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Abstract

Fatal influenza A virus infection is a major threat to public health throughout the world. Lung macrophages and
neutrophils have critical roles for both the pathogenesis and viral clearance of fatal viral infections. These are
complicated by the interaction of innate immunity and adaptive immunity against viral infection. In this study,

we investigated the overall kinetics of lung macrophages, neutrophils, CD4T cells, CD8™T cells, CD38" cells, and
CD138" cells, the levels of antibody and cytokine responses, both in the early and late phases of fatal infection
with A/PR/8/34 (H1N1) virus in mice. The changes in lung viral load were also evaluated. We found that pulmonary
macrophages and neutrophils both accumulated in the early and late phases of fatal infections and they positively
correlated with the lung and serum antibody titers, and negatively correlated with the viral load locally. The
secretion of IL-6 might relate to high numbers of macrophages and neutrophils in the early infection. The work
implies that pulmonary macrophages, neutrophils and the antibody response all have an essential role in virus
elimination of fatal influenza A viral infection. These findings may have implications for the development of
prophylactic and therapeutic strategies in fatal influenza A viral infection. Further evaluation of the cooperation
among macrophages, neutrophils and antibody responses in eliminating the virus with fatal infection is needed.
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Introduction

Influenza is an acute epidemic respiratory disease that re-
sults in a high rate of mortality in human beings, espe-
cially among the elderly and children. A large number of
deaths due to influenza are reported every year around the
world [1,2]. Clinically, influenza A virus is the most im-
portant virus among the three types of the influenza virus.
Influenza A viruses belong to the family Orthomyxoviri-
dae. On the basis of the antigenicity of their haemagglu-
tinin (HA) and neuraminidase (NA) molecules, they are
classified into 16 HA subtypes (H1-H16) and 9 NA sub-
types (N1-N9). The point mutations and reassortment
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events of the viral genomes contribute to the emergence
of new variants or strains with epidemic or pandemic po-
tential [3]. Influenza A viruses have caused several pan-
demics during the last century, and continue to cause
epidemics annually. The pandemic of 1918-1919 killed as
many as 50 million people worldwide [4,5]. In 2009, a
novel swine-origin influenza virus capable of rapid human
transmission was reported. As of 4 April 2010, worldwide
more than 213 countries and overseas territories or com-
munities have reported laboratory confirmed cases of pan-
demic influenza HIN1 2009, including over 3200 deaths
[6]. The recent report on the drug resistance to oseltamivir
phosphate capsules [7] and H7N9 outbreak in China [8]
have made the prevention and control of pandemic influ-
enza more difficult. Therefore, understanding the mecha-
nisms of increased pathogenicity of fatal influenza A viral
infection is critical to optimize antiviral treatment strat-
egies and control potential pandemics.
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The uncontrolled and aberrant activation of the innate
immune system has been implicated in the mice model of
fatal influenza A viral infection [9-11]. A significantly rapid
cell recruitment of macrophages and neutrophils into the
lungs was assumed to have a role in the pathogenesis asso-
ciated with H5N1 highly pathogenic avian influenza virus
infection (HPAI) [12]. In addition, macrophages and neu-
trophils were associated with the increased secretion of
some cytokine and chemokines [13], and increased levels
of cytokines are suggested to mediate influenza A infec-
tion signs [14,15]. In addition, they may have a role in the
severe symptoms of fatal HPAI H5N1 influenza virus
infection [16-19]. However, inhibition of the cytokine re-
sponse cannot protect against the lethal influenza A infec-
tion [20], and neutrophil or macrophage depletion in the
early stage of infection has not had a significant effect on
the outcome [13]. These findings have suggested compli-
cated biological effects of macrophages and neutrophils in
the fatal influenza A viral infection. In addition, innate im-
mune cells such as macrophages and neutrophils, are the
targets of influenza A viruses [12]. The direct infection of
macrophages and neutrophils may seriously compromise
the adaptive immune response.

The mouse model is very useful in the study of influ-
enza virus pathogenesis, especially of the pneumonia by
fatal infection, because the immune response and the
correlations between these immune parameters in the
lung can be monitored and evaluated directly. Influenza
A/PR/8/34 HIN1 virus (PR8) is a mouse-adapted influ-
enza strain, which induced the destruction of type II
pneumocytes in alveoli in the mice [21,22]. In addition,
several researchers used PR8 as the backbone virus to
generate attenuated epidemic influenza vaccines [23-26].
Therefore, a detailed description on immune responses
of PR8 fatal infection in the lung of mice could both
contribute to the pathogenesis understanding and pro-
vide the useful data for comparison with reassortant in-
fluenza virus vaccine with PR8 backbone. In this study,
we employed PR8 viruses to investigate the kinetics of
innate and adaptive cellular immune responses in a
mouse model. An overall picture of immune cell activ-
ities was obtained, both for the early and late phases of
the fatal infection. The local viral load was also mea-
sured and its correlations with cellular responses and
antibody levels were evaluated.

Materials and methods

Virus preparation

Influenza A/PR/8/34(H1N1) virus was kindly provided by
Dr. Yuelong-Shu (Chinese Center for Disease Control and
Prevention). Ten-day-old embryonated chicken eggs were
infected with 0.1 ml of stock virus diluted to 1:1000 in PBS.
After incubation for 48 hours at 35~36°C, the allantoic fluid
was collected and clarified by centrifugation at 3500g,, for
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20 min. Virus stocks were aliquoted and stored at —70°C
until use. Fifty percent tissue culture infectious dose
(TCIDsp) and 50% egg infectious dose (EIDsg) titers were
determined by serial titration of viruses in Madin-Darby ca-
nine kidney (MDCK) cells and eggs, respectively. Titers
were calculated by the method of Reed and Muench.

Infection of mice

Female BALB/c mice were purchased from the Institute of
Jingfeng Medical Laboratory Animal and were maintained
under specific pathogen-free conditions. Five mice in each
group were lightly anesthetized by ethylether inhalation
and infected by intranasal inoculation (in 25 pl) of 5 x 10°,
5x10% 5x10% 5x10% 5x 10" pfu. of viruses to deter-
mine the 50% lethal dose (LDsp). Plaque assays were per-
formed on MDCK cells to titration of the viruses. Plaque
Forming Units (PFU) is a measure of the number of parti-
cles capable of forming plaques per unit volume, such as
virus particles. It is a functional measurement rather than
a measurement of the absolute quantity of particles: viral
particles that are defective or which fail to infect their tar-
get cell will not produce a plaque and thus will not be
counted. One plaque forming unit means a virus or group
of viruses which cause a plaque. In the following experi-
ment, 5 x 10° p.fu. viruses were used to lethal infection of
20 mice per group and eight groups were used. Mice not
infected with influenza A/PR/8/34 virus were used as the
control group. The animal experiments were approved by
the Animal Subjects Research Review Board of the Beijing
Institute of Microbiology and Epidemiology and were con-
ducted according to the institution's guidelines for animal
husbandry.
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Figure 1 Survival ratios of mice following intranasal infection
with different doses of influenza A/PR/8/34 (H1N1) viruses.
Groups of five mice were infected intanasally with 5% 10° (¥), 5 x 10°
(), 5%10° (#), 5% 10° (-H) or 5x 10" (A) pfu. A/PR/8/34 (HIN1)
viruses and were observed consecutively for 14 d.




Lv et al. Virology Journal 2014, 11:57
http://www.virologyj.com/content/11/1/57

Page 3 of 13

Cell numbers in lung (xlﬂbcellsflnng)

Cell numbers in lung (x 1o “cells/lung)

Total cells

Figure 2 (See legend on next page.)

0 i A : ; ; :
0 2 4 6 8 10 12 14
240 Macrophage x Neutrophils
300 | *
| ./
160 " 200 ” "
* * *
*}\1 3
s0f gm-
@
---------------------------------------- ’u. - L e e O
02468101214;0246 § 10 12 14
B CDST cells
EL2r
£
]
=
-
23
®
-AF.-
0 ' L ' L A 1 1 0 1 L ' ' L A A
0 4 6 8§ 10 12 14 0 2 4 6 8 10 12 14
18
12
6.
0 2 4 6 8 10 12 4 0 2 4 6 8 10 12 14
Days post infection Days post infection




Lv et al. Virology Journal 2014, 11:57 Page 4 of 13
http://www.virologyj.com/content/11/1/57

(See figure on previous page.)

Figure 2 Kinetics of pulmonary immune cells in mice with fatal dose (5 x 10° p.f.u.) of A/PR/8/34 (H1N1) virus infection. The frequencies
of macrophages (CD11b"/CD11¢ /Ly6G/c”) and neutrophils (CD11b*/CD11¢ /Ly6G/c*) were determined by appropriate gating within the total
lung leukocytes. For determination of the frequencies of CD4" and CD8" T cells, the CD3* T cells were first determined by appropriate gating
within the pulmonary lymphocytes, and then CD4¥/CD87T cells and CD47/CD8" T cells were detected by gating within the CD3* T cells. In the
detection of frequency of CD138" cells and CD38" cells, B220/CD45R was used to identify different B cell subtypes within the pulmonary
lymphocytes, then CD138" and CD38" B cells were determined by appropriate gating within the determined B cell subtype, respectively. Mice
without infection were used as the control group. Mean lung cell numbers were representative of at least 3 mice lungs per time point group,
and error bars indicated the standard deviations. The dotted lines were the control level. *p < 0.05 compared with control group.
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and monitored daily for disease signs and death for 14 d  frozen separately in sterile tubes at —80°C for later titra-
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Figure 3 The dynamics of pulmonary viral load and antibody response in lungs and serum in mice after fatal dose (5 x 10° p.f.u.) of
A/PR/8/34 (H1N1) virus infection per time-point. HI, haemagglutination inhibition assay. Mice without infection were used as the control
group. The dotted lines represented the results of control group. | bars represented standard deviations. *p < 0.05, compared with control group.
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point post infection were sacrificed by cervical disloca-
tion. The lungs were dissected and placed into cold
DMEM. Lung cell preparations were made by passing
tissue through a nylon screen. Red blood cells were re-
moved by lysis buffer treatment (BD, biosciences). Cells
were counted and resuspended at appropriate concen-
trations for each particular experiment.

Flow cytometry and cytokine measurement

Single lung cell suspensions were stained with
fluorochrome-labeled anti-CD3, anti-CD4, anti-CD8, anti-
CD11b, anti-CD11c, anti-Ly-6G/C, anti-CD138 and anti-
CD38 antibodies (BD Biosciences). Cells were labeled for
45 min at 4°C in staining buffer (PBS with 1%FBS, 0.02%
NaNs3), washed twice with PBS and fixed overnight at
4°C with 2% paraformaldehyde. Flow cytometry was per-
formed on a FACS Aria flow cytometer (BD Biosciences).
IL-6, IL-10, IL-17, IFN-yand IL-4 cytokine protein levels
in the lungs were measured by specific enzyme-linked im-
munosorbent assay (ELISA; R&D Systems, Minneapolis,
MN, USA).

RT-PCR detection of the viral load

The viral load in the lung tissues was determined by the
real-time reverse-transcriptase-polymerase-chain-reaction
(RT-PCR). We extracted RNA from lung homogenates
with Trizol (Invitrogen, USA) reagent. Then, reverse
transcriptions targeting at a conserved region of influ-
enza matrix (M) gene were performed, as previously de-
scribed [27].

Virus-specific Antibody assays

Influenza-specific serum and lung homogenate anti-
bodies were measured by ELISA, using plates coated
with 1 pg/ml per well of purified A/PR/8/34 (HIN1) in-
fluenza virus. Briefly, two-fold serial dilutions of sample
(1:25 to1:3200 for IgA detection, 1:50 to 1:102400 for
IgG detection) were incubated in the plates. Bound Ab
was detected with HRP-conjugated goat anti-mouse Abs
specific for IgG and IgA, and was developed with TMB
(Sigma, USA). Absorbance was read at 450 nm on a Bio-
RAD model 550 Microplate Reader. The virus-specific
Ab titer was defined as the reciprocal of the highest
sample dilution giving an absorbance value greater than
twice that of the samples from the negative controls.
The titers were gained in duplicate.

Haemagglutination inhibition (HI) assay was per-
formed as previous described [28,29]. The HI titers were
expressed as the reciprocal of the highest dilution that
completely inhibited haemagglutination of erythrocyte.

Statistical analysis
Statistical differences at each time point were determined
by one-way ANOVA tests. A Spearman correlation analysis
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was performed to detect the correlation among viral load
and frequencies of different cells, and antibody titers with
SPSS19.0. Values of p <0.05 were considered significant.

Results

To investigate the lethal dose, we inoculated intranasally
six groups of mice with 5x 10°, 5 x 10% 5 x 10%, 5 x 107,
5 x 10" p.fu. of the viruses. In group of dose 5 x 10* p.fu,
the first mouse death was observed at day 5, and the death
rate increased to 100% at day 9 post infection (Figure 1).
Compared with that group, the mice in group of dose
5 x 10° p.fu. began to die at day 7, and 40% mice survived
until day 14. This dose induced severe pulmonary path-
ology (data not show) and was thus used in the following
experiments to evaluate the immune responses in the lung
of fatal influenza A/PR/8 virus infection.

Comparing the kinetics of lung macrophage and
neutrophils with other immune cells in lungs

We first measured the frequency of lung macrophage,
neutrophils, CD4'T cells, CD8" T cells, CD38"cells and
CD138"cells. The results shown in Figure 2 indicated
that total pulmonary cells accumulated locally in A/PR/
8/34 virus infection 6 days post infection, and kept a sig-
nificant high level till 14 days post infection. Meanwhile,
both the macrophages and neutrophils had a similar pat-
tern (Figure 2). The increase of CD4'T cell was only ob-
served in the late infection (14 days post infection)
(Figure 2), while the increase of CD8 " T cells was ob-
served from day 10 to 14 days post infection. However,
the frequency of lung CD38" increased from day 6 to 14
post infection, whereas CD138" cells increased signifi-
cantly at 6 days post infection, and then dropped to nor-
mal level later until day 14 post infection (Figure 2). In
mice, CD38 is expressed on all naive B cells but is
down-regulated on isotype-switched B cells from germi-
nal centers, foci of antibody-forming cells and mature
plasma cells [29]. In contrast, CD138 is a cell surface
heparan sulphate proteoglycan that is highly expressed
by plasma cells.

Table 1 Correlations between antibody responses in
lungs and serum and pulmonary macrophages and
neutrophils in fatal mice infection

Items Macrophages Neutrophils
R? p R? p
Lung lgG 0.826 0.000** 0.861 0.000**
IgA 0.807 0.000** 0.810 0.000**
Serum IgG 0.844 0.000** 0.909 0.000**
IgA 0230 0.280 0323 0.124
HI 0.706 0.000** 0.750 0.000**

*p < 0.05, **p <0.01 correlation between antibodies and macrophages
or neutrophils.
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Figure 4 Scatter plot of Table 1. (A) Scatter plot of macrophage numbers x 10" per lung and pulmonary IgG titers of mice infected with A/PR/
8/34 (HIN1) influenza viruses; (B) Scatter plot of neutrophils numbers x 10% per lung and pulmonary IgG titers of mice infected with A/PR/8/34
(HIN1) influenza viruses; (C) Scatter plot of macrophage numbers x 10* per lung and pulmonary IgA titers of mice infected with A/PR/8/34
(HIN1) influenza viruses; (D) Scatter plot of neutrophils numbers x 10 per lung and pulmonary IgA titers of mice infected with A/PR/8/34 (HIN1)
influenza viruses; (E) Scatter plot of macrophage numbers x 10 per lung and serum IgG titers of mice infected with A/PR/8/34 (HIN1) influenza
viruses; (F) Scatter plot of neutrophils numbers x 10% per lung and serum IgG titers of mice infected with A/PR/8/34 (HIN1) influenza viruses;

(G) Scatter plot of macrophage numbers x 10% per lung and serum HI titers of mice infected with A/PR/8/34 (HIN1) influenza viruses; (H) Scatter
plot of neutrophils numbers x 10* per lung and serum Hl titers of mice infected with A/PR/8/34 (H1N1) influenza viruses.

Comparing the kinetics of pulmonary macrophages and
neutrophils with lung antibody responses in lung and
serum of mice with fatal influenza A virus infection

The dynamics of lung antibody levels were similar with
the kinetics of lung macrophage and neutrophils fre-
quencies (Figure 3). A correlation analysis showed that
both macrophages and neutrophils closely correlated
with IgG and IgA antibody responses in lungs (R*=
0.826, p = 0.000 and R* = 0.861, p = 0.000, R* = 0.807, p =
0.000 and R*=0.810, p = 0.000, respectively), and serum
IgG, and HI antibody responses (R”=0.844, p =0.000
and R?=0.909, p = 0.000, R* = 0.706, p = 0.000 and R*=
0.750, p =0.000, respectively), but no correlation with
serum IgA antibody (R* = 0.230, p = 0.280 and R* = 0.323,
p =0.124, respectively) (Table 1). The scatter plots for the
significant correlations see Figure 4.

Correlations between viral load with pulmonary
macrophages, neutrophils and antibody responses in
lungs and serum

The influenza virus titer began to decrease in the late
stage of infection. As indicated in Figure 3, at day 12
and day 14 post infection the virus significantly de-
creased. To measure whether the increased macrophage
and neutrophil frequencies were correlated with the de-
crease of viral load, a correlation analysis was performed.
Results showed that there was a significant negative cor-
relation between macrophage or neutrophils and viral

Table 2 Correlation analysis between viral load and
pulmonary macrophages, neutrophils and antibody levels
in serum and lungs in fatal mice infection

Items Viral load
R? p
Macrophages —-0.751 0.000**
Neutrophils —0.693 0.000%*
Lung I9G -0.713 0.000**
IgA -0.775 0.000**
Serum I9G —-0.695 0.000%*
IgA 0225 0327
HI -0.637 0.002**

*p < 0.05, **p < 0.01 correlation between antibody and viral load and
macrophages, neutrophils and antibodies in fatal mice infection.

load in lungs (R*=-0.751, p =0.000 and R* = -0.693 p =
0.000, respectively) (Table 2). In addition, the decreased
viral loads significantly correlated with increased I1gG anti-
body level both in the lungs and sera (R*=-0.713, p =
0.000, and R* = -0.695, p = 0.000, respectively), and with
the increased lung IgA and sera HI antibody (R* = -0.775,
p =0.000 and R? = -0.637, p = 0.002, respectively) (Figure 3,
Table 2). The scatter plots for the significant correlations
see Figure 5. The decreased viral load showed no signi-
ficant correlation with other immune cells (data not
shown).

Kinetics of cytokines in the lung

Three cytokines (IL-6, IFN-y, IL-10) increased signifi-
cantly in the early stage of infection, but they all de-
creased to control levels at the late stage. The earliest
increased cytokine was IL-6, which increased at day 2
post-infection. Both IFN-y and IL-10 significantly in-
creased at day 6 post-infection, but all rapidly decreased
to the control level later on. However, IL-17 and IL-4,
showed a significant decreased level during the infection,
especially after 2 days post infection (Figure 6).

Correlations of cytokine responses with macrophages,
neutrophils and viral load in lungs

The dynamics of pulmonary cytokine response showed
the different increase patterns. Statistical analysis showed
that the decreased of IL-6 had a close relation with that of
macrophages, neutrophils and the decrease of viral loads
(R*=-0.754, p=0.000, R*=-0.782, p=0.000 and R*=
0.759, p=0.000, respectively) (Table 3). The significant
negative correlations of IL-4 with macrophages and neu-
trophils and viral load were also observed (R*=-0.612,
p=0.000, R* = -0.673, p = 0.000 and R* = -0.592, p = 0.000,
respectively), while no close correlation was observed be-
tween other cytokines and cells (P >0.05) (Table 3). The
scatter plots for the significant correlations see Figure 7.

Discussion

Macrophages and neutrophils have a complicated role in
protecting against high-dose lethal infection of influenza
A virus. In this study, the mice were fatally infected with
A/PR/8/34 (HIN1) influenza virus. We monitored the
kinetics of the macrophages, neutrophils, CD4"T cell,
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Table 3 Correlations among the cytokine responses,
macrophages, neutrophils and viral load in lungs in fatal
mice infection

Cytokines Macrophages Neutrophils Viral load

R? p R? p R? p
IL-6 -0.754  0000** —0.782  0.000**  0.759 0.000**
IL-4 -0612 0000 —-0673 0000** —-0592  0.002**
IFN-y 0.060 0.780 0.119 0581 0310 0.171
IL-10 0.143 0.504 0.196 0360 0.150 0516
IL-17 -0.235 0268 -0250 0238 -0.048 0837

*p < 0.05, **p < 0.01 correlation between cytokines and macrophages,
neutrophils and viral load.

CD8" T cell, CD138"cell and CD38"cell in the lungs
during the viral infection. We found that macrophages
and neutrophils accumulated in the lungs, both in the
early and late phases of the virus infection. The de-
creased viral load significantly correlated with the in-
creased macrophages and neutrophils, and antibody
levels both in the lung and serum. The present study
suggests that macrophages and neutrophils and the anti-
body responses both have an important role in eliminat-
ing of influenza virus locally.

As to both induce the fatal immunopathology in the
lung and ensure the enough mice to survive for further
experiment, we at first established an appropriate dose
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of virus. We found 5 x 10° p.f.u. viruses had a decreased
lethality in mice than the dose of 5 x 10* and 5 x 10? p.f.
u. The reason might be that 5 x 10* p.fu. could replicate

more efficiently than 5 x 10°p.f.u.viruses in the upper re-
spiratory tract, thus came higher lethality. We under-
stood it was not common for other influenza viruses,
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influenza viruses.

Figure 7 Scatter plot of Table 3. (A) Scatter plot of macrophage numbers x 10" per lung and pulmonary IL-6 pgx mL™" of mice infected with
A/PR/8/34 (HINT1) influenza viruses; (B) Scatter plot of neutrophils numbers x 10* per lung and pulmonary IL.-6 pg x mL™" of mice infected with
A/PR/8/34 (HINT1) influenza viruses; (C) Scatter plot of macrophage numbers x 107 per lung and IL-4 pg x mL™" of mice infected with A/PR/8/34
(HIN1) influenza viruses (D) Scatter plot of neutrophils numbers x 10% per lung and pulmonary IL-4 pg x mL™" of mice infected with A/PR/8/34
(HINT1) influenza viruses; (E) Scatter plot of pulmonary IL-6 pg x mL " and viral copies X mg”(LogmGMﬂ of mice infected with A/PR/8/34 (HIN1)
influenza viruses; (F) Scatter plot of pulmonary IL-4 pg x mL~" and viral copies x mg ™' (Log;oGMT) of mice infected with A/PR/8/34 (HIN1)

and did not know whether it was correlated with the
characteristic of PR8 as a mouse-adapted virus strain, al-
though there was no published article reported the simi-
lar experiments.

Observations from de Jong et al. [30] supported the
presence of an inflammatory response role in the patho-
genesis of human H5N1 disease. In addition, post-
mortem studies in H5N1-infected individuals have not
shown predominance of lymphocytes, but rather of mac-
rophages, in pulmonary in-filtrates [31]. Although CD4"T
cell and CD8'T cells also have a protective effect during
the pathogen infection, especially during high pathogenic
avian influenza viruses infection, the protective was also
seen in the absence of all T and B cells as well as in the de-
pletion of neutrophils or NK cells [32]. Whereas, deple-
tion of innate lymphoid cells resulted in loss of airway
epithelial integrity, diminished lung function and impaired
airway remodeling [33]. Furthermore, study by Tate MD
[34] showed that neutrophil depletion early after infection
with influenza virus did not alter influenza virus-derived
antigen presentation or naive CD8"T-cell expansion in the
secondary lymphoid organs and of trafficking of virus-
specific CD8"T cells into the infected pulmonary airways.
Instead early neutrophils reduced both the overall magni-
tude of influenza virus-specific CD8"T cells, together with
impaired cytokine production and cytotoxic effector func-
tion. In contrast to that, the depletion of macrophages
lead to the death of all of the mice even those challenged
with a sublethal dose of virus [32], therefore it was im-
possible to evaluate the protective effect with removal
of macrophages.

The accumulation of macrophages and neutrophils in
the early phase also have been observed in mice [12] and
chickens [35] fatally infected with influenza viruses. In
this study, we observed a significant increased frequency
of macrophages in the lung at day 4 post infection. We
also evaluated the kinetics of macrophages and neutro-
phils in the late phase infection. When the viral load in
the lung significantly decreased at day 10 post infection,
the macrophage and neutrophil frequencies were main-
tained at high levels. Previous research also found that
in the late recovery phase, macrophage and neutrophil
inhibition led to a marked delay in the elimination of the
virus. All these observations suggest that macrophages
and neutrophils may contribute to late-phase clearance

of influenza viruses [36]. Previous evidence has sug-
gested that influenza A virus infected cells are subjected
to apoptosis-dependent phagocytosis and degrade to-
gether with the invading virus within phagocytes. It has
been speculated that macrophages and neutrophils accu-
mulate in lung tissues and maximize the efficiency of the
phagocytic elimination of infected cells [37].

IL-6 secretion significantly increased early at day 2
post-infection and quickly decreased to the level of the
control, suggesting a correlation with the accumulation
of macrophage. Suzuki [35] also reported that IL-6 mRNA
was quickly induced at 24 h post-infection, but 8 h later,
mRNA levels became dramatically lower. IL-6 concentra-
tions were significantly correlated to the symptoms and
signs of influenza A infection in humans [14,15]. Ele-
vated IL-6 values have been detected in HPAI H5N1 in-
fluenza virus infected human cells and mice [16—-19,38].
As a multifunctional cytokine expressed by both lymph-
oid and non-lymphoid cells [39], IL-6 has a central role
in elucidating an innate immune response and directing
the transition from innate to adaptive immunity [40].
However, IL-6 cytokine inhibition does not directly pro-
tect against death from lethal H5N1 influenza virus in-
fection [20].

Our study evaluated kinetic responses and correlation
of several types of immune cells, cytokines and anti-
bodies in a mouse model, but did not reveal how they
were orchestrated in the virus clearance. Further evalu-
ation of the cooperation between macrophages, neutro-
phils and antibody responses in eliminating the virus
with fatal infection is needed.
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