recombinant protein mTLNE possessed good immune
reactivity, and was potential to be an EV71 antigen as
originally designed.

Recombinant mTLNE induced EV71-specific humoral and
cellular immune response in mice
To test the immunogenicity of recombinant mTLNE in
mice, groups of BALB/c mice were immunized with
mTLNE three times at two-week intervals. Group of mice
immunized with equal dose of Trx protein was set as con-
trol. Serum samples were collected at two weeks after each
immunization and EV71-specific antibody response were
determined accordingly. Firstly, the immuno-reactivity of
the anti-mTLNE sera was determined by Western blotting
using EV71 virions (Figure 3A). The results showed that
the anti-mTLNE sera were reactive with three EV71
capsid proteins, including VP0 (35 kDa), VP1 (32 kDa) and
VP2 (28 kDa). The results confirmed that immunization
with mTLNE was capable of inducing antisera recognizing
VP1 and VP2 proteins of EV71.
Then, EV71-specific IgG antibody response was mea-

sured by indirect immunofluorescence assay (IFA). The
results showed that IgG antibodies were readily induced
in each mTLNE-immunized mice at two weeks post prime
immunization, and the IgG titers gradually increased along
with boost immunizations. After the third immunization,
the lgG titer peaked at 1:3191, and no detectable IgG
antibody was observed in mice immunized with Trx as
expected (Figure 3B). Subsequently, ELISA was per-
formed to characterize the antibody reactivity to each
individual EV71 epitope. The results revealed that
higher titers of IgG antibody against the three epitopes
(VP1-SP55, VP1-SP70 and VP2-SP28) were induced in the
mTLNE-immunized mice (Table 1). IgG subtyping results
showed that the level of IgG1 in mTLNE-immunized
mice was significantly higher than that of control group,
while no significant difference was observed for IgG2a,
IgG2b and IgG3 (Figure 4). Furthermore, neutralizing
antibodies assay showed that three doses of mTLNE
immunization elicited high titer neutralizing antibodies
against both genotype C4 (Figure 3C) and A strains of



Figure 1 Expression and purification of recombinant mTLNE. (A) Schematic representation of the mTLNE constructs. Three linear neutralizing
epitopes (VP1-SP55, VP1-SP70 and VP2-SP28) was sequentially linked with (Gly4Ser)3 sequence. Thioredoxin (Trx) was fused at the N-terminal, and
His-Patch at the C-terminal. (B) SDS-PAGE results of recombinant proteins. The induced cells were harvested by centrifugation, and the pellet was
re-suspended completely by mixing in PBS. Following sonication, the supernatant and the precipitate were harvested and assessed on by SDS-PAGE.
Prominent protein bands of about 30 kDa and 20.8 kDa were visible in induced fractions. Lanes 1 and 2: the precipitate and supernatant from E. coli
receiving pET32a-mTLNE. Lanes 4 and 5: the precipitate and supernatant from E. coli receiving pET32a plasmid. Lanes 3 and 6: the purified recombinant
mTLNE and Trx protein.
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EV71 (Figure 3D), while no EV71-specific neutralizing anti-
bodies were detected in all mice immunized with Trx.
To make sure whether cellular immunity was induced

by mTLNE, splenocyte proliferative responses in mice
immunized with mTLNE were determined by measuring
the levels of IFN-γ, IL-2, IL-4 and IL-6. ELISPOT assay
showed that high level of IL-4 and IL-6 were predomin-
antly produced in mTLNE-immunized mice in com-
parison to the control group. Meanwhile, no significant
difference was observed in IL-2 and IFN-γ production
between mTLNE-immunized and Trx-immunized mice
(Figure 5). Taken together, these results demonstrated
immunization with recombinant mTLNE were capabale
of inducing EV71-specific humoral and cellular immune
response in mice.
Figure 2 Serological characterization of recombinant mTLNE. (A) Wes
Lanes 1: mTLNE proteins; Lanes 2: Trx proteins. (B) ELISA using rabbit and m
be specifically recognized by the corresponding mouse and rabbit antibod
shown by a dotted line.
Passive transfer with anti-mTLNE confers full protection
against lethal EV71 challenge in neonatal mice
Finally, the in vivo protective efficacy against lethal EV71
challenge was evaluated in an established neonatal mice
model [37]. Mice were i.c. inoculated with lethal dose of
EV71 and then i.p. administered with anti-mTLNE sera.
Mice treated with PBS and anti-Trx sera were set as
controls. As shown in Figure 6, all the mice treated with
anti-mTLNE sera survived after the challenge, and none
of them developed any clinical manifestations; meanwhile
all mice that received anti-Trx sera or PBS became hair-
less lesions and paralysis of limbs at 5 days post-infection
and all died within 10 days. Log-rank analysis showed that
anti-mTLNE sera significantly prolonged the survival
time and prevented EV71-caused mortality in mice in
tern blotting assay using mouse polyclonal antibody against EV71.
ouse polyclonal antibodies against EV71. Recombinant mTLNE could

ies compared with the control Trx. The cut-off value for the ELISA is



Figure 3 Humoral immune response in mice immunized with mTLNE. (A) The immunoreactivity of serum from mice immunized with
mTLNE was determined by Western blotting. The total proteins of EV71 were harvested from infected cell lysate, and the cell lysate from the
uninfected RD cells was used as control. Lanes 1: uninfected RD cell lysate. Lanes 2: the total proteins of EV71. The position of the three capsid
proteins of EV71 (VP0, VP1 and VP2) was indicated by arrow, respectively. (B) The lgG antibody titer against EV71 was measured by IFA at two
weeks after each immunization. (C and D) Neutralization antibody titer against EV71 strain AH08/06 (genotype C4) and prototype strain BrCr
(genotype A) were measured by microneutralization assay at two weeks after the final immunization. Dotted lines represent limits of detection.
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comparison with the controls. Together, these results
demonstrated passive transfer with anti-mTLNE sera
provided full protection against EV71 challenge in neo-
natal mice.

Discussion
Epitope-based vaccine provides an opportunity to rationally
engineer specific epitopes to increase potency and breadth
and avoid the potential side-effect of other unrelated
epitopes that contribute few to protection [38,39]. To
data, only a few epitope-based vaccines against EV71 have
been described. In our study, we propose a novel strategy
to connect the three identified linear neutralizing peptides
Table 1 ELISA titers against individual EV71 epitope

Synthetic peptides

VP1-SP55 VP1-SP70 VP2-SP28

mTLNE 1:246 1:1488 1:1710

Control <1:100 <1:100 <1:100

Epitope specific IgG antibody titers of sera in two weeks after the last boost
were assayed by ELISA, using corresponding unconjugated synthetic peptide
as the capture antigen. Data represents the geometric mean titer of individual
serum sample (n = 10) harvested from the immunized mice.

Figure 4 IgG subtype induced by mTLNE. Profile of IgG subtype
in immune sera from mice immunized with mTLNE. Serum samples
were collected at two weeks after the last immunization and
analyzed for presence of IgG1, IgG2a, IgG2b and IgG3 subtype
antibodies by ELISA. (*) IgG1 subtype antibodies of sera from mTLNE
group were statistically significant compared with control group
using t-test.



Figure 5 Cytokine profile in mice immunized with mTLNE.
Cytokines response of splenocytes from mice immunized with
mTLNE was measured by ELISPOT. The numbers of spot-forming
cells (SFC) from mTLNE-immunized mice were compared with that
from the control group. (*) SFC secreting cytokines (IL-4 and IL-6)
from mTLNE group were statistically significant compared with
control group using t-test.
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by a Gly-Ser linker, generating the recombinant epitope-
based vaccine candidate mTLNE. Recombinant mTLNE
was efficiently expressed in E. coli system and easily puri-
fied with affinity chromatography. The Gly-Ser linker was
chosen to increase the flexibility of the recombinant
protein, to minimize interference between adjacent epi-
topes, and to facilitate forming natural conformation [40].
The designed mTLNE contained two epitopes in VP1 and
one epitope in VP2, and antisera from mice immunized
Figure 6 Passive protection conferred by anti-mTLNE sera.
Groups of one-day-old BALB/c mice were inoculated i.c. with 10
LD50 of EV71, followed by i.p. administration of anti-mTLNE sera at
4 h post inoculation. PBS and anti-Trx sera were set as controls. The
mortality was monitored for 21 days. Log-rank test were performed
to analyze the statistical significant.
with mTLNE interacted simultaneously with both VP1
and VP2 proteins of EV71 (Figure 3A).
Further, immunization with mTLNE induced potent

humoral immune responses as demonstrated by the
elicitation of EV71-specific IgG antibodies (Figure 3B).
Antibodies induced by mTLNE immunization were
able to neutralize both the circulating strain AH08/06
and the prototype strain BrCr (Figure 3D), suggested
that mTLNE might induce broad neutralization against
homologous and heterologous genotypes of EV71. This
is consistent with previous reports by Li et al. [41]. The
specific IgG antibody response in mice appeared somewhat
divergent among different epitopes, with relative low
titer against VP1-SP55 (Table 1). Such immunogenic
inferiority of SP55 epitope has also been observed by
others [42]. These differences are likely a reflection of
the nature of viral antigen.
In general, neutralizing antibodies are important index

for protection against EV71 infection. In the present study,
the geometric mean of neutralizing antibody titers induced
by mTLNE was 50, which was higher than that of single
synthetic peptide-SP70 [24]. Compared with inactivated
vaccines, the neutralizing titers elicited by mTLNE were
relatively low due to lack of other antigens [17,37]. How-
ever, the advantage of this epitope based vaccine approach
should not be highlighted. Especially, antibody-dependent
enhancement (ADE) of EV71 infection has been observed
in both experimental and clinical setting [41,43-45]. Recent
findings from human intravenous immunoglobulin clarified
the distinct function of each IgG subtype on neutralization
and enhancement of EV71 infection [46], and IgG1 subtype
is deemed to dominate neutralization while IgG3 associates
with ADE. The robustness of IgG1 response, not IgG3,
induced by mTLNE (Figure 4) indicated potential bene-
fits for protection. Most importantly, our data clearly
demonstrated that passive transfer of anti-mTLNE sera
conferred full protection to neonatal mice against lethal
EV71 challenge (Figure 6).
In addition to humoral immunity, mTLNE immunization

induced cellular immune responses as evidenced by el-
evated production of specific cytokines (Figure 5). The
production of IL-4 and IL-6 in mTLNE-immunized
mouse splenocytes suggested a Th2 immune response.
In mice, IL-4 and IL-6 generally switches activated B
cells to the IgG1 subtype, which was confirmed by IgG
subtypes assay and IgG1 subtype was prevalent in case
of mTLNE group (Figure 4). These observations sug-
gest that mTLNE contain mainly B-cell epitopes, which
has also been observed by Foo et al. [24,36]. Currently,
only a few T-cell epitopes on the capsid proteins of
EV71 have been identified [47,48]. In the future work, a
peptide-based vaccine containing multiple B-cell epitopes
as well as T-cell epitopes can be expected, which might be
an ideal vaccine that are capability of inducing a protective
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antibody response and a cytotoxic T-cell response
important for killing infected host cells.
Overall, we propose a novel epitope-based vaccine

approach by connecting linear neutralizing peptides,
and primary immunogenicity and protection experiments
in mice demonstrated the potential for further development
as EV71 vaccine.

Materials and methods
Cell lines and viruses
Human Rhabdomyosarcoma RD cells and African green
monkey kidney Vero cells were cultured in DMEM
medium (Invitrogen) containing 10% fetal bovine serum
(FBS) (Hyclone) at 37°C in the presence of 5% CO2 [46,49].
EV71 prototype strain BrCr (GenBank accession no.
U22521), belongs to genotype A, and genotype C4 strain
AH08/06 (GenBank accession no. HQ611148.1) was iso-
lated from an HFMD patient during an outbreak in 2008 in
Anhui, China [50]. The EV71 virus stocks were propagated
in RD cells according standard protocol and titers were
determined in Vero cells [35,51].

Preparation of mouse and rabbit polyclonal antibody
against EV71
The mouse polyclonal antibody against EV71 was pre-
pared in our lab [41] and the rabbit polyclonal antibody
against EV71 were prepared as followed. A rabbit (2.5-
3 kg) was immunized subcutaneouly (s.c.) with heat-
inactivated EV71 (2 × 107 PFU/ml) employing Freund’s
complete adjuvant (Sigma), and boosted with the same
dose antigen with Freund’s incomplete adjuvant (Sigma).
Two weeks after the boost immunization, serum samples
were titrated and stored frozen until use.

Overlap PCR amplification and plasmid construction
The cDNA fragments encoding three tandem EV71 neu-
tralizing epitopes (VP1-SP55, VP1-SP70 and VP2-SP28)
which connected by the Gly-Ser linker ((Gly4Ser)3) were
amplified by overlap PCR. The primers and reaction condi-
tions are available upon request. The PCR products were
purified and inserted into the pET32a vector (Novagene) to
generate the recombinant plasmid pET32a-mTLNE. The
recombinant plasmid was confirmed by restriction enzyme
digestion and DNA sequencing.

Protein expression and purification
The plasmid pET32a and pET32a-mTLNE was trans-
formed in BL21 Chemically Competent cells (TIANGEN).
The transformed BL21 cells were incubated with shaking at
37°C until OD600 reaches 0.6, then induced with 0.1 mM
IPTG (Sigma) at 37°C for 6 h. The cells were harvested by
centrifugation, and the pellet was re-suspended completely
by mixing in phosphate-buffered saline (PBS). Following
ultrasonication, recombinant mTLNE was purified through
a Ni-NTA agarose (KWBIO, China) according to manu-
facturer’s instructions, and the concentration of was deter-
mined by a bicinchoninic acid Protein Assay Kit (Pierce).

SDS-PAGE and Western blotting assay
All samples were mixed with loading buffer and loaded
onto a homogeneous 12% polyacrylamide gel. Western
blotting analysis was performed using the corresponding
antibodies described as above. In brief, the PVDF mem-
branes were incubated with the corresponding antibody
at room temperature for 1 h, followed by blocking in 10%
skim milk overnight at 4°C. A horse-radish-peroxidase
(HRP)-conjugated secondary antibody at a dilution of
1:5000 was used to detect the primary antibody. The
membranes were subjected to three washes for 10 min each
time in PBS containing 0.05% Tween 20 and developed
with ECL Western substrate (Bio-Rad).

Enzyme-linked immunosorbent assay (ELISA)
The 96-well microtiter plates were coated with coating
buffer (pH 9.6) containing 1 μg/ml of mTLNE overnight
at 4°C followed by 10% skim milk blocking. The coated
plate was then incubated with rabbit (1:400) or mouse
(1:500) anti-EV71 antibody at 37°C for 1 h, and followed
by incubating HRP-conjugated secondary antibodies at
37°C for 30 min. A total of 100 μl of TMB peroxidase
substrate was added for incubation for 15 min at room
temperature. Finally, the absorbance at 450 nm was
recorded using an ELISA plate reader.

Mice immunization
All animal experimental procedures were carried out
in strict accordance with and approved by the Animal
Experiment Committee of Beijing Institute of Microbiology
and Epidemiology. Groups of 6-week-old female BALB/c
mice (n = 10) were inoculated with 50 μg of mTLNE
protein, or Trx protein (control group) by intraperitoneal
(i.p.) injection with Freund’s complete adjuvant (Sigma).
All mice were then boosted twice with the same dose in
Freund’s incomplete adjuvant (Sigma) at a 2-week interval.
Two weeks after each immunization, serum samples were
prepared and stored frozen until use.

Antibody response assay
The titers of IgG antibody in mice sera were detected
by IFA as previously described [52]. In brief, confluent
RD cells infected with EV71 were harvested and sus-
pended in DMEM containing 10% FBS. The suspended
cells were then inoculated onto slides and fixed with
acetone for 30 min in −20°C. All serum samples were
serially diluted (two fold) in PBS, and mice polyclonal
antibodies (1:100 dilution) against EV71 were used as
positive control. After incubation for 1 h at 37°C, the slides
were washed three times in PBS. Then, Alexa Fluor®488
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conjugated goat anti-mouse IgG (Invitrogen) in 0.02%
Evans blue was added and incubated for 30 min at 37°C.
Finally, positive cells were detected using a fluorescent
microscope (Olympus). The IgG subtype profiles in
mouse sera were determined with a commercially available
mouse immunoglobulin isotyping kit (Invitrogen) according
to the manufacturer’s instruction.
The IgG titers of the immunized serum to each epitope

(VP1-SP55, VP1-SP70 and VP2-SP28) were determined
by ELISA. The unconjugated synthetic peptides repre-
senting the amino acid sequence of VP1-SP55, VP1-SP70
or VP2-SP28 were synthesized by Shanghai Bootech
Bioscience&Technology Co., Ltd (Shanghai, China). The
96-well microtiter plates were coated with 100 μl of coat-
ing buffer containing 15 μg/ml of unconjugated synthetic
peptides. All sera samples serially diluted (two fold) in
PBS were incubated in triplicate wells (100 μl/well) for 1 h
at 37°C. Following procedures were made as described in
Methods “ELISA”. IgG antibody titers were expressed by
the highest serum dilution at which the absorbance at
450 nm is higher than cut off value.
The neutralizing antibody titers against different

genotype of EV71 were measured by microneutralization
assay in Vero cells as previously described [53]. The
neutralizing antibody titer was calculated using the Reed-
Muench method [51].

Cytokine analysis
The production of cytokine from stimulated splenocytes
was detected by enzyme-linked immunospot (ELISPOT)
analysis using BDTM ELISPOT Set. In brief, the 96-well
plates was coated respectively with IFN-γ, IL-2, IL-4, IL-6
capture antibody overnight at 4°C. Spleen cells (106/well)
from the immunized mice were added and cultured at
37°C for 36 h, with total proteins of heat-inactivated
EV71 (100 PFU/well) or ConA (250 ng/well, Sigma).
Following procedures were made according to the manu-
facturer’s instruction.

In vivo challenge experiments
The neonatal mice model of EV71 infection has been
described [37]. Groups of BALB/c neonatal mice (n ≥ 5)
were intracranially (i.c.) inoculated with 10 LD50 of EV71
strain AH08/06, and 40 μl of anti-mTLNE or anti-Trx
serum was i.p. administered at 4 h post infection. PBS was
set as negative control. The mortality was then monitored
for at least 21 days.

Statistical analysis
The survival curve of each group was compared by using
the Log-rank test with GraphPad Prism 5.0, and the
other data were analyzed using t-test, and p < 0.05 was
considerate as significance.
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