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Abstract

Background: Because of the shared transmission routes, co-infection with human immunodeficiency virus (HIV)
and hepatitis C virus (HIV) is very common. Accumulated clinical evidence showed that one could alter the
infectious course of the other virus in HIV and HCV co-infected individuals. However, little is known on the
molecular basis of HIV/HCV interactions and their modulations on hosts.

Methods: In this study, treatment-naive HIV, HCV mono-/co-infected individuals with CD4+ T cell counts >300/μl
were recruited and their gene expression profiles were investigated by microarray assays. The differentially expressed
genes were identified and validated by quantitative real-time PCR (qRT-PCR). To further understand the biological
meanings of the gene expression profiles in these three groups, GSEA analysis (version 2.0, Broad Institute http://
www.broad.mit.edu/gsea) was performed.

Results: By gene set enrichment analysis, we revealed that gene sets of cell cycle progression, innate immune
response and some transcription factors in CD4+ T cells were mainly affected by HIV; while genes associated with
GPCR signaling were the major targets of HCV. Metabolic pathways were modulated by both HCV and HIV viruses.

Conclusions: This study for the first time offers gene profiling basis for HCV/HIV mono-/co- infections in human
beings. HIV infection displayed the great impact on transcription profile of CD4+ T cells in HIV/HCV co-infected
individuals. Genes related to cell cycle arrest were significantly mediated by HIV which may lead to dysfunction
of CD4+ T cells and acceleration of HCV-related disease progression in the co-infections.
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Background
Co-infection with human immunodeficiency virus (HIV)
and hepatitis C virus (HCV) is very common, presum-
ably due to their shared transmission routes (e.g., drug
injection, sex behaviour) [1,2]. It is estimated that over 5
million people are HCV/HIV co-infected worldwide [2].
The prevalence of HCV/HIV co-infection varies widely
in different risk groups, with an especially high rate
among HIV-positive intravenous drug users (IDUs) [3].
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In the United States and China, 72% to 90% IDUs in
HIV-infected persons were co-infected with HCV [4].
Accumulated evidence showed that one could alter the

course of infection of the other virus in HIV and HCV
co-infected individuals. On the one hand, a higher rate
of HCV viral persistence and increased viral load are
more common in the HCV/HIV co-infected patients
than in HCV mono-infected ones [5]. Moreover, it was
suggested that HIV could accelerate the progression of
HCV-associated liver diseases, including fibrosis, cirrho-
sis and end-stage liver disease [6-8]. On the other hand,
an acute HCV infection normally raises the HIV-induced
viremia in persons with otherwise well-controlled illness,
and accelerates the progression to AIDS and death by
impairing immune reconstitution [9]. Besides, the risk of
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hepatotoxicity from highly active antiretroviral treatment
(HAART) may be increased in the co-infected patients as
compared to the HIV mono-infected patients, thus lead to
a decreased tolerability for the anti-HIV treatment [10].
Mechanisms of the accelerated progression of diseases

in the co-infected patients are not yet well understood.
Analysis of gene expression profiles in the HCV/HIV
mono-infected or co-infected patients would provide a
unique opportunity to understand the mechanisms. It is
reported that factors, such as direct viral effects, the im-
munologic alterations especially the specific T-cell re-
sponse, have played important roles in the disease
progression [11-13]. CD4+ T cells, the major HIV target
cells, also play an essential role in HCV clearance
[14,15]. In this study, we performed the microarray stud-
ies to analysis the gene expression profiles of CD4+ T
cells from treatment-naïve HIV/HCV mono- and co-
infected individuals. Moreover, via gene set enrichment
analysis (GSEA), a network of enriched pathways related
to the pathogenesis of disease progression in the co-
infected patients was identified. To our knowledge, this
is the first study to analyze the impact of HIV/HCV co-
infection at gene transcription level, and our data may
offer new insight into understanding the interplay during
HIV and HCV co-infection.

Results
Differentially expressed genes
Microarray analysis was performed to identify the altered
transcripts in 3 study groups with HIV, HCV mono-
infection and HCV/HIV co-infections, and the raw data
has been deposited in the ArrayExpress database (access
number: E-MEXP-3601). Pairwise comparisons from the
three study groups (HCV-mono versus HIV-mono,
HCV/HIV co-infected versus HCV-mono, HCV/HIV co-
infected versus HIV-mono) were carried out. Differentially
expressed (DE) transcript identifiers (DETIs) with >2 fold
change and p < 0.05 were identified for each comparison.
The number of DETIs identified in each comparison is
listed in Table 1. The detailed information of each DETI in
each comparison was listed in Additional file 1: Table S2.
To identify the important categories from the DE

genes, functions of each DE gene were inspected. Of 54
Table 1 Number of differentially expressed transcript identifi
(FDR < 0.01) in pair wise comparisons for CD4+ T cells

HCV-mono

versus

HIV-mono

up down

Differentially expressed transcript identifiers 19 35

Enriched gene sets 6 44
DE genes identified in comparison between HCV and HIV
mono-infected groups, 24 showed significant matches
with the known genes. Functional analysis revealed that
genes involved in immune system development, immune
response (CXCL10, OAS3, CD38, SERPING1, CCR1,
FCGR3A and IFI44L) and G-protein coupled receptor
(GPCR) signaling pathway (P2RY13, GPR56, CX3CR1 and
FFAR2) were differently affected by these two viruses. In
the case of HCV/HIV co-infection versus HCV mono-
infection, 72 genes with known function were identified.
Many of them (16/72) played important roles in stimulus
response and immune system process, including: RSAD2,
IL6, C1QC, FCGR1C, LILRA3, IGSF6, IL1RN, OAS3. Be-
sides, genes involved in regulating locomotory behavior
such as CCRL2, CX3CR1, FPR2 and IL8RA were also
shown different expression profiles between these two
groups. In comparison between the HCV/HIV co-
infections and the HIV mono-infections, only 7 were iden-
tified to be known genes. 3 were small nucleolar RNAs,
and the remaining 4 were TNFAIP6, AQP9, IL6 and PTX3.
The later four genes play important role in immune re-
sponse and involve in many human diseases, such as can-
cers and diseases caused by a variety of virus infections.

Gene set enrichment analysis
To unravel the biological mechanisms differentiating be-
tween the HCV/HIV mono- and the co-infected groups,
pairwise comparisons using GSEA were performed for all
the three groups (HCV-mono versus HIV-mono, HCV/
HIV co-infected versus HCV-mono, HCV/HIV co-infected
versus HIV-mono). Rather than single DE genes, GSEA
evaluates microarray data at the biological pathway level by
performing unbiased global searches for genes that are
coordinately regulated in predefined gene sets. The num-
ber of significantly enriched gene sets (FDR < 0.01) in
each pairwise comparison is listed in Table 1. And path-
ways identified in gene set enrichment analysis (GSEA,
FDR < 0.05) were shown in Additional file 2: (Table S3).

Global gene expression profiles between HIV mono- and
HCV/HIV co-infected groups
We first applied GSEA to identify functional gene
sets distinct between the HIV mono- and the HCV/HIV
ers (fold change > 2 and P < 0.05) and enriched gene sets

HCV/HIV co-infected
versus

HCV/HIV co-infected
versus

HCV-mono HIV-mono

up down up down

109 79 44 7

9 10 0 2
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co-infections. In total, 13 gene sets were down-regulated in
the HCV/HIV co-infected group (FDR < 0.05), 12 of which
were gene sets related to cell cycle check point and mitosis.
The most up-regulated pathway was platelet degranulation
pathway with a significant change (FDR < 0.05).

Global gene expression profiles between HCV and HIV
mono-infected groups, HCV mono- and HCV/HIV
co-infected groups
We next compared the global gene expression profiles
between the HCV and HIV mono-infected individuals,
and between the HCV mono- and HCV/HIV co-
infections. It is interesting to note that the majority of
gene sets up-regulated in the HIV mono-infections also
show high enrichment in the HCV/HIV co-infections
when compared with the HCV mono-infections. Accord-
ing to their biological function, these gene sets could be
mainly divided into (1) cell cycle; (2) immune response;
and (3) gene expression (regulation). In the cell cycle cat-
egory, 32/88 and 18/67 gene sets with an FDR < 0.05
were respectively identified to be significantly up-
regulated in the HIV-infected group and in the HCV/
HIV co-infected group, respectively. The leading edge
analysis revealed that the majority of these genes appear
to engage in G1/S and G2/M transitions (Figure 1/
Figure 2). In relation to immune response, genes in-
volved in the innate immune response, particularly, in
Figure 1 Leading edge analyses for the gene sets related to cell cycle
between HIV and HCV mono-infected groups. Gene sets related to cell
between HIV- and HCV-infected groups were analyzed by the leading edge
show the overlap between subsets: the darker the color, the greater the ov
pathogen-associated molecular patterns (PAMPs) recog-
nition, were shown an increased expressions in the HIV
mono-infections and contributed most to the enrich
score (Figure 1B). In the HCV/HIV co-infected group,
the enrichment plot and heat map of the genes involved
in this pathway were shown as representatives in Figure 3.
Again, the most generally up-regulated gene sets identi-
fied in the HCV/HIV co-infected individuals were innate
immunity signaling. These included natural killer cell
mediated cytotoxicity, toll like receptor signaling path-
ways, NOD-like receptor signaling pathways and com-
plement activation. While analyzing gene sets related
to gene expression, a little difference existed between
these two pairwise comparisons. Although both the HIV
mono-infected and HCV/HIV co-infected individuals dis-
played up-regulation of many genes that involved in
mRNA maturation (Figure 1C), genes involved in ribo-
some formation were significantly down-regulated in
the HCV/HIV co-infections when compared with HCV
mono-infections. Besides, genes involved in the meta-
bolic pathways were also differently regulated. Gene sets
including carbohydrate, lipid, amino acid, nucleotide and
even vitamins metabolism were all increased in the
HCV/HIV co-infected group. On the contrary, only genes
function in amino acid metabolism was detected in the
HIV mono-infected group when compared with the
HCV mono-infected group.
, immune response and transcriptional regulation identified
cycle (A), immune response (B) and gene expression (C) identified
analyses of GSEA software. The Set-to-Set maps use color intensity to
erlap between the subsets.



Figure 2 Leading edge analyses for the gene sets related to cell cycle identified in comparison between HCV/HIV co-infected group
and HCV mono-infected group. Gene sets related to cell cycle control identified in comparison between HCV/HIV co-infected group and HCV
mono-infected group were analyzed by the leading edge analyses of GSEA software. A. The heat map shows the genes in the leading edge
subsets. In a heat map, expression values are represented as colors, where the range of colors (red, pink, light blue, dark blue) shows the range of
expression values (high, moderate, low, and lowest); B. The Set-to-Set maps use color intensity to show the overlap between subsets: the darker
the color, the greater the overlap between the subsets; C. graph shows each gene and the number of subsets in which it appears.
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GPCR signaling pathway was up-regulated in HCV
mono-infected individuals no matter compared with HIV
or HCV/HIV-infected individuals
Besides the above mentioned gene sets, there still existed
some other pathways that showed high overlap between
these two parewise comparisons (HCV-mono versus
HIV-mono, HCV/HIV co-infected versus HCV-mono).
Among them, the gene sets involved in signal transduc-
tion were top listed. Contrary to the cell cycle category,
these gene sets were up-regulated in HCV mono-
infected individuals. Further analysis revealed that nearly
these entire gene sets could be directly or indirectly as-
sociated with GPCR signaling pathway.

Validation of differentially expressed genes
To confirm the DE genes from the microarray analysis,
the mRNA levels from each paired comparison were
selected and quantitated by qRT-PCR. These genes
included P2RY13, Mx1, IL6, PTX3, GPR56, OAS1,
CX3CR1, USP18 (Figure 4) and FCGR3A, CCR1, TLR4,
IFI44L, CD38 (Supplemental Figure 1). The RNA isolated
from the CD4+ T cells of each individual (16 individuals
in each group) was used. And the blood samples from
un-infected males with marched ages were collected as
control. Expression levels of these genes in four groups
were all evaluated (Figure 4) and compared with the
results obtained by microarray (Table 2). The qRT-
PCR results showed that the expressing profiles of 6
genes (PTX3, IL6, P2RY13, OAS1, CX3CR1 and USP18)
exactly matched with the observation in microarray assays;
another 2 genes (Mx1 and GPR56) displayed partial simi-
larity at least in one express pattern out of three pairwise
comparisons. These results largely confirmed the data
from the microarray assays. Besides, the mRNA levels of
all the selected genes in un-infected persons with matched
ages were also analyzed. As shown in Figure 4 and Table 2,
the expression levels of CX3CR1, PTX3, MX1 and
P2RY13 decreased significantly in infected groups as
compared to the uninfected healthy group; while the ex-
pression level of OAS1 elevated in the infected groups.
There is one gene (USP18) showing altered expressions
only in HCV-infections. For IL6, lower expression levels



Figure 3 Enrichment plot and heat map for the gene set of immune system identified in comparison between HCV/HIV co-infected
group and HCV mono-infected group. A. Enrichment plot for CD4+ T cells from comparison between HCV/HIV co-infected group and HCV
mono-infected group. Bottom, plot of the ranked list of all genes. Y axis, value of the ranking metric; X axis, the rank for all genes. Genes whose
expression levels are most closely associated with the HCV mono-infected group or HCV/HIV co-infected group get the highest metric scores with
positive or negative sign, and are located at the left or right edge of the list. Middle, the location of genes from the gene set immune system
within the ranked list. Top, the running enrichment score for the gene set as the analysis walks along the ranked list. The score at the peak of the
plot is the enrichment score (ES) for this gene set and those genes appear before or at the peak are defined as core enrichment genes for this
gene set. B. Heat map of the genes within the gene set of immune system corresponding to A. The genes that contribute most to the ES, i.e.,
genes that appear in the ranked list before or at the peak point of ES, are defined as core enrichment genes and highlighted by the red rectangle.
Rows, genes; columns, samples. Range of colors (red to blue) shows the range of expression values (high to low).
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were observed both in the HCV and HIV infections.
Other immune related genes like FCGR3A and CCR1
were significantly upregulated while CD38 were decreased
in co-infected group as compared to the mono infected or
uninfected groups (Additional file 3: Figure 1).

Discussion
Co-infection with HIV and HCV is common, and in-
creasing evidence indicated that each can alter the
course of infection of the other one [16]. However, little
is known on the molecular basis of HIV and HCV inter-
actions and their modulations on host responses. In this
study, the gene expression profiles of CD4+ T cells in
the treatment-naive HCV, HIV mono-infected and the
HCV/HIV co-infected individuals were evaluated. For
each cell subset, pairwise comparisons were performed
and differentially expressed genes and significantly al-
tered pathways were identified.
By using the GSEA analysis, groups of comprehensive

pathways were identified. At first glance, it was obvious
to notice that the major altered gene sets indentified in
comparison between the HCV/HIV co-infections and
HCV mono-infections were nearly same with those inden-
tified in comparison between HIV and HCV mono-
infections. Considering that CD4+ T cell was the major
target of HIV and only a little specific CD4+ T cells was
detected in the HCV infected individuals [16,17], it was
reasonable that HCV only contribute a little to the global
gene changes of CD4+ T cells in HCV/HIV co-infections
(Table 1).
One significant proportion of differentially expressed

genes was associated with cell cycle which was signifi-
cant up-regulated in both the HIV mono- and HCV/
HIV co-infected individuals as compared with HCV
mono-infected individuals (Figure 2). Functional analysis
revealed that most of these gene sets involved in G1/S
and G2/M transitions. In relate to G1/S transition, till
now only one study has reported this phenomenon and
the reason why HIV prefers to drive cells out of G1 to S
phase is not clear yet [18]. One possible explanation is



Figure 4 Quantitative real time RT-PCR validations of differentially expressed genes. The mRNA levels of selected genes were measured in
HCV, HIV co-/mono-infected individuals (16 individuals in each group) by quantitative real time RT-PCR. And the relative mRNA value was calculated
as described in methods. Box-plot illustrated the medians with 25% and 75%; error bars indicate 5% and 95% percentiles. 1–6 represent comparisons
between HCV infection and HIV infection, HCV and HIV/HCV co-infection, HIV and HIV/HCV co-infection, HCV infection and uninfection, HIV infection
and uninfection, and HIV/HCV co-infection and uninfection with p < 0.05, respectively.
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that the G1/S transition may regulate the latency of HIV
[19]. The promotion of G1/S transition may facilitate
HIV integration as indicated by the up-regulation of
genes engaged mainly in DNA repair. The latter has
been assumed to be required for the integration of HIV
Table 2 Quantitative real time PCR validations of differentiall

Gene symbol Method HIV + HCV vs
HCV

HIV + HCV vs
HIV

IL6 MA Up Up

qPCR Up Up

PTX3 MA Up Up

qPCR Up Up

Mx1 MA Up NS

qPCR Down Down

USP18 MA Up NS

qPCR Up NS

P2RY13 MA Up NS

qPCR Up NS

GPR56 MA Up NS

qPCR NS NS

OAS1 MA Up NS

qPCR Up NS

CX3CR1 MA Up NS

qPCR Up NS

NOTE. VS, versus; NS, not significantly changed; ND, not detected; qPCR, quantitativ
[20,21]. Another most affected phase was the G2/M
transition [22,23]. As shown in Figure 2, 16 out of 33
genes that associated with G2/M transition were up-
regulated in the HIV infected individuals, and most
of them play important roles in the maintenance of
y expressed genes

HCV vs
HIV

HCV vs
None-infection

HIV vs
None-infection

HCV + HIV vs
None-infection

NS ND ND ND

NS Down Down NS

NS ND ND ND

NS Down Down Down

Down ND ND ND

Down Down Down Down

Down ND ND ND

Down Down NS NS

Down ND ND ND

Down Down Down Down

Down ND ND ND

Down NS NS NS

NS ND ND ND

NS Up Up Up

Down ND ND ND

Down Down Down Down

e real-time polymerase chain reaction; MA, microarray analysis.
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centrosome normality and integrity. The Vpr (viral
protein R) of HIV was reported to induce an accumulation
of multiple centrosome-like structures in human cells that
lead to cell cycle arrest or delay in the G2 phase [24], thus
positively support viral replication or facilitate viral spread
by triggering cell death [25]. For HIV/HCV co-infection,
the cell cycle arrest in G2 phase induced by HIV would
lead to a depletion of CD4+ T cells [25], and may partially
result in a less efficient in HCV clearance [26].
The second group of significantly up-regulated gene

sets in both HIV mono- and HCV/HIV co-infections
was genes related to innate immune response as com-
pared with HCV mono-infections (Figure 3). In chronic
infection, such as HIV, continuous ongoing innate im-
mune responses may contribute more to disease progres-
sion rather than to limit viral replication [26]. Although
the mechanisms are very complicated, functional analysis
revealed that a group of overlapped genes were engaged in
NF-κB regulation among these different innate immune
pathways. This finding was also supported by other studies
that NF-κB was mediated by Vpr and played a major role
in HIV gene expression and pro-inflammatory cytokines
induction [27-30].
The third group of gene sets that is usually modulate

by virus is the host cell transcription apparatus [31]. By
providing direct gene pattern, our results confirmed
that this strategy was also exploited both in the HIV
mono- and HCV/HIV co-infected individuals. As seen in
Figure 1C, many of the critical components that engaged
in mRNA formation, elongation and maturation were up-
regulated in the HIV mono- and HCV/HIV co-infected in-
dividuals. These implied that through up-regulating the
mRNA editing genes, the HIV virus could facilitate the
production of maturated transcripts which were needed
for its own translation.
Gene sets in metabolic pathways, including carbohy-

drate, lipid, fatty acid, amino acid, nucleotide and even
vitamin metabolisms, were all significantly changed in
the co-infected group. Both of these two viruses have
shown abilities to modulate partial of these pathways to
facilitate their infections [32-34]. The abnormalities in
the whole metabolic net in co-infections may be a result
of HIV-HCV interaction. By complement to each other,
the damaging effects would be definitely aggravated, thus
lead a more rapid disease progression in co-infections.
Results from our study also detected several pathways

up-regulated in HCV infections. All of these pathways
were directly or indirectly relate to pathway of GPCR
signaling (Figure 1). By modulation several major effectors
such as adenylyl cyclase, phospholipase C and the mitogen
activated protein kinases (MAPKs), GPCR are involved in
many diverse signaling events including visual sense, smell,
immune system regulation and inflammation [35,36]. The
significance of HCV on modulating GPCR signaling is not
well understood yet. We speculate that the activation of
GPCR signaling as exemplified by upregulation of chemo-
kines (e.g., CCL22) may play important roles in lympho-
cytes chemotaxis, which could promote the activated
lymphocytes to inflammatory sites and facilitate viral clear-
ance [37]. However, an inappropriate activation of chemo-
taxis may also lead to unexpected damage of un-infected
cells and accelerate the disease progression. Activation of
GPCR pathways would lead to an increase in amount and
duration of intracellular cyclic adenosine 3', 5’-monopho-
sphate (cAMP) levels [38]. As an important regulator of
immune cells, cAMP has a dual and opposite role during
HIV infection [39]. cAMP can limit viral entry and replica-
tion [40,41], while it may also reduce HIV-specific antiviral
immune responses and promote T cell dysfunctions
[42,43]. The exact role of HCV-activated GPCR signaling
on CD4+ T cells function and HIV infection needed to be
further determined.

Conclusion
This study for the first time analyzed the impact of HIV/
HCV co-infection at gene transcription level. By compar-
ing with HCV and HCV/HIV co-infection, HIV infection
displayed the great impact on gene expression profile of
CD4+ T cells. Genes related to cell cycle arrest and T cell
dysfunction were significantly mediated in HIV and HIV/
HCV infected individuals which may practically explain
the acceleration of HCV related disease progression by
HIV infection and control of HIV replication might im-
prove HCV specific CD4+ T-cell response in the HCV/HIV
co-infected individuals.

Methods
Treatment-naive HCV/HIV mono-/co-infected individuals
A male population of Chinese was recruited from an
ongoing voluntary-based HIV/AIDS surveillance study
in Shenzhen, from September 2009 to December 2010.
Written content was obtained from the participants.
Ethics approval was obtained from The Joint Chinese
University of Hong Kong–New Territories East Cluster
Clinical Research Ethics Committee. All participants
have been screened for HIV (Beijing Wantai Biological
Pharmacy Enterprise CO., LTD, Beijing), HCV (Beijing
Wantai Biological Pharmacy Enterprise CO., LTD, Beijing)
and HBV (Beijing Wantai Biological Pharmacy Enterprise
CO., LTD, Beijing) antigens and antibodies by standard
ELISA analysis recommended by The Center of Disease
Control and Prevention of China (guidelines of CDC,
China). HIV infection was further confirmed by western
blot (HIV Blot 2.2 WB; Genelabs Diagnostics, Singapore)
following the National Guideline for Detection of HIV/
AIDS of China. In order to rule out the confounding fac-
tors including treatment responses and drug resistant bias,
all HIV + samples were tested for CD4 counts with flow
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cytometry, and drug resistant mutations by genotyping
analysis. All enrolled HIV + individuals are antiretroviral-
naïve with CD4 counts ≥300 cells/μl and without baseline
drug resistant mutation. Based on the stringent criteria de-
scribed above, 24 samples from each infected group (HIV
mono-infected, HCV mono-infected and HIV/HCV co-
infected group) were selected in this study. For microarray
analysis, each group contained 3 biological replicates
with 8 individuals in each replicates. To validate our
findings by quantitative real-time PCR (qRT-PCR), 24
healthy individuals were further enrolled. Their demo-
graphic and epidemiological data have been docu-
mented in Additional file 4: Table S1. The average age
was similar in all the study groups (29.5, 33.0, 31.4 and
27.5 years for HIV mono-infection group, HCV mono-
infection group, HIV/HCV co-infection group and non-
infected group, respectively). The CD4 counts were
433 ± 101, 839 ± 234, 524 ± 219 and 651 ± 210 (mean ±
SD, cells/μl) for HIV infected, HCV infected, HIV/HCV
co-infected and un-infected group, respectively.

Purification of CD4+ T cells and RNA isolation
Peripheral blood mononuclear cells (PBMCs) were sepa-
rated and purified immediately after obtaining blood
samples (30 ml whole blood from each individual) by
Ficoll-Hypaque separation. Fresh CD4+ T cells were then
obtained by positive isolation with use of microbead
immunoselection (Miltenyi Biotec, Oslo, Norway). To
maximize the RNA yields and minimize possible varia-
tions in gene expression profiles, the experiments were
strictly followed as described in a previous study [44].
The purity of isolated CD4+ T cells was measured by
Flow-cytometric analysis of cell markers (CD4). And it
demonstrated that 98.1% ± 0.013 (mean ± SD), 98.5% ±
0.072, 97.6% ± 0.021 and 98.5% ± 0.012 of purified CD4+

cells were single positive for the CD4 marker in HIV
infected, HCV infected, HIV/HCV co-infected and un-
infected group, respectively. For microarray analysis,
RNA pooling method was used to reduce the noise and
enhance reliability when many subjects were pooled
without loss of individual specific information [45]. In
each infection group, samples were divided into 3 sub-
groups for independent replicates. In each subgroup,
equal amount of CD4+ T cells from 8 individuals were
pooled together for RNA isolation and the followed gene
expression profile studies. The left CD4+ T cells were
stored at -80°C freezer for validation. RNA was iso-
lated using RNAeasy Total RNA Isolation Kit (Qiagen,
Germany) and applied for microarray assays.

Microarray assays
Microarray assays were performed by using Affymetrix
GeneChip Human Gene 1.0 ST Array (Affymetrix, Santa
Clara, CA). A cRNA kit (The Affymetrix GeneChip Whole
Transcript Sense Target Labelling Assay) was used for
complementary RNA (cRNA) generation, hybridization,
and array processing. The images were acquired by the
Affymetrix Scanner 3000 7G Plus and the CEL files were
imported into the program Partek Genomic Suite (version
6.4, Partek Inc, St Louis, MO) and the robust multi-chip
average (RMA) was normalized. Two-way ANOVA test
was applied to identify differentially expressed (DE) genes
(fold change >2 and adjust p < 0.05).

Gene set enrichment analysis
To further understand the biological meanings, Gene set
enrichment analysis (GSEA) analysis (version 2.0, Broad
Institute http://www.broad.mit.edu/gsea) was used. First,
a ranked list was obtained by ranking all genes according
to the correlation between their expression levels and
the group distinctions using the metric signal to noise
ratio. Then the association between a given gene set and
the group was measured by the non-parametric running
sum statistic termed the enrichment score (ES). To esti-
mate the statistical significance of the ES, a nominal
p value was calculated by permuting the genes 1,000 times.
To adjust for multiple hypotheses testing, the maximum
ES was normalized to account for the gene set size (NES)
and the false discovery rate (FDR). The gene sets used were
from Molecular Signatures Database (MsigDB), catalog C2
(version 3.0) functional sets, subcatalog canonical path-
ways, which include 880 gene sets from pathway databases.
These gene sets were collected from online databases such
as Bio-Carta, React, and KEGG (Kyoto Encyclopedia of
Genes and Genomes).

Quantitative real-time RT-PCR (qRT-PCR)
RNA isolated from the CD4+ T cells of each participant
was reverse-transcribed into cDNA using Reverse Tran-
scription System (Promega, USA). qRT-PCR was carried
out by using ABI 7500 Real-Time PCR system with
Power SYBR Green Master Mix (Applied Biosystems,
USA). Primer sequences are listed in Additional file 5:
Table S4. The relative mRNA level of each gene was cal-
culated as following formula: R = 2CT (GAPDH-X) x103, x
represent CT value of each gene. Each RT-PCR experi-
ment was performed three times.

Statistical analysis
Data were analyzed with SPSS version 13.0 (SPSS Inc.,
Chicago, IL, USA). Nonparametric test was used for
parewise comparisons. P value < 0.05 was considered as
statistically significant.

Additional files

Additional file 1: Table S2. Differently expressed transcript identifiers
in each comparison.

http://www.broad.mit.edu/gsea
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Additional file 2: Table S3. Pathways identified by gene set
enrichment analysis (FDR < 0.05).

Additional file 3: Figure S1. Quantitative real time RT-PCR validations
of differentially expressed genes.

Additional file 4: Table S1. Participant cohort.

Additional file 5: Table S4. Primers for Quantitative Real-time PCR
Analysis.
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