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Abstract

Background: Foot-and-mouth disease virus (FMDV) causes a severe vesicular disease in domestic and wild
cloven-hoofed animals. Because of the limited early protection induced by current vaccines, emergency antiviral
strategies to control the rapid spread of FMD outbreaks are needed.
Here we constructed multiple microRNAs (miRNAs) targeting the internal ribosome entry site (IRES) element of FMDV
and investigated the effect of IRES-specific miRNAs on FMDV replication in baby hamster kidney (BHK-21) cells and
suckling mice.

Results: Four IRES-specific miRNAs significantly reduced enhanced green fluorescent protein (EGFP) expression
from IRES-EGFP reporter plasmids, which were used with each miRNA expression plasmid in co-transfection of
BHK-21 cells. Furthermore, treatment of BHK-21 cells with Bi-miRNA (a mixture of two miRNA expression plasmids)
and Dual-miRNA (a co-cistronic expression plasmid containing two miRNA hairpin structures) induced more efficient
and greater inhibition of EGFP expression than did plasmids carrying single miRNA sequences.
Stably transformed BHK-21 cells and goat fibroblasts with an integrating IRES-specific Dual-miRNA were generated,
and real-time quantitative RT-PCR showed that the Dual-miRNA was able to effectively inhibit the replication of
FMDV (except for the Mya98 strain) in the stably transformed BHK-21 cells.
The Dual-miRNA plasmid significantly delayed the deaths of suckling mice challenged with 50× and 100× the 50%
lethal dose (LD50) of FMDV vaccine strains of three serotypes (O, A and Asia 1), and induced partial/complete protection
against the prevalent PanAsia-1 and Mya98 strains of FMDV serotype O.

Conclusion: These data demonstrate that IRES-specific miRNAs can significantly inhibit FMDV infection in vitro
and in vivo.

Keywords: Foot-and-mouth disease virus, MicroRNA, Internal ribosome entry site, Transformed cell clones,
Antiviral effect, Flow cytometry, Real-time quantitative RT-PCR
Background
Foot-and-mouth disease is an acute, highly contagious
and economically important disease that affects domes-
tic and wild cloven-hoofed animals, such as cattle, swine,
sheep and goats [1,2]. The etiological agent, foot-and-
mouth disease virus (FMDV), belongs to the genus
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Aphthovirus in the family Picornaviridae [3]. There are
seven serotypes of FMDV and multiple subtypes [4-6].
The viral genome is composed of a positive-sense, single-
stranded RNA that functions as an mRNA and contains a
unique open reading frame (ORF) encoding a viral poly-
protein. This polyprotein is co-translationally processed,
largely by virus-encoded proteases, to produce about 15
mature proteins plus many different precursors [7-9]. Ini-
tiation of FMDV RNA translation is directed by a large
RNA cis-acting element of about 440 nucleotides (nts)
termed the internal ribosome entry site (IRES) element
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[10,11]. This region is predicted to adopt a secondary
structure that mediates RNA–protein interactions essen-
tial for ribosome recognition [12,13]. The RNA genome
also has to act as the template for RNA replication [14].
During this process, the genome undergoes rapid mutation
at average rates of 10-3 to 10-5 substitution per nucleotide
copied, due to the lack of proofreading mechanism of the
RNA-dependent RNA polymerase (RdRp) [15-17]. Thus,
FMDV populations form as “clouds” of mutants, or mutant
distributions, termed viral quasispecies [18-21]. FMDV
evolution is strongly influenced by high mutation rates and
the dynamics of viral quasispecies, and results in ever-
changing targets for antiviral strategies, including vaccin-
ation [22,23].
Although the current FMD vaccines play an essential

role in the control of FMD outbreaks, they fail to induce
an immediate protective response. There is a “window”,
a so-called immune blank period, of susceptibility to
FMDV infection in vaccinated animals at 1–7 days post-
immunization [24,25]. Hence, alternative emergency strat-
egies are needed for rapid control of FMDV outbreaks.
Small interference RNAs (siRNAs) have been widely stud-
ied as a means of inhibiting FMDV replication in vitro
and in vivo [26-33]. However, the efficacy and specificity
of this inhibition could be completely abolished by a single
point mutation in the target sequence [34-37], potentially
limiting the usefulness of this approach against rapidly
mutating and mutated viruses such as FMDV [38].
Therefore, the use of microRNA (miRNA), rather than

siRNA, may be necessary, to cause mRNA degradation
in a sequence-specific manner or gene silencing in an
imperfectly base-paired manner [39,40]. Here we report
that multiple vector-delivered, IRES-specific miRNAs ef-
fectively and specifically silence EGFP (enhanced green
fluorescent protein) expression from IRES-EGFP fusion
protein reporter plasmids in BHK-21 cells and inhibit
virus replication in FMDV-IRES-specific Dual-miRNA-
transformed BHK-21 cells and suckling mice. Addition-
ally, a high-efficiency Dual-miRNA targeted to the IRES
element was integrated stably into the chromosomal
DNA of goat fibroblasts, for the future creation of trans-
genic animals resistant to FMDV infection.

Results
IRES-specific miRNAs on plasmids silence reporter gene
expression in BHK-21 cells
Specific silencing of EGFP expression by a single miRNA
To determine if miRNAs specifically targeting the IRES
element could effectively silence EGFP expression from
IRES-EGFP reporter plasmids, we constructed four IRES-
specific miRNA expression plasmids (pmiR153, pmiR220,
pmiR242 and pmiR276; Figure 1A) and three IRES-EGFP
reporter plasmids (pHN/IRES-EGFP, pFC/IRES-EGFP and
pJS/IRES-EGFP; Figure 1B). Each miRNA expression
plasmid (including pmiR-NC, the negative control; Table 1)
was, with each reporter plasmid (including p3D-GFP,
a control for nonspecific effects [41]), used to co-
transfected BHK-21 cells at a molar ratio of 1:1 (w/w).
The cells were observed continuously under the fluores-
cence microscope and analyzed by flow cytometry 48 h
post-transfection. Four IRES-specific miRNAs signifi-
cantly reduced EGFP expression from the IRES-EGFP
reporter plasmids but not from the p3D-GFP plasmid
(Figure 2). The pmiR-NC plasmid showed no visible
changes in EGFP expression (Figure 2). pmiR242 (ex-
cept with pHN/IRES-EGFP) and pmiR276 yielded more
significant reductions of IRES-EGFP expression, com-
pared with pmiR153 and pmiR220 (Table 2).

Enhanced silencing of EGFP expression by Bi-miRNA
and Dual-miRNA
pmiR242 and pmiR276 were used for further analysis of
effective inhibition of IRES-EGFP reporter expression in
BHK-21 cells. Co-transfection of a mixture of these two
IRES-specific miRNA expression plasmids (pmiR242 and
pmiR276, Bi-miRNA) with any of the three IRES-EGFP
reporter plasmids resulted in a 78.4%–88.3% reduction
in intensity of EGFP fluorescence, as compared with
the individual plasmids of pmiR242 (44.3%–71.4%) and
pmiR276 (60.5%–81.4%) (Figure 2, Table 2).
To further improve the specific silencing, we constructed

pmiR242 + 276 (Dual-miRNA), a co-cistronic expression
plasmid containing two IRES-specific miRNA hairpin
structures (Figure 1A). BHK-21 cells were co-transfected
with the Dual-miRNA plasmid pmiR242 + 276 and each
IRES-EGFP reporter plasmid. Remarkably, the results
showed that pmiR242 + 276 was more effective than
pmiR153, pmiR220, pmiR242, pmiR276, or Bi-miRNA,
and displayed 83.6%–96.6% inhibition of EGFP expression
at 48 post-transfection (Figure 2, Table 2).

Stable expression of IRES-specific Dual-miRNA confers
effective inhibition of FMDV replication
Selection of stably FMDV-IRES-specific Dual-miRNA-
transformed BHK-21 cells and goat fibroblasts
BHK-21 cells transfected with pEGFP-miR242 + 276
(Figure 1A) and goat fibroblasts transfected with
pmiR242 + 276 were grown under Blasticidin (3 μg/mL)
selection for 7 days. The populations of Blasticidin-re-
sistant (BlasticidinR) clones were continuously obtained
in selective culture at serial passages. To determine the
presence of Dual-miRNA in the transformed BHK-21 cells
(the 6th passage) and goat fibroblasts (the 3rd passage), the
clones were analyzed by PCR using a specific forward pri-
mer (5′-AGCAGGCTTTAAAGGGAGGTAGTG-3′) and
reverse primer (5′-CTCTAGATCAAC CACTTTGT-3′).
As expected, a 410-bp (base pairs) fragment was am-
plified by using PCR from DNA extraction of cellular



Figure 1 Schematic representations of (A) FMDV-specific miRNAs and (B) IRES-EGFP expression plasmids. 5′ and 3′ miR flanking regions
are represented as grey. Procedures for the construction of single miRNA (pmiR153, pmiR220, pmiR242, and pmiR276), Dual-miRNAs (pmiR242 +
276 and pEGFP-miR242 + 276) and the reporter plasmids (pHN/IRES-EGFP, pFC/IRES-EGFP, and pJS/IRES-EGFP) are described in Methods.
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suspension from DNA extracted from every BlasticidinR

clone (Figure 3A). DNA sequencing revealed that the DNA
containing the precursor miRNAs (pre-miRNAs) was stably
integrated into the chromosomes of all the BlasticidinR

BHK-21 cells and goat fibroblasts. Green fluorescence was
observed in the cytoplasm of the transformed BHK-21 cells
(Figure 3B), suggesting that the Dual-miRNA (pEGFP-
miR242 + 276) could be expressed and processed into indi-
vidual IRES-specific miRNAs.
Table 1 Oligonucleotides of vector-delivered pre-miRNAs

Name Single stranded DNA sequences (5′→ 3′)

pmiR153 Top strand TGCTGCTCCTTGGTAACAAGGACCCAGT

Bottom strand CCTGCTCCTTGGTAAAGGACCCAGTCAG

pmiR220 Top strand TGCTGGCACGGCAACTTTACTGTGAAGT

Bottom strand CCTGGCACGGCAACTACTGTGAAGTCA

pmiR242 Top strand TGCTGCCACCTTAAGGTGACACTGATGT

Bottom strand CCTGCCACCTTAAGGACACTGATGTCAG

pmiR276 Top strand TGCTGCACTGGTGACAGGCTAAGGATG

Bottom strand CCTGCACTGGTGACACTAAGGATGTCAG

pmiR-NC Top strand TGCTGAAATGTACTGCGCGTGGAGACG

Bottom strand CCTGAAATGTACTGCGTGGAGACGTCAG

The sense sequences of predicted miRNAs targeting the FMDV IRES are shown in b
Analysis of inhibition of FMDV replication in
Dual-miRNA-transformed BHK-21 cells
To examine the effect of IRES-specific miRNAs on
FMDV replication, supernatants from virus-infected
pEGFP-miR242 + 276-transformed BHK-21 cells were
harvested at designated time points, total RNA was
extracted, and FMDV copy numbers were measured by
subjecting the total RNA samples to real-time quantita-
tive RT-PCR. The results were very reproducible, based
Position

TTTGGCCACTGACTGACTGGGTCCTTTACCAAGGAG 151–171

TCAGTGGCCAAAACTGGGTCCTTGTTACCAAGGAGC

TTTGGCCACTGACTGACTTCACAGTAGTTGCCGTGC 220–240

GTCAGTGGCCAAAACTTCACAGTAAAGTTGCCGTGCC

TTTGGCCACTGACTGACATCAGTGTCCTTAAGGTGG 243–263

TCAGTGGCCAAAACATCAGTGTCACCTTAAGGTGGC

TTTTGGCCACTGACTGACATCCTTAGTGTCACCAGTG 277–297

TCAGTGGCCAAAACATCCTTAGCCTGTCACCAGTGC

TTTTGGCCACTGACTGACGTCTCCACGCAGTACATTT Heterologous

TCAGTGGCCAAAACGTCTCCACGCGCAGTACATTTC

old and italic.



Figure 2 Fluorescence micrographs of BHK-21 cells co-transfected with miRNA-expressing plasmid(s) and reporter plasmids. The pmiR-NC
and p3D-GFP plasmids were used as references for nonspecific effects on IRES-EGFP expression.

Table 2 Efficiencies of miRNAs targeting the FMDV IRES in inhibiting EGFP expression in BHK-21 cells as assayed by
flow cytometry

Reporter plasmid Inhibition efficiency of each miRNA (%)

pmiR153 pmiR220 pmiR242 pmiR276 Bi-miRNA Dual-miRNA

pHN/IRES-EGFP 72.2% 56.7% 44.3% 81.4% 84.7% 95.0%

pFC/IRES-EGFP 38.7% 47.9% 71.4% 60.5% 88.3% 96.6%

pJS/IRES-EGFP 64.6% 37.5% 68.8% 62.5% 78.4% 83.6%

Bi-miRNA, a mixture of pmiR242 and pmiR276 plasmids; Dual-miRNA, a co-cistronic expression plasmid (pmiR242 + 276) containing two pre-miRNA (pmiR242 and
pmiR276) hairpin structures. Percentage inhibition in each co-transfected (vector-delivered miRNAs and the reporter plasmids) cell population was calculated by
comparison with the control cells transfected only with the same reporter plasmid at 48 h post-transfection.
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Figure 3 PCR analysis and morphological observation of the FMDV IRES-specific Dual-miRNA-transformed cell clones. Cultured cells
were transfected with pEGFP-miR242 + 276 (BHK-21 cells) or pmiR242 + 276 (goat fibroblasts), and the resultant stably transformed clones were
obtained by BlasticidinR selection as described in Methods. (A) The PCR products from harvested cells were electrophoresed through 0.8% agarose gels
and identified under UV light. As a negative control, a mixture of the total DNA extracted from normal BHK-21 cells and goat fibroblasts was
amplified using the same specific primer pairs. (B) The green fluorescence in the pEGFP-miR242 + 276-transformed BHK-21 cells (left) and the
pmiR242 + 276-transformed goat fibroblasts (right) were visualized with a fluorescence microscope and a light microscope, respectively.
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on the cycle threshold (Ct) values in duplicate measure-
ments. Normal BHK-21 cells were infected with the
same FMDVs as parallel controls. In cells infected with
three vaccine strains of FMDV serotype O (O/HN/CHA/
93), A (AF72), and Asia 1 (Asia 1/Jiangsu/China/2005)
and the prevalent PanAsia-1 strain of FMDV serotype O
(O/Tibet/China/1/99), the difference in mean Ct values
between test samples and control samples showed that
pEGFP-miR242 + 276 had the effect of inhibition on the
replication of the indicated FMDV in the Dual-miRNA-
transformed BHK-21 cells at 36 h post-infection ( h.p.i)
(Table 3). However, viral RNA replication of the preva-
lent Mya98 strain of FMDV serotype O (O/CHN/
Mya98/33-P) was not inhibited in the Dual-miRNA-
transformed BHK-21 cells (Table 3). The results show
that IRES-specific miRNAs can significantly inhibit viral
infection of the selected FMDVs (except for O/CHN/
Mya98/33-P) in vitro.

Antiviral activity of vector-delivered Dual-miRNA in
suckling mice
The IRES-specific miRNAs were tested against chal-
lenge by the same viruses (O/HN/CHA/93, AF72, Asia
1/Jiangsu/China/2005, O/Tibet/China/1/99, and O/CHN/
Mya98/33-P) in vivo. All negative control mice treated with
1 × PBS survived (Figure 4). All the positive control mice,
which were treated with 50 LD50 and 100 LD50 of the re-
spective FMDVs, died within 42 h (Figure 4). In the O/HN/
CHA/93, AF72, and Asia 1/Jiangsu/China/2005 challenge
groups, mice that received injection of mixtures of the cor-
responding viruses and pmiR242 + 276 were not protected
from either 50 LD50 or 100 LD50 of FMDV. However, the
times at which 50% and 100% of the mice had died were
delayed for more than 6 h for each of the FMDV-pmiR242
+ 276-injected groups (Figure 4A, B and C). In the groups
challenged with of 50 LD50 and 100 LD50 O/Tibet/China/
1/99 of FMDV, 3 of the 4 mice in each group treated with
mixtures of the indicated virus and pmiR242 + 276 survived
for 7 days of observation (Figure 4D). Among the mice
challenged with 50 LD50 and 100 LD50 O/CHN/Mya98/33-
P, 4 of 4 and 3 of 4 mice, respectively, injected with mix-
tures of the indicated FMDV and pmiR242 + 276 also sur-
vived over the same period of time (Figure 4E).

Discussion
miRNAs play an important role in post-transcriptional
gene silencing (PTGS), inhibiting translation at and/or
following initiation, as RNA interference (RNAi) [42-44].



Table 3 Real-time quantitative RT-PCR analysis of the inhibition of FMDV replication in pEGFP-miR242 + 276-transformed BHK-21 cells, compared with normal
BHK-21 cells

FMDV Ct values (mean)

12 h.p.i. 24 h.p.i. 36 h.p.i. 48 h.p.i. 60 h.p.i. 72 h.p.i.

O/Tibet/China/1/99 34.61 ± 0.32/37.73 ± 0.07 36.20 ± 0.09/38.76 ± 0.25 35.98 ± 0.83/36.09 ± 0.12 37.55 ± 0.22/36.75 ± 0.44 37.62 ± 0.51/26.92 ± 0.21 36.08 ± 0.08/28.49 ± 0.39

O/HN/CHA/93 36.45 ± 0.05/35.65 ± 0.66 36.85 ± 0.57/31.32 ± 0.10 33.41 ± 0.15/28.62 ± 0.40 28.54 ± 0.10/28.82 ± 0.49 26.84 ± 0.16/26.34 ± 0.11 26.34 ± 0.30/26.54 ± 0.22

O/CHN/Mya98/33-P 16.70 ± 0.10/16.27 ± 0.23 15.17 ± 0.02/14.57 ± 0.04 11.81 ± 0.30/12.44 ± 0.14 8.43 ± 0.59/14.16 ± 0.41 7.49 ± 0.31/9.16 ± 0.04 13.68 ± 0.10/15.02 ± 0.59

AF72 30.97 ± 0.08/25.23 ± 0.17 36.23 ± 0.78/30.44 ± 0.41 36.36 ± 0.18/35.02 ± 0.79 38.45 ± 1.07/25.21 ± 0.92 36.32 ± 0.94/10.32 ± 0.71 37.13 ± 0.15/11.16 ± 0.31

Asia1/Jiangsu/China/2005 36.73 ± 0.18/34.16 ± 0.68 37.12 ± 0.11/35.65 ± 0.19 37.28 ± 0.39/35.46 ± 0.04 35.42 ± 0.09/27.39 ± 0.20 36.62 ± 0.57/17.84 ± 0.63 38.59 ± 0.77/16.68 ± 0.44

Viral supernatants were collected at 12, 24, 36, 48, 60, and 72 h.p.i., and the Ct values were derived from two parallel experiments (treatment/control).
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Figure 4 Anti-FMDV activity of IRES-specific pmiR242 + 276 in suckling mice. Animals (4 suckling mice of each group) were challenged by
subcutaneous injection with mixtures of the miRNA expression plasmid pmiR242 + 276 and the indicated (50 LD50, 100 LD50) FMDV O/HN/CHA/
93 (A), AF72 (B), Asia 1/Jiangsu/China/2005 (C), O/Tibet/China/1/99 (D), and O/CHN/Mya98/33-P (E), respectively. Mice were treated with 1 × PBS
as negative control and the same titers of the selected FMDVs as positive control. All suckling mice were continuously observed for one week
after virus challenge. Kaplan-Meier survival curves were analyzed by the log rank test using GraphPad Prism version 5.01 (GraphPad software, San
Diego, CA).
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It is believed that miRNAs are essential regulators of cell
fate determination, such as in early development, and of
cellular proliferation and differentiation, apoptosis, and
pathogen-host interactions [45,46]. There are few re-
ports of the use of miRNAs as anti-FMDV agents, al-
though miRNA has more potential than siRNA to
silence FMDV replication [41]. In this study, the FMDV
IRES was selected as the target of vector-delivered miR-
NAs and the inhibitory effects of these FMDV-specific
miRNAs on IRES-EGFP expression, replication of the
genomic RNA, and the pathogenicity of FMDV were ex-
amined in BHK-21 cells and/or suckling mice.
The FMDV IRES consists of a highly structured region

having five structural domains [47]. The different domains
have different functions in interacting with eukaryotic
translation initiation factors (eIFs) to contribute to transla-
tional initiation [12,48-50]. Antisense transcripts from the
5′ region, including the proximal part of the IRES element
and the functional initiator AUG codons, inhibited FMDV
(serotype C) infection [51]. This inhibition, which reached
values up to 90%, was dose-dependent and FMDV-specific,
and also affected heterologous FMDV RNAs of serotypes O
and A [52]. Rosas et al. have reported that the 156-nt tran-
script complementary to the FMDV translation initiation
region in the viral RNA has effective antiviral activity when
stably expressed in FMDV-susceptible cells [53]. In
addition, small synthetic non-infectious RNA molecules
corresponding to the IRES element can induce rapid, effect-
ive, and wide-range protection against FMDV infection
[54]. It has been argued that the IRES element might not
be accessible to RNAi [55,56]. In our experiments, the four
FMDV-miRNAs targeted the GNRA motif (pmiR153), the
proximal part of the ACCC loop (pmiR220) and the stem
(pmiR242) of the central region (domain 3), and the root-
linker-stem (pmiR276) within domain 3–4 of the IRES
element, respectively (Figure 5A). Domain 3 of the FMDV
IRES is unique in its ability to interact with each of the
other domains, including the entire IRES [49]. The GNRA
motif of the apical loops of domain 3 appears to be respon-
sible for the organization of the adjacent stem-loops [47].
Another conserved sequence, the ACCC loop, is a candi-
date to interact with poly(rC) binding proteins (PCBP) [57].
Certain nts of domain 4 are involved in the interactions
with proteins that play an essential role during internal ini-
tiation [58]. Here, the FMDV-specific miRNAs targeting
the root-linker-stem within domain 3–4 and the stem of
domain 3 provided the most efficient silencing, followed by
those targeting the GNRA motif and the proximal part of
the ACCC loop in domain 3 of the IRES element. The di-
versity of base-pair conformations in the arm of GNRA
motif and the stem of domain 3 (Figure 5B) might have
influenced the the inhibitory effect of pmiR153 (with pHN/
IRES-EGFP and pJS/IRES-EGFP) and pmiR242 (with
pHN/IRES-EGFP) on EGFP expression from the reporter



Figure 5 Representation of the structural domains and locations of the miRNA target sequences within domain 3 (the central region)
and domain domain 3–4 of the FMDV IRES. (A) The secondary structure of the IRES element of FMDV O/HN/CHA/93 was predicted and
referred to Kuhn et al. [11]. (B) The displayed sequences of the selected FMDVs were compared by using MegAlign software (DNASTAR Inc.,
Madison, WI) and the different nucleotides are indicated in box.
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plasmids (Table 2). These results suggest that conform-
ational changes are likely to be important effectors of
miRNA function and the conserved regions involving
Watson-Crick base pairing within the exposed part of
FMDV IRES could be potential target sequences for
miRNA-induced gene silencing. We also observed that
the silencing effect in BHK-21 cells could be enhanced by
use of Bi-miRNA (pmiR242 and pmiR276) co-transfected
with the IRES-EGFP expression reporter plasmids
(Table 2). Moreover, the silencing effect of vector-
delivered Dual-miRNA (pmiR242 + 276) was much stron-
ger than either a single miRNA or Bi-miRNA (Table 2).
These strategies have been used for to improve the antiviral
effect, and to defend against the high genetic variability of
the virus and the production of viral escape mutants [59].
To analyze the antiviral effect, all serotypes of FMDV

(including vaccine strains and the prevalent strains) iso-
lated from China, except for the SEA topotype of FMDV
serotype A [60], were used to inoculate the IRES-specific
Dual-miRNA-transformed BHK-21 cells and for virus
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challenge in suckling mice. In the suckling mice, the Dual-
miRNA plasmid was delivered with the virus challenge,
differing from previous studies [30,33,38,61]. Unexpect-
edly, the IRES-specific Dual-miRNA had no inhibitory ef-
fect on the RNA replication of FMDV O/CHN/Mya98/
33-P in vitro despite its efficacy in vivo (Table 3, Figure 4E).
The potential for the rapid, selective replication of the
virus in vitro would increase the possibility of genetic
changes and diversity in the populations of progeny virus
(Table 3) [62,63]. Consequently, the antiviral effect was in-
versely proportional to the number of mismatches be-
tween the miRNA and the targeted IRES sequence,
although the predicted secondary structure was tolerated
(Figure 5A) [64,65]. In addition, the different gene silen-
cing efficiencies and expression levels of the mature IRES-
specific miRNAs could not guarantee complete inhibition
of FMDV replication in the Dual-miRNA-transformed
BHK-21 cells, and suggested that the tandem arrangement
of pre-miRNAs and the reporter gene might influence the
antiviral efficacy of FMDV-specific miRNA-expressing
plasmids (Figure 1A) [66].

Conclusion
Our data demonstrate that FMDV replication can be sig-
nificantly inhibited by FMDV-specific miRNAs targeted
to the IRES element in vitro and in vivo. BlasticidinR

clones of goat fibroblasts with chromosomally integrated
FMDV-IRES-specific Dual-miRNA genes have also been
obtained, in order to produce transgenic animals resist-
ant to FMDV. We propose that multiple miRNAs could
be effective new tools for the control of rapidly spread-
ing FMD outbreaks in the future.

Methods
Cells, animals, and viruses
BHK-21 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco) supplemented with 10% fetal
bovine serum (FBS, Hyclone). Goat fibroblasts were kindly
provided by Prof. Baohua Ma (Northwest Agriculture &
Forestry University) and cultured in DMEM/F12 nutrient
mixture (Gibco) (containing 1.5 g/L sodium bicarbonate)
supplemented with 10% FBS. All cell lines were incubated
at 37°C with 5% CO2. Kunming White suckling mice,
2–3 days old and weighing 3–4 g, were purchased from
Lanzhou Institute of Biological Products. Five FMDV
isolates, O/Tibet/China/1/99 [PanAsia-1 strain of ME-
SA (Middle East-South Asia) topotype, AF506822], O/
HN/CHA/93 (vaccine strain of Cathay topotype) [67],
O/CHN/Mya98/33-P [Mya98 strain of SEA (South-East
Asia) topotype, JQ973889], and AF72 (vaccine strain of
Asia topotype) [68], Asia 1/Jiangsu/China/2005 (vaccine
strain of SEA topotype, EF149009), were preserved and
provided by OIE/National Foot-and-Mouth Disease Ref-
erence Laboratory of China.
Design and generation of vector-delivered miRNA plasmids
Four potential miRNAs were developed from the complete
IRES nucleotide sequence of FMDV O/HN/CHA/93
strain by using the miRNA design tool on Invitrogen’s
web site tool (http://rnaidesigner.invitrogen.com/rnaiex-
press/, Table 1). Oligonucleotides of the pre-miRNAs for-
ward and reverse strands were synthesized, annealed, and
cloned into pcDNA™6.2-GW/miR vector (Invitrogen)
under the control of PCMV and a transcriptional termin-
ation signal (TK pA), following the manufacturer’s proto-
col. These plasmids were designated pmiR153, pmiR220,
pmiR242, and pmiR276 (Figure 1A). For subcloning,
BamH I/Xho I digested products from pmiR276 were
inserted into pmiR242 at its Bgl II/Xho I sites, resulting in
pmiR242 + 276, a Dual-miRNA plasmid containing two
IRES-specific miRNA hairpin structures (Figure 1A). Then,
BamH I/Xho I fragments were digested from pmiR242 +
276 and cloned into pcDNA™6.2-GW/EmGFP-miR using a
BLOCK-iT™ Pol II miR RNAi Expression Vector Kit with
EmGFP (Invitrogen), to generate the recombinant plas-
mid pEGFP-miR242 + 276 expressing EGFP (Figure 1A).
The pcDNA6.2-GW/miR-negative control plasmid
(pmiR-NC) was provided by Invitrogen (Table 1) and
has no sequence homology with FMDV. All of these plas-
mids were confirmed by DNA sequencing.

Construction of reporter plasmids
To provide a reporting system for monitoring miRNA
function, three recombinant reporter plasmids pHN/
IRES-EGFP, pFC/IRES-EGFP, and pJS/IRES-EGFP were
constructed as follows. Briefly, IRES fragments of each
FMDV of vaccine strains of serotypes A, O, and Asia 1
were obtained using RT-PCR amplification with a sense
BamH I-adapter primer and an antisense primer, from
genomic RNAs extracted from BHK-21 cell-adapted
FMDV strains (O/HN/CHA/93, AF72, and Asia 1/
Jiangsu/China/2005). The EGFP sequence was ampli-
fied from the pEGFP-N1 vector (Clontech) using spe-
cific primers, and the amplification products of the
FMDV-IRES fusion with EGFP were constructed by
use of overlapping PCR (PrimeSTAR; TaKaRa). The PCR
products were then cloned into BamH I/Xho I-degested
pcDNA™6.2-GW/miR vector (Figure 1B). The sequences
of the inserts were confirmed by restriction enzyme ana-
lysis and DNA sequencing. The reporter plasmid p3D-
GFP used as a control for nonspecific effects was kindly
provided by Dr. Junzhen Du [41].

Cell transfection and miRNA silencing of EGFP expression
BHK-21 cells were seeded in 6-well plates (Nunc) within
24 h before transfection. Monolayers (about 90–95% con-
fluent) of BHK-21 cells were transiently co-transfected
with 5, 10, or 20 μg of each reporter plasmid and 5, 10, or
20 μg of each miRNA expression plasmid (including a

http://rnaidesigner.invitrogen.com/rnaiexpress/
http://rnaidesigner.invitrogen.com/rnaiexpress/
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mixture of pmiR242 and pmiR276, Bi-miRNA) or pmiR-
NC construct at an optimal ratio with 10 μL Lipofecta-
mine 2000 (Invitrogen), according to the manufacturer’s
instructions. The cells were examined by fluorescence
microscopy (Leica) for EGFP expression at 12, 24, 36,
and 48 h post-transfection.
Specific silencing of target genes to restrain EGFP ex-

pression was also examined by flow cytometry at 48 h
post-transfection as follows. The co-transfected cell
monolayers were dissociated with 200 μL of 0.25% tryp-
sin after washing with 1 × PBS two times, and resus-
pended in a total volume of 1 mL 1 × PBS/well. After
three washes with 1 × PBS, they were diluted to 1 ×
105–1 × 107 cells/mL in 1 × PBS for analysis by FACS-
Calibur (Becton-Dickinson), according the manufac-
turer’s protocol. The EGFP fluorescence was detected
by optimal excitation at 488 nm and emission at
508 nm, and the fluorescence intensity values were cal-
culated as the percentage of the cell populations.

Analysis of FMDV replication in Dual-miRNA-transformed
BHK-21 cells
To establish BHK-21 cells stably transformed with Dual-
miRNA, 10 μg pEGFP-miR242 + 276 plasmid was used
to transfect 95% confluent BHK-21 cells in 35-mm plates
using Lipofectamine 2000 as described above. At 4–6 h
post-transfection, the OptiMEM-I (Gibco) suspended
transfection complex was removed and the cells were
trypsinized, diluted 10-fold, and seeded on microtitre
plates (Greiner Bio-one). The cells were maintained
under DMEM containing 10% FBS and 3 μg/mL Blasti-
cidin (Invitrogen), by means of selection of resistant
forms. The selection medium was changed every 2–
3 days until the resultant BHK-21 cell cultures reached
100% confluency.
The stable cell monolayers were grown at a cell dens-

ity of 1–2 × 105/well in 6-well plates, and washed twice
with 1 × PBS. Viral suspensions titrated at 30–100 plaque
forming units (PFU) per 1 mL were used for virus chal-
lenge. A multiplicity of infection (MOI) of 5–50 PFU of
each virus per 200 μL in DMEM was added to each well.
After 1 h of adsorption, the inoculum was removed and
the cells were washed twice with DMEM. Then, 2 mL of
DMEM supplemented with 2% FBS and 1% antibiotic
(50 μg/mL Spectinomycin, Sigma) was added to each well
and the plates was incubated at 37°C with 5% CO2. Subse-
quently, supernatants were collected at designated time
points, and frozen at −80°C for later real-time quantitative
RT-PCR analysis as described previously [41].

Virus challenge assay in suckling mice
To investigate the anti-FMDV activity of vector-
delivered IRES-specific Dual-miRNA plasmid in vivo,
suckling mice were used for virus challenge assay as
previously described [31]. Four suckling mice in each
group were treated by subcutaneous injection in the
neck of mixtures of a total volume of 200 μL compris-
ing 50 or 100 LD50 of each virus in 50 μL 1 × PBS
mixed with 200 μg of pmiR242 + 276 plasmid in
150 μL 1 × PBS. Control mice were inoculated sub-
cutaneously in the neck with the same titer of FMDV
(positive control), or 1 × PBS (negative control). All
mice were monitored every 6 hours up to 7 days.

Establishment of FMDV-specific Dual-miRNA-transformed
clones of goat fibroblasts
Goat fibroblasts were plated in 60-mm diameter dishes
with 5 × 105 cells in 10% FBS-containing DMEM/F12
24 h before transfection. The cells were transfected
with 10 μg pmiR242 + 276 plasmid. After 4–6 h, the
transfection complex was removed, and 10% FBS in
DMEM/F12 with Blasticidin (3 μg/mL) was added to
the cells. Cells resistant to Blasticidin were selected for
one week, with medium changes about every 2–3 days.
Independent BlasticidinR clones were picked and ex-
panded in the presence of Blasticidin (2 μg/mL) to
avoid loss of the integrated DNAs. Cell stocks of IRES-
specific Dual-miRNA-transformed clones were identi-
fied by PCR assay, and kept frozen in liquid nitrogen
for further study.
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