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The YXX® motif within the severe acute
respiratory syndrome coronavirus (SARS-CoV) 3a
protein is crucial for its intracellular transport
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Abstract

understood in the case of 3a protein.

estimate cell free protein synthesis.

lipid droplets.

Background: The SARS coronavirus (SARS-CoV) 3a protein functions as an ion channel, induces apoptosis and is
important for viral pathogenesis. It is expressed on the cell surface and contains a tyrosine-based sorting motif and
a di-acidic motif, which may be crucial for its intracellular trafficking. However the role of these motifs is not fully

Methods: The subcellular distribution of the 3a protein was studied by immunofluorescence staining of cells
transfected with wild type and mutant constructs along with markers for different intracellular compartments.
Semi-quantitative RT-PCR was performed to estimate the mRNA where as western blotting was carried out to
detect protein levels of wild type and mutant 3a proteins. In vitro transcription- translation was performed to

Results: While the wild type 3a protein is efficiently transported to the plasma membrane, the protein with
mutations in the tyrosine and valine residues within the YXXV motif (AYXX®) accumulated in the Golgi compartment.
However the 3a protein with mutations within the EXD di-acidic motif (AEXD) showed an intracellular distribution
similar to the wild type protein. Increased retention of the AYXX® protein in the Golgi compartment also increased its
association with lipid droplets. The AYXX® protein also expressed at significantly lower levels compared to the wild
type 3a protein, which was reversed with Brefeldin A and Aprotinin.

Conclusions: The data suggest that the YXXO motif of the SARS-CoV 3a protein is necessary for Golgi to plasma
membrane transport, in the absence of which the protein is targeted to lysosomal degradation compartment via

Introduction

Severe Acute Respiratory Syndrome (SARS) originated
in China towards the end of 2002 and quickly spread to
about 30 countries by 2003 causing over 800 deaths
worldwide [1-4]. The etiological agent of the disease, the
SARS Coronavirus (SARS-CoV) was identified and clas-
sified as a unique member of beta Coronavirus. The
SARS-CoV carries a ~30 kb positive-sense RNA genome
that contains 8 unique open reading frames (ORFs) in
addition to the common coronaviral genes [5,6]. The
Orf3A is the largest among these ORFs and encodes a
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protein of 274 amino acids, the deletion of which re-
duces SARS-CoV replication in cell cultures and murine
models of infection [7]. Antibodies against the 3a protein
were also found in the sera of SARS patients [8]. Follow-
ing infection of Vero E6 or CaCo2 cells, the 3a protein
was found to be associated with virus particles [9,10]
and localized to the plasma membrane and perinuclear
regions of infected cells [11]. Several studies including
ours have shown the 3a protein to induce apoptosis in
host cell [12-14], which is also linked to its ability to
form ion channels [15]. The 3a protein also promotes
osteoclastogenesis by increasing NF-kB activity [16], and
we have shown it to cause ER stress and induce down-
regulation of the type 1 interferon receptor [14,17].

The 3a protein contains three transmembrane do-
mains at the N-terminus and a C-terminal cytoplasmic
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domain of ~150 amino acids [18]. The cytoplasmic do-
main contains a tyrosine based sorting motif, YXXO
(where X can be any residue and @ is a residue with a
bulky hydrophobic side chain) and a di-acidic EXD
motif. It has been hypothesized that these motifs assist
the 3a protein in regulating internalization of the viral
Spike (S) protein from cell surface to intracellular sites
[19]. In a study by Tan et al, the 3a protein lacking both
of these motifs failed to express on the cell surface [11].
It has also been reported that the 3a protein is released
in membranous structure from cell and mutation in the
YXX® or EXD motif does not impact the release [20].
Tyrosine based sorting motifs are responsible for AP-2
mediated internalization from the cell surface by inter-
acting with p2 subunit of the clathrin complex [21].
However the YXX® motif can also mediate interaction
with other members of the clathrin complex including
AP-1, AP-3 and AP-4 for transport to different destina-
tions inside the cell [22]. For example, the YXX® motif
has been shown to be required for lysosomal targeting of
some proteins like the CD3 chain of the T-cell receptor
[23]. The di-acidic motif functions as a canonical ER ex-
port signal by mediating interaction with COPII vesicles
[24-27] and has been shown to mediate efficient trans-
port of the KAT1 ion channel protein to the plasma
membrane [28]. However the functions of these individ-
ual motifs within the 3a protein have not been under-
stood properly.

We previously reported the 3a protein to localize to
the plasma membrane and to interact with Caveolin-1
[29], a protein that is part of lipid-rich regions of the
membrane (caveolae) and has several functions in the
cells, including the formation of lipid droplets and
modulation of lipolysis [30-32]. Lipid droplets are intra-
cellular storage organelles consisting of a core of neutral
lipids surrounded by a monolayer of phospholipids [33].
Many proteins have been identified on lipid droplets that
are also involved in vesicular transport, membrane fu-
sion and cytoskeletal mobility. Among these are Perilipin
A, Caveolins, Phospholipase D, and members of the Rab
and ARF families of small GTPases [34-38]. Among viral
proteins, the core proteins of hepatitis C virus (HCV)
and GB virus B (GBV-B) are known to be associated
with lipid droplets [39]. Recent views of lipid droplets
emphasize that these might also act as storage vesicles
for excess and unfolded proteins [34,40].

In this report we show that the tyrosine based sorting
motif (YXX®) of the 3a protein is responsible for its
sorting from the Golgi to plasma membrane. Whereas
the wild type 3a protein traffics to plasma membrane ef-
ficiently, most of the YXX® mutants are retained in
Golgi and lipid droplets. We also show that increased
targeting of the 3a protein to lipid droplets is associated
with its lysosomal degradation. These findings define the
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role of the YXX® motif in intracellular and surface
transport of the SARS-CoV 3a protein.

Results
The YXX® motif of the 3a protein is required for its
trafficking to the plasma membrane
Several motifs are present within the amino acid se-
quence of Orf3a that may be crucial for its intracellular
localization. The 274 amino acids (aa) long 3a protein
contains three potential transmembrane regions between
residues 3456, 77-99 and 103-125, followed by a cyto-
plasmic domain of ~150 aa (Figure 1). The cytoplasmic
domain of 3a also contains a tyrosine-based sorting
motif, YXX® (aa 160-163) and a di-acidic motif, EXD
(aa 171-173). We compared the amino acid sequences
of SARS-CoV 3a protein from several human and bat
isolates available in NCBI database (Table 1). YXX®
motif is conserved in all the isolates studied where as
the EXD motif is mutated in all the seven bat isolates
and one out of 21 human isolates. The EXD motif was
proposed to be an endoplasmic reticulum (ER) export
signal whereas the YXX® motif was shown to be crucial
for endocytosis from the cell surface [19]. The topology
of the 3a protein is such that the N-terminus is exposed
to the outside of plasma membrane [11]. To study its
cell surface distribution, we made expression constructs
for the 3a protein and its mutants with a N-terminal
Myc-tag. The 3a protein was expressed in four different
cell lines — COS-7, HT29, MDCK and Huh7 and
showed intracellular as well as surface localization in all
cell types (Figure 2A). This result is consistent with pre-
vious reports showing the membrane distribution of the
3a protein [11].

To study the subcellular distribution of the 3a protein we
performed immunofluorescence staining of cells transfected
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Figure 1 The 3a protein domains and mutants. The 3a protein
has three transmembrane regions (grey boxes) between amino-acid
34-56, 77-99, 103-125, and YXX® and EXD motifs in the 150 amino-acids
long cytoplasmic domain. The Cyto3a mutant lacks the three trans
membrane regions. The amino acid changes in the AYXX® and
AEXD mutants are indicated. An N terminal c-Myc epitope tag (red
box) is attached to all the constructs.
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Table 1 Comparison of amino acid sequences in the
cytoplasmic tail of different SARS-CoV isolates from
human and bat

Isolates Amino acid sequences (141-180)

in the cytoplasmic tail of 3a®

Human lIsolates

ZJ0301 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
URBANI YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
TWJ YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL

TWI YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL

TOR2 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
Sino 3-11 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
Sino 1-11 YDANFVCWHTHNYDYCIPYNSVTDTIWTEGDGISTPKL
SIN2774 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
SIN2748 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
SIN2679 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
SIN2677 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
SIN2500 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
LLJ-2004 YDANFVCWHTHNYDYCIPYNSVTDTIWTEGDGISTPKL
HKU39849 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
GDO1 YDANFVCWHTHNYDYCIPYNSVTDTIVWTAGDGISTPKL
CUHKU-W1 YDANFVCWHTHNYDYCIPYNSVTDTIWTEGDGISTPKL
CFB/SZ/94/03 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
BJO4 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
BJO3 YDANFVCWHTHNYDYCIPYNSVTDTIWTEGDGISTPKL
BJO2 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
BJO1 YDANFVCWHTHNYDYCIPYNSVTDTIVWTEGDGISTPKL
Bat Isolates:

W1vi YDANFVCWHTHNYDYCIPYNSVTDTIVWTAGDGISTPKL
RsSHCO014 YDANFVCWHTHNYDYCIPYNSVTDTIVWTAGDGISTPKL
Rs3367 YDANFVCWHTHNYDYCIPYNSVTDTIVWTAGDGISTPKL
Rs672 YDANFVCWHTHNYDYCIPYNSVTDTIVWWTAGDGISTPKL

Rf1 YDANFVCWHTHNYDYCIPYNSVTDTIWTSGDGISTPKL
HKU3-12 YDANFVCWHTHNYDYCIPYNSVTDTIWTSGDGISTPKL
279/2005 YDANFVCWHTHNYDYCIP YNS I TDTIWTSGDGISTPKL

#Amino acid sequences were obtained from National Center for Biotechnology
Information (NCBI). The YXX® (where X is any amino acid and ® is an amino
acid with a bulky hydrophobic side chain) and EXD motifs are shown in italics
whereas mutated motifs are highlighted in bold letters.

with wild type and mutant constructs. The cell surface dis-
tribution was observed in non-permeabilized cells with the
antibodies against the N-terminal Myc-tag. Staining of
permeabilized cells with antibodies against the cytoplasmic
region (aa 126-274) of the 3a protein was used to see its
total expression and intracellular distribution. The wild type
3a protein was found to localize to the plasma membrane
as well as to intracellular regions that appeared to be peri-
nuclear and showed a punctate distribution (Figure 2B).

Page 3 of 10

The Cyto3a protein that lacks the transmembrane do-
mains showed similar intracellular distribution, but was
expectedly not found on the plasma membrane (Figure 2B).
Surprisingly, the AYXX® protein with mutations in the
tyrosine-based sorting motif was mainly localized in the
perinuclear compartment (Figure 2B). On the other
hand, the AEXD protein with the mutations in the di-
acidic motif distributed similar to the wild type protein.
Since an N-terminal myc tag was present on all the pro-
teins and was likely to be exposed extracellularly, staining
non-permeabilized cells with the anti-myc antibodies
confirmed the plasma membrane localization and proper
topology of the 3a proteins. Only the wild type
and AEXD proteins stained with anti-myc antibodies in
non-permeabilized cells. These results showed that the
3a proteins are expressed with the correct topology of
extracellular N-terminus and cytoplasmic C-terminus.
The AYXX® mutant protein saturated in the intracellular
compartment, but was not found at the plasma mem-
brane, showing this tyrosine-based sorting motif to be im-
portant for its trafficking to the cell surface. The di-acidic
motif, which is a canonical ER export signal, did not show
any role in the intracellular trafficking of the 3a protein.

The YXX® motif in 3a protein is responsible for its Golgi
to plasma membrane sorting

The subcellular distribution of the AYXX® protein was
very different from that of the wild type 3a protein. To fur-
ther characterize the compartments to which the mutant
3a proteins localize, we expressed them in Huh7 cells to-
gether with markers for the ER and Golgi compartments.
The wild type and AEXD proteins were distributed to the
cell surface and punctate structures that are likely to repre-
sent trafficking vesicles; these also showed minor colocali-
zation with the Golgi compartment (Figure 3A). However,
the AYXX® mutant protein was localized exclusively to
the Golgi compartment (Figure 3A). Two subcellular dis-
tribution patterns were observed for the proteins. While
the first consisted of a predominantly dispersed cytoplas-
mic and plasma membrane localization with a minor frac-
tion of the protein in the Golgi compartment, the other
showed a Golgi-saturated pattern. These distribution pat-
terns for the proteins were quantified in multiple cells
using the Golgi marker. An overwhelming majority of
cells expressing wild type 3a or its AEXD mutant
showed the first pattern, while all of the cells expressing
the YXX® mutant showed the second pattern of
localization (Figure 3B). The wild type 3a and AEXD
proteins appear to be rapidly sorted from the Golgi com-
plex to the plasma membrane. These results suggest that
the di-acidic motif does not function as an ER export
signal in this protein; if this was the case, the AEXD mu-
tant protein would have been retained in the ER. None
of the proteins showed any significant localization with
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Figure 2 Mutation of the tyrosine based sorting motif abrogates surface expression of the 3a protein. (A) Distribution of 3a protein in
different cell lines - COS-7, HT29, MDCK and Huh?. The pSGI-3A-HA construct was transfected into these cell lines and stained with rabbit anti-3a
antibody and Alexa-594 conjugated anti-rabbit IgG. (B) Surface expression of 3a and its mutants - Huh7 cells were transfected with expression
constructs for wild type or mutant 3a proteins. Protein expression on the cell surface was detected using an anti-Myc antibody without
permeabilizing the cells; the total levels were detected with anti-3a antibody after permeabilizing the cells with methanol. Arrow indicates
surface distribution. Data shown are representative of three different experiments.
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the ER marker. The AYXX® mutant protein was
retained in the Golgi complex but not in the ER region
or at the plasma membrane, suggesting that the
tyrosine-based sorting motif is crucial for the sorting of
the 3a protein from Golgi to the plasma membrane.

Increased Golgi retention of the 3a protein leads to
increased targeting to lipid droplets

Cytoplasmic lipid droplets have been proposed to act as
storage vesicles for proteins [40]. Increased Golgi reten-
tion of Caveolin-2 is reported to result in targeting of the
protein to lipid droplets [41]. We investigated whether this
was also the case with Golgi-saturated 3a proteins. To
visualize lipid droplets we used the specific dye Nile Red
to stain transfected cells grown in culture media contain-
ing free fatty acids. On costaining with Nile Red, ~50% of
the wild type 3a protein was found to be associated with
lipid droplets, but the Cyto3a protein did not show any
significant colocalization, indicating that the transmem-
brane region of the 3a protein was required for its target-
ing to lipid droplets (Figure 4). Presuming that these act
as storage vesicles for excess or unfolded proteins, Golgi
overload would cause increased targeting to lipid droplets.
Expectedly, over 90% of the AYXX® mutant 3a protein
localized to lipid droplets (Figure 4).

Reduced levels of the AYXX® 3a protein are due to
increased lysosomal degradation

In multiple transient transfections, we observed that the
AYXX® mutant protein was expressed at much lower
levels as compared to the wild type 3a protein (Figure 5
A left panel). To investigate this, semi-quantitative RT-
PCR was performed, which showed the mRNA levels
of the wild type and mutant 3a proteins to be similar
(Figure 5A right panel). This indicated that the mutant
protein was either unstable or was actively degraded in
the transfected cells. To explore this, we performed an
in vitro transcription-translation experiment and found
similar levels of the wild type and AYXX® mutant 3a
proteins (Figure 5B), which supported the intracellular
degradation model. Since the mutant protein was retained
in lipid droplets, we hypothesized that this would lead to
increased autophagy or lysosomal degradation. In fact, the
AYXX®D mutant protein localized with late endosome/
lysosomal marker Rab7 (Figure 5C). To further confirm
lysosomal degradation of the mutant protein, we used two
inhibitors — Brefeldin A, which blocks ER-to-Golgi trans-
port and Aprotinin A, which inhibits lysosomal proteases.
Both of these led to 3 to 5 fold increased levels of the
AYXX®D mutant protein (Figure 5D). These findings
clearly demonstrate that mutation of the tyrosine-based
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Figure 3 The AYXX® mutant localizes to the Golgi compartment. (A) Expression constructs for wild type 3a or its mutants were cotransfected
with DsRed-ER or YFP-Golgi markers in Huh7 cells, followed by staining with anti-3a antibodies. (B) Quantitative estimates of subcellular distribution
patterns of the 3a and its mutants. Golgi saturated and plasma membrane distribution pattern was quantified by looking at colocalisation with

Golgi marker and surface staining respectively. A total of at least 50 different expressing cells were analyzed for each condition. Data shown are
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sorting motif causes abnormal trafficking of the 3a protein
leading to increased accumulation in the Golgi compart-
ment and lipid droplets and subsequent degradation in
the lysosomal compartment.

Discussion
The 3a protein is unique to SARS-CoV, not found in other
human coronaviruses, and is important for disease patho-
genesis. It functions as an ion channel [15], which is cru-
cial for its pro-apoptotic role [42], and for this the 3a
protein must traffic to the cell surface. This has been
shown earlier [11] as well as in this report. However, the
motifs or domains of the 3a protein required for its cell
surface distribution have not been characterized.

In many proteins, a tyrosine based sorting motif is
responsible for internalization of molecules from the

plasma membrane to intracellular sites by specific recog-
nition of the cargo containing this motif through the
plasma membrane resident Clathrin AP-2 complex [21].
Consequently, it was proposed that the YXX® motif
within the 3a protein would be important for its endo-
cytosis [19]. If the YXX® motif were important for me-
diating endocytosis from plasma membrane, the mutant
3a protein lacking this motif would be retained in the
plasma membrane. However, this mutant protein was
not found in the plasma membrane, but in the Golgi
compartment, suggesting a role for this motif in Golgi to
plasma membrane transport. The YXX® motif is also
recognized by the AP-1, AP-3 and AP-4 complexes, of
which the AP-4 complex is responsible for Golgi to
plasma membrane transport [22]. However, in a prelim-
inary experiment we did not observe any interaction of
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Figure 4 The AYXX® mutant is targeted to lipid droplets. (A) Huh7 cells were transfected with the indicated expression constructs. After
48 hr cells were treated with 1 mM fatty acids for 6 hr and then lipid droplets were stained with Nile Red. The 3a was stained with anti-3a
antibodies. (B) Percent of the indicated 3a proteins in lipid droplets were quantified by determining colocalization coefficient in at least 50
different expressing cells as described. Data shown are representative of three different experiments.
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Figure 5 Increased lipid droplet targeting is associated with increased lysosomal degradation. (A) Expression levels of the wild type and
mutant 3a proteins were evaluated 48 hrs post-transfection into Huh7 cells by western blotting with anti-3a antibodies and semi-quantitative RT-PCR
with gene-specific primers. (B) In vitro transcription-translation analysis of the wild type and mutant 3a proteins in a rabbit reticulocyte lysate system.
(C) Colocalization of the AYXX® mutant protein and the late endosome/lysosomal marker Rab7. (D) Transfected Huh7 cells expressing the AYXX®
mutant protein were treated with Brefeldin-A or Aprotinin for 12 hr before harvest. Western blotting was done with anti-3a and ERK (loading control)
antibodies. Quantitation was done using Image-J software. Data shown are representative of two different experiments.
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the 3a protein with AP-4 in a yeast two-hybrid assay
(unpublished data). This, as well as alternate mecha-
nisms need further investigation. The di-acidic motif
functions as a canonical ER export signal in many pro-
teins [24-28]. A mutant 3a protein lacking this motif was
efficiently transported from the ER to Golgi and the
plasma membrane. Thus, the EXD motif does not func-
tions as an ER export signal in the 3a protein.

We also found the 3a protein of SARS-CoV to be lo-
calized to lipid droplets. The transmembrane domains of
the 3a protein are responsible for targeting it to lipid
droplets since the Cyto3a protein that lacks the trans-
membrane domains did not localize to lipid droplets. It
was shown earlier that hydrophobic domains of Perilipin
A and the core proteins of HCV and GBV-B are crucial
for lipid droplets targeting [35,39]. Lipid droplets are
shown to act as storage vesicles for excess and unfolded
proteins [34,40]. It has been reported that Golgi misloca-
lization of Caveolin-1 leads to its targeting into lipid
bodies [43]. Over-expressed Caveolin-2 is also partially
targeted to lipid droplets [38]. In addition Caveolin-1 ac-
cumulates in lipid droplets when it is linked to an ER-
retrieval sequence (Cav-KKSL) [44]. A mutant Caveolin
protein (Cav3”%Y) that mislocalizes in the Golgi, accu-
mulates irreversibly in lipid droplets [41]. We observed
that the 3a AYXX® mutant that is retained in the Golgi
is also associated with lipid droplets.

Targeting to lipid droplets could be a pathway for pro-
tein degradation. In fact, inhibitors of autophagy and pro-
teosomal degradation led to increased protein levels and
lipid droplet association of Apolipoprotein B [37]. We ob-
served that reduced protein levels of AYXX® mutant
were associated with increased lysosomal degradation.
There was a 3 to 5 fold increase in AYXX® protein levels
on treatment with Brefeldin A or Aprotinin. Based on
these data, we put forward a new model of intracellular
distribution of the 3a protein (Figure 6). We propose that
the wild type 3a protein is sorted efficiently from the ER
and Golgi to the plasma membrane. The AYXX® mutant
fails to reach the plasma membrane as it gets stuck in the
Golgi compartment. This mutant protein is then targeted
to lipid droplets and ultimately to the protein degradation
machinery.

In conclusion, surface expression of the 3a protein is
mediated by the crucial YXX® motif, in the absence of
which the 3a protein is retained in the Golgi compart-
ment destined for lysosomal degradation via lipid drop-
lets. This finding demonstrates a novel role of the
YXX® motif in intracellular protein transport.

Materials and methods

Materials

All common reagents were purchased from Sigma Chem-
ical Co. (St. Louis, MO, USA) unless stated otherwise.
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COS-1 and Huh7 cells were obtained from American
Type Culture Collection (Manassas, Va, USA), while
MDCK and HT29 cells were obtained from the National
Animal Cell Repository, National Centre for Cell Sciences
(Pune, India). All cell lines were cultured at 37°C in 10%
CO, in complete Dulbecco modified Eagle medium
(DMEM containing 1 g/lit glucose, 2 mM L-glutamine,
1.5 g/lit sodium bicarbonate, 0.1 mM non-essential amino
acids, 0.1 mg/ml streptomycin, 100 U penicillin) and 5%
fetal bovine serum (FBS). Anti-3a antibodies were gener-
ated using the purified cytoplasmic domain of the 3a pro-
tein as described earlier [29].

Plasmid constructs

The orf3a (nucleotides 25,268 to 26,092) of the SARS-
CoV genome (GenBank accession number NC_004718,
Tor2 isolate) and its cytoplasmic domain were cloned
into the eukaryotic plasmid vector pSGI-HA to give ex-
pression vectors pSGI-3A-HA and pSGI-3ACyto-HA, as
described earlier [29]. N-terminal Myc-tag was added to
the 3A and its different mutants by taking c-Myc-
epitope tag from pGBKT7 vectors.

Site directed mutagenesis

The AYXX® mutant of 3a was created by mutating the
tyrosine and valine residues in the YXXV motif (aa 160—
163) to alanine and glycine respectively, using primers
YF1: TGTATACCAGCTAACAGCCTCACAG and YRI:
CTGTGGCACTGTTAGCTGGTATACA. The AEXD mu-
tant was created by mutating glutamic acid and aspartic
acid residues in the EXD motif (aa 171-173) into alanines,
using primers EF1: GTCGTTACTGCAGGTGCCGGCAT
TTC and ER1: GAAATGCCG GCACCTGCAGTAACG
AC. Site directed mutagenesis was carried out using the
QuickChange site directed mutagenesis kit system (Strata-
gene) according to the manufacturer’s protocol. All muta-
tions were verified by DNA sequencing.

Tranfection and western blotting

Cells were transfected using Lipofectin as described earlier
[14] and were harvested in PBS 48 hr post-transfection. For
experiments with inhibitors, transfected cells were treated
with Brefeldin A or Aprotinin as per the manufacturer’s in-
struction (Sigma) for 12 hr before harvest. Western blotting
was done after lysing the cells with lysis buffer (10 mM Tris
pH7.6, 150 mM NaCl, 1% Triton-X100) with protease in-
hibitors as described earlier [14].

Semi-quantitative RT-PCR

RNA was isolated from transfected cells 48 hr post-
transfection using Trizol reagent (Invitrogen). Equal
amounts of RNA were taken for reverse transcription
using Superscript reverse transcriptase (Life Technolo-
gies). Semi-quantitative PCR was done using gene specific
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Figure 6 A model of intracellular trafficking of the 3a protein. The wild type 3a protein or the AEXD mutant are sorted from Golgi to plasma
membrane whereas the AYXX® mutant protein is retained in the Golgi and is targeted to lysosomal compartment for degradation via
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primers 3aFl, GAATTCATGGATTTGT TTATGAGATTT,
and 3aRl, AGATCTCAAAGGCACGCTAGTAGT. The
PCR reaction was carried out for only 20 cycles, which
was found previously to be in the linear phase before
reaching saturation.

Immunofluorescence staining and subcellular localization

For transient transfection, cells were grown on coverslips
to 40-50% confluence and transfected with Lipofectin re-
agent (Invitrogen, USA) in antibiotic-free and serum-free
DMEM. Six hours post-transfection, the medium was re-
moved and replaced with complete DMEM containing 5%
FBS. Around 48 hr post-transfection, cells were washed
with PBS and fixed with 2% paraformaldehyde for 15 min
at room temperature. For antibody staining, cells were
permeabilized with 100% methanol for 3 min at —20°C,
blocked with PBS containing 5% goat serum for 45 min
and then incubated with a 1:200 dilution of the primary
antibodies in PBS for 1 hr at room temperature. The cells
were washed thrice for 5 min each with PBS and then in-
cubated with a 1:200 dilution of the relevant secondary
antibodies conjugated with either Alexa 488 or Alexa
594 (Molecular Probes, USA) in PBS for 1 hr. The cov-
erslips were mounted on slides with Antifade reagent
(Bio-Rad, USA) and sealed with a synthetic rubber-based
adhesive (Fevicol; Pidilite Industries, India). Confocal
images were collected using a 60x objective in a Bio-Rad
Radiance 2001 laser-scanning confocal system attached
to a Nikon Eclipse TE-2000U inverted microscope. For

subcellular localization, cells were cotransfected to express
the required protein and a relevant fluorescent subcel-
lular marker. For the studies reported here, the markers
included DsRed-ER and YFP-Golgi that are part of
the Living Colors™ Subcellular Localization Vector set
(Clontech). To determine percent colocalization of differ-
ent proteins; images were analyzed by Nikon Elements
Software and the Pearson coefficient for colocalization
was calculated.

Nile red staining

Transfected Huh7 cells were transferred 48 hrs post-
transfection to Glucose-free media (Sigma) containing
1 mM fatty acids (0.5 mM Oleic acid and 0.5 mM Palmi-
toleic acid). After 6 hr, the media was removed followed
by a brief wash with PBS. Cells were stained with 10 uM
Nile Red (Sigma) in PBS for 20 min at room temperature.
The stain was removed and cells were washed twice with
PBS. In case of co-staining with anti-3a antibodies, cells
were first stained for 3a followed by Nile Red staining.

In vitro transcription and translation

The gene to be expressed was cloned downstream of a
T7 promoter in the pSGI expression vector [29]. The
plasmid was then added to the reaction mixture contain-
ing T7 polymerase, amino-acid mixture (lacking methio-
nine), appropriate buffer and rabbit reticulocyte lysate
using the TNT® quick coupled transcription/translation
system kit (Promega Corporation, USA) according to the
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manufacturer’s guidelines. Exogenously added [**S] me-
thionine/cysteine was used (>1,000 Ci/ml) to label the
protein as recommended for 90 min at 30°C. Subse-
quently, the in vitro synthesized proteins were analyzed
by SDS-PAGE and fluorography.
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