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Abstract

Background: Dysregulated protein kinase signaling is involved in the pathogenesis of many chronic diseases.
However, the dysregulated signaling pathways critical to prion pathogenesis remain incompletely characterized.
Global analyses of signaling pathways may be useful to better characterize these pathways. We therefore set out to
develop such global assays. To this end, we used as a model cytoplasmic mutants of the cellular prion protein
(PrPC), which are toxic to N2a neuroblastoma cells. We tested the global assays for their sensitivity to detect
changes in signaling pathways in cells expressing cytoplasmic PrP mutants.

Methods: We developed a targeted proteomics (kinomics) approach using multiplex Western blots to identify
signaling pathways dysregulated in chronic neurological pathologies. We tested the approach for its potential
ability to detect signaling changes in N2a cells expressing cytoplasmic PrP mutants.

Results: Multiplex Western blots were designed to quantitate the expression levels of 137 protein kinases in a
single membrane and using only 1.2 mg of sample. The response of the blots was sensitive and linear to changes
of 6% in protein levels. Hierarchical and functional clustering of the relative expression levels identified an mTOR
signaling pathway as potentially dysregulated in N2a cells expressing cytoplasmic PrP. The mTOR signaling pathway
regulates global protein synthesis, which is inhibited in cells expressing cytoplasmic PrP. The levels of proteins
involved in the Akt1/p70S6K branch of mTOR signaling changed in synchrony with time of cytoplasmic PrP
expression. Three kinases in this pathway, Akt, p70S6K, and eIF4B were in their inactive states, as evaluated by
phosphorylation of their regulatory sites.

Conclusion: The results presented are consistent with the previously reported inhibition of Akt/p70S6K/eIF4B
signaling as mediating pathogenesis of cytoplasmic PrP. We conclude that the kinomic analyses are sensitive and
specific to detect signaling pathways dysregulated in a simple in vitro model of PrP pathogenesis.

Keywords: Prion disease, Cytoplasmic PrP, Neurotoxicity, Kinomics, Protein kinase, Multiplex Western blots, Akt,
p70S6K, eIF4B
Background
Dysregulation of protein kinase signaling is implicated in
the pathogenesis of many chronic diseases, including neu-
rodegenerative diseases such as Alzheimer’s and Parkinson’s
[1-3]. Not surprisingly, inhibitors of protein kinases are the
largest group of new cancer therapeutics [4]. Thirty-one
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such inhibitors are in clinical use, over 500 are involved in
approximately 2,700 clinical trials, and thousands more
are in various stages of pre-clinical development ([4-6]
and summary of [7]). Up to 30% of the research and devel-
opment budget of the pharmaceutical industry is esti-
mated to be invested towards protein kinase inhibitors
[8,9]. Considering the importance of protein kinases in
chronic disease, it would be desirable to have approaches
to identify protein kinase signaling pathways that are dys-
regulated in chronic diseases.
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Transmissible spongiform encephalopathies (TSEs), or
prion diseases, are a family of chronic neurodegenerative
diseases against which there are no preventative or thera-
peutic treatments [10]. Prion diseases are invariably lethal to
humans (kuru; Creutzfeldt-Jakob disease, CJD; Gerstmann-
Sträussler-Scheinker disease, GSS; fatal familial insomnia,
FFI), and other species such as cattle (bovine spongiform
encephalopathy, BSE), goat, sheep (scrapie), deer, elk
and moose (chronic wasting disease, CWD) [11,12]. The
characteristic neuropathology of prion diseases includes
gliosis, spongiform degeneration, and neuronal death. The
conversion of the cellular prion protein (PrPC) to an abnor-
mal conformation (PrPSc) is widely accepted to be essential
for pathogenesis. However, the molecular mechanisms
whereby such conversion eventually mediates the conse-
quent neurodegeneration are not yet fully understood.
Considering the critical roles that protein kinases play in

the pathogenesis of other chronic neurodegenerative dis-
eases, it is not surprising that they also participate in that
of prion diseases. For example, feline Gardner-Rasheed
sarcoma virus oncogene cellular homolog/Yamaguchi 73
and Esh avian sarcoma virus oncogene cellular homolog-
related novel protein kinase (Fyn) knockout mice died
faster than wild-type mice after scrapie infection [13].
Conversely, inhibition of protein kinase R-like endoplasmic
reticulum kinase (PERK) by the overexpression of growth
arrest and DNA damage-inducible protein 34 (GADD34)
prolonged survival of scrapie-infected mice [14]. The acti-
vation of vascular endothelial growth factor receptor
(VEGFR) inhibited death of cultured neurons treated
with the neurotoxic prion peptide PrP106-126 [15].
The Abelson leukemia oncogene cellular homolog (c-Abl)/
Hardy-Zuckerman 4 feline sarcoma virus oncogene cellular
homolog (c-Kit)/platelet-derived growth factor receptor
(PDGFR) inhibitor STI571 impaired scrapie neuroinvasion
and prolonged survival of mice after intraperitoneal infec-
tion [16]. Several other inhibitors of protein kinases regu-
lated PrPSc accumulation in scrapie-infected cultured
cells [17-22]. Unfortunately, the signaling pathways most
critical to prion disease pathogenesis have yet to be fully
identified.
Although prion diseases are characterized by the accu-

mulation of PrPSc, endogenous PrPC is also required for
pathogenesis [23-26]. PrPC is physiologically attached to
the outside of the plasma membrane via a glycosylpho-
sphatinositol (GPI) anchor [27,28]. PrPC may accumulate
in the cytoplasm as a result of inefficient endoplasmic
reticulum (ER)-targeting [29-31], ER-associated degrad-
ation [32-34], alternative translation initiation [35], or
persistent pre-emptive quality control [36]. Low levels of
cytoplasmic PrP have been observed in certain subpopu-
lations of neurons without overt neurodegeneration
[37-39], and the roles of cytoplasmic PrP in prion infec-
tion are disputed [40]. Nonetheless, the accumulation of
PrPC in the cytoplasm is often neurotoxic and has also
been considered as a possible neurodegeneration mech-
anism [41]. Mice expressing a truncated mutant of
PrPC lacking its N-terminal ER-targeting and C-terminal
GPI-membrane-anchoring signals (named cytoplasmic
PrP, or CyPrP) suffered from ataxia with gliosis and cere-
bellar degeneration [42]. The molecular mechanisms
of such neurodegeneration can be studied in culture
because CyPrP is also toxic to mouse N2a neuroblast-
oma cells [42].
The expression of CyPrP inhibits heat shock protein 70

(Hsp70) synthesis in stressed N2a cells [43]. Hsp70 over-
expression inhibits CyPrP-mediated toxicity, suggesting
that the inhibition of Hsp70 synthesis may contribute to
cell death [44,45]. Hsp70 promotes assembly and activa-
tion of the mammalian target of rapamycin complex 2
(mTORC2; consisting of mammalian target of rapamycin
[mTOR], rapamycin-insensitive companion of mTOR [ric-
tor], mammalian lethal with SEC13 protein 8 [mLST8]
and stress-activated protein kinase-interacting protein 1
[SIN1]), which then activates AKT8 virus oncogene cellu-
lar homolog (Akt)/ribosomal protein S6 kinase, 70 kilodal-
ton, polypeptide 1 (p70S6K)/eukaryotic initiation factor
4B (eIF4B) signaling [46,47]. Active eIF4B promotes pro-
tein synthesis, which is otherwise inhibited in cells ex-
pressing CyPrP [43,48].
Here, we describe the development of a multiplex Western

blot-based kinomics approach. Before embarking on the
analysis of prion infected animals, we used a simple
in vitro model to test the sensitivity of the approach to
identify dysregulated signaling pathways, accumulation of
enhanced green fluorescent protein-tagged cytoplasmic
PrP (CyPrPEGFP) in N2a cells. The approach identified the
Hsp70-regulated Akt/p70S6K/eIF4B signaling pathway
to be inhibited in cells expressing CyPrPEGFP, consistently
with previously known consequences of CyPrPEGFP ex-
pression [43]. The results support the ability of the
kinomics approach to detect signaling pathways dysregu-
lated in an in vitro model of prion pathogenesis. As de-
scribed in the companion manuscript, we have applied
this approach to an in vivo model, infection of mice with
mouse-adapted scrapie, to discover two signaling path-
ways dysregulated during prion disease pathogenesis.

Results
Multiplex Western blots quantitate the expression levels
of 137 protein kinases or regulatory subunits in only
1.2 mg of sample
We developed multiplex Western blots to analyze the
expression levels of protein kinases potentially involved
in prion pathogenesis. In these assays, protein extracts
are run in SDS-PAGE in a single well, transferred to a
membrane and probed with several pools of antibodies
in a multiplex Western blot apparatus.
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Mice and human kinomes are well conserved, allowing
the use of mice to identify and analyze protein kinases
of potential importance in human disease. We per-
formed an extensive literature search for human protein
kinases that may be involved in prion or other neurodegen-
erative diseases (Alzheimer’s, Parkinson’s, Huntington’s,
multiple sclerosis, or amyotrophic lateral sclerosis). We
also included protein kinases involved in cellular patholo-
gies associated with prion disease (neuronal apoptosis,
gliosis, glial activation, neuronal degeneration, or neuronal
survival). The search was restricted to protein kinases the
mouse orthologs of which were detected by antibodies
commercially available at the time. Following these cri-
teria, we selected 145 protein kinases, almost 30% of the
540 or 518 protein kinases in the mouse or human
kinomes, respectively (Additional file 1: Figure S1) [49,50].
The selected protein kinases are distributed among the
eight groups of protein kinases (AGC, CAMK, CMGC,
CK1, STE, TK, TKL, and atypical) [50]. The most under-
represented kinases in the selection are involved in muscle
contraction [myosin light chain kinases, MLCK], sperm-
atogenesis [testis specific serine/threonine kinases, TSSK],
or developmental processes [transforming growth factor-
beta receptor kinases, TGF-β]), which are not expected to
be critical in prion disease. We also included the eleven
cyclins or cyclin-like proteins (p25/p35, p39), which are
the activating subunits required for the activity of the
catalytic cyclin-dependent kinase (CDK) moiety of the ac-
tive CDK/cyclin heterodimers.
Our long-term objective was to analyze the kinomic

changes in brains of scrapie-infected mice (see compan-
ion paper). We therefore optimized the antibodies in
multiplex Western blots with mouse brain homogenate.
Antibodies specific for 122 protein kinases or regulatory
subunits (Additional file 2: Table S1) recognized their
cognate proteins in 1.2 mg of mouse brain homogenate
(200 μg loaded per linear cm). We selected the dilution
of each antibody that resulted in maximum signal intensity
and minimum background with no antibody saturation
(i.e., signal did not increase with increasing antibody con-
centrations). Antibodies specific for calcium/calmodulin-
dependent kinase 4 (CaMK4), mitogen-activated protein
kinase/extracellular signal-regulated kinase 5 (MEK5), and
Jun N-terminal kinase 2 (JNK2) detected two isoforms
each. Fifteen antibodies specific for proteins not recognized
in mouse brain homogenate were optimized in Western
blots using lysate from cultured 3T3 mouse fibroblasts
(200 μg loaded per linear cm). The remaining 19 anti-
bodies did not detect their cognate protein in mouse brain
homogenate or 3T3 cell lysates.
The multiplex Western blots were tested for reprodu-

cibility. Mouse brain homogenate resolved throughout a
single-well gel (1.2 mg; 200 μg per linear cm) was trans-
ferred, and 16 lanes were isolated in the membrane with a
multi-screen apparatus. The extracellular signal-regulated
kinases (Erk) 1 and 2 were probed in each of the 16 lanes.
The standard deviation between all 16 lanes was only 2.2%
or 1.0% of the average for Erk1 or Erk2, respectively, and
the range was 8% of the average for Erk1 or 4% of Erk2.
To minimize the variability and amount of sample re-

quired, multiple proteins were probed for in each lane of
a single membrane. The 137 proteins were grouped into
32 sets such that each set contained proteins of molecu-
lar weights clearly resolved in SDS-PAGE, detected by
antibodies of different species and recognized by the
antibodies giving the weakest or strongest signals (Sets 1
and 2, respectively). The membranes were probed first for
the 16 sets containing the proteins that resulted in the
lowest signal intensities (Figure 1), stripped (only once)
and reprobed for the remaining 16 sets. All 122 protein ki-
nases or regulatory subunits previously detected in standard
Western blots were detected in the multiplex blots. The
following protein kinases were detected in Set 1. Lane 1:
DAPK1 (not visible, 145 kDa), non-specific (green, 95 kDa),
Syk (not visible, 74 kDa), CaMK4β (not visible, 66 kDa),
CaMK4 (red, 63 kDa), CK1γ1 (green, 45 kDa), non-specific
(green, 42 kDa), cyclin D3 (red, 33 kDa), non-specific
(green, 32, 25 kDa). DAPK1, Syk, and CaMK4β are not
visible at the exposure shown. Lane 2: HER2 (not vis-
ible, 160 kDa), RSK1 (green, 85 kDa), AMPKα1 (not
visible, 64 kDa), CK1γ2 (not visible, 55 kDa), non-specific
(green, 45 kDa; red, 43, 40, 35 kDa; green, 25 kDa). HER2,
AMPKα1, and CK1γ2 are not visible at the exposure
shown. Lane 3: ROCK1 (not visible, 162 kDa), GRK2
(green, 80 kDa), p70S6K (red, 75 kDa), PCTAIRE3 (green,
48 kDa), non-specific (green, 40 kDa), cyclin H (not vis-
ible, 37 kDa), non-specific (green, 27 kDa). ROCK1 and
cyclin H are not visible at the exposure shown. Lane 4:
JAK1 (red, 125 kDa), MARK4 (not visible, 80 kDa), PLK1
(red, 66 kDa), non-specific (green, 65 kDa; red, 52 kDa),
MAPKAPK2 (not visible, 48 kDa), non-specific (red, 48,
45, 42, 40 kDa), p25/p35 (green, 35 kDa). MARK4 and
MAPKAPK2 are not visible at the exposure shown.
Lane 5: HER3 (red, 185 kDa), Raf1 (red, 71 kDa), Fms/
CSF1R (not visible, 50 kDa), cyclin D1 (red, 36 kDa).
Fms/CSF1R is not visible at the exposure shown. Lane 6:
CRIK (not visible, 220 kDa), MSK1 (not visible, 90 kDa),
non-specific band (green, 65, 45, 38 kDa). CRIK and MSK1
are not visible at the exposure shown. Lane 7: Non-
specific (green, 170 kDa), MLK3 (not visible, 90 kDa),
PDK1 (green, 60 kDa), CK1α (not visible, 42 kDa), CK2α1
(not visible, 40 kDa). MLK3, CK1α, and CK2α1 are not
visible at the exposure shown. Lane 8: Non-specific (green,
80 kDa), GRK5 (green, 65 kDa), non-specific (green, 52
kDa), p38α (not visible, 42 kDa), non-specific (green, 40
kDa). p38α is not visible at the exposure shown. Lane 9:
Non-specific (red, 250 kDa), PKD2 (not visible, 98 kDa),
PKCβ (red, 82 kDa), non-specific (red, 60 kDa), DLK
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Figure 1 Multiplex Western blots detect 122 selected protein kinases in only 1.2 mg of mouse brain. A single-well gel was loaded with
1.2 mg of mouse brain homogenate, and the proteins were resolved and transferred. A multi-screen apparatus isolated 16 individual lanes within
the area of homogeneously resolved protein and probed with optimized antibodies specific for 122 selected protein kinases. Molecular weights
in kDa are indicated on the left. Signal from secondary antibody labeled with Alexa Fluor 680 (red bands) and IRDye 800 (green bands) was detected
using a LI-COR Odyssey infrared imaging system. Yellow bands, red-labeled goat anti-mouse secondary antibody detected by green-labeled anti-goat
secondary antibody. Due to the wide range in expression levels, no single exposure of the blot can show all the bands. The bands that are visible in
each lane at the exposure shown are listed (from top to bottom) in the main text.
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(green, 51 kDa), CDK7 (not visible, 41 kDa). PKD2 and
CDK7 are not visible at the exposure shown. Lane 10:
TrkB (red, 130 kDa), Erk5 (green, 110 kDa), MST1 (not vis-
ible, 60 kDa), CK1ε (red, 44 kDa), non-specific (green, 34
kDa). MST1 is not visible at the exposure shown. Lane 11:
PKD1 (green, 112 kDa), IKKβ (not visible, 88 kDa), Akt3
(green, 60 kDa), MKK7 (not visible, 46 kDa), p38β (green,
42 kDa). IKKβ and MKK7 are not visible at the exposure
shown. Lane 12: EphA1 (not visible, 180 kDa), InsR (not
visible, 130 and 88 kDa), non-specific (green, 80 kDa), RIPK2
(not visible, 60 kDa), non-specific (green, 45, 35 kDa).
EphA1, InsR, and RIPK2 are not visible at the exposure
shown. Lane 13: ATM (not visible, ~300 kDa), PRK2
(not visible, 130 kDa) B-Raf (red, 90 kDa), non-
specific (red, 65 kDa), Myt1 (green, 63 kDa), non-
specific (red, 42, 35 kDa). ATM and PRK2 are not
visible at the exposure shown. Lane 14: c-Abl (not visible,
130 kDa), PAK3 (green, 65 kDa), CaMK1α (green, 42
kDa). c-Abl is not visible at the exposure shown. Lane 15:
PKD3 (not visible, 95 kDa), cyclin A (not visible, 60 kDa),
both are not visible at the exposure shown. Lane 16:
Non-specific (red, 120 kDa), Akt2 (green, 60 kDa), Lck
(not visible, 56 kDa). Lck is not visible at the exposure
shown. The following protein kinases were detected in
Set 2. Lane 1: ROCK2 (red, 183 kDa), Akt1 (red, 60 kDa),
SGK3 (green, 50 kDa), non-specific (green, 45 kDa), Erk2
(red, 42 kDa), non-specific (green, 36 kDa). Lane 2:
TNIK (red, 180 kDa), PKCε (red, 90 kDa), MEK2 (red,
45 kDa). Lane 3: EphA7 (not visible, 86 kDa), PKCδ (not
visible, 78 kDa), GSK3α (not visible, 50 kDa), all are not
visible at the exposure shown. Lane 4: Non-specific
(green, 140 kDa), DYRK1A (green, 90 kDa), IKKα (not
visible, 80 kDa), non-specific (green, 80 kDa), PKR (not
visible, 66 kDa), non-specific (green, 63 kDa), PKACβ
(green, 53 kDa), non-specific (green, 42 kDa). IKKα and
PKR are not visible at the exposure shown. Lane 5: TrkC
(not visible, 145 kDa), CaMK2γ (not visible, 60 kDa), cyc-
lin E1 (not visible, 55 kDa), PKACα (red, 42 kDa). TrkC,
CaMK2γ, and cyclin E1 are not visible at the exposure
shown. Lane 6: DDR1 (green, 109 kDa), PKCζ (red, 86
kDa), non-specific (green, 80 kDa), JNK2α2/β2 (red-partly
covered by adjacent non-specific band, 52 kDa), non-
specific (green, 44 kDa), JNK2α1/β1 (red, 42 kDa), MKK6
(green, 38 kDa), cyclin G1 (not visible, 29 kDa). cyclin G1
is not visible at the exposure shown, and JNK2α1/β1 due
to signal from adjacent non-specific band. Lane 7: TrkA
(not visible, 138 kDa), PKCι (not visible, 75 kDa), MEK5α
(red, 55 kDa), MEK5β (red, 45 kDa). TrkA and PKCι are
not visible at the exposure shown. Lane 8: PKCγ (red, 80
kDa), CaMK1δ (not visible, 44 kDa), non-specific (red, 45,
43 kDa). CaMK1δ is not visible at the exposure shown.
Lane 9: EphA3 (green, 140 kDa), non-specific (green, 120
kDa), CASK (red, 104 kDa), GSK3β (red, 46 kDa), p38γ
(green, 43 kDa), CDK5 (red, 30 kDa). Lane 10: ASK1 (not
visible, 155 kDa) and p39 (not visible, 40 kDa), both are
not visible at the exposure shown. Lane 11: MEKK1 (not
visible, 205 kDa), PINK1 (not visible, 66 kDa), Fyn (not
visible, 59 kDa), and p38δ (not visible, 43 kDa), all are not
visible at the exposure shown. Lane 12: EphA4 (red, 120
kDa), PAK1 (green, 68 kDa), Lkb1 (not visible, 55 kDa),
PKACγ (green, 40 kDa). Lkb1 is not visible at the expos-
ure shown. Lane 13: HER4 (not visible, 182 kDa), JAK2
(not visible, 122 kDa), PKG1 (not visible, 76 kDa), Src (not
visible, 60 kDa), Nek6 (green, 45 kDa). HER4, JAK2, PKG1,
and Src are not visible at the exposure shown. Lane 14:
SLK (red, 220 kDa), HGK (green, 140 kDa), PKCα (red,
82 kDa), LIMK1 (green, 70 kDa), Erk1 (green, 44 kDa),
non-specific (green, 40, 38 kDa). Lane 15: PRK1 (red,
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120 kDa), CaMK2β (green, 66 kDa), MEK1 (red, 45 kDa),
CDKL1 (not visible, 42 kDa). CDKL1 is not visible at the
exposure shown. Lane 16: Pyk2 (red, 115 kDa), CaMKK2
(not visible, 66 kDa), JNK1 (green, 50 kDa), non-specific
(green, 45 kDa). CaMKK2 is not visible at the exposure
shown.
Importantly, the multiplex Western blots allowed for

the identification and resolution of: (i) kinases yielding
high and low intensity signal (for example, Set 1; Akt3 in
lane 11 [green band at 60 kDa] vs. Akt2 in lane 16
[green band at 60 kDa]); (ii) kinases of similar molecular
weight in the same lanes (for example, Set 1, lane 3;
GRK2 [green band at 80 kDa] and p70S6K [red band at
75 kDa]); and (iii) as many as 5 protein kinases in a sin-
gle lane (for example, Set 2 lane 9: EphA3 [green band
at 140 kDa], CASK [red band at 104 kDa], GSK3β [red
band at 46 kDa], p38γ [green band at 43 kDa], CDK5
[red band at 30 kDa]; Set 2, lane 14; SLK [red band at
220 kDa], HGK [green band at 140 kDa], PKCα [red
band at 82 kDa], LIMK1 [green band at 70 kDa], Erk1
[green band at 44 kDa]) (Figure 1).
In summary, we developed multiplex Western blots to

quantitate 137 protein kinases or regulatory subunits in-
volved in neurological diseases or pathologies using only
1.2 mg of sample on a single membrane stripped only once.

Multiplex Western blots are sensitive and linear,
detecting incremental 6 (or 3)% changes in protein levels
We next tested the variability and linearity of the multi-
plex Western blots to increases in protein levels. Fifteen
of the 137 protein kinases or regulatory subunits were not
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protein kinases involved in any given signaling pathways
were next identified by literature and signal transduction
database searches. The different treatments used in the
clustering must affect the same signaling pathways differ-
ently, or affect different signaling pathways altogether, for
this approach to detect relevant clusters.
The neurotoxicity of CyPrP expression requires resi-

dues 116–156 [44]. We transfected N2a neuroblastoma
cells with CyPrP or two mutants truncated within this re-
gion, CyPrP124stop and CyPrP124-230. The expression of
CyPrP124stop is not toxic to N2a cells [56], and cells ex-
pressing CyPrP124-230 also are healthy, although toxicity
has not been quantitatively assessed. We expected cells
expressing CyPrP to affect different subsets of signaling
pathways than, or to differentially affect the same signaling
pathways as, those expressing CyPrP124stop or CyPrP124-
230. Such differentially affected signaling pathways might
be involved in CyPrP-mediated neurotoxicity.
The cytoplasmic PrP mutants were tagged with en-

hanced green fluorescent protein (EGFP) to evaluate
transfection efficiencies (Additional file 3: Figure S2), as
described previously [56]. Lysates collected from N2a cells
24 h after transfection with empty vector, used as control,
or vector encoding for CyPrPEGFP, CyPrPEGFP124stop, or
CyPrPEGFP124-230 were subjected to multiplex Western
blot (Figure 4, Additional file 4: Figure S3). The densito-
metric data from the 76 protein kinases detected in cells
expressing all mutants were normalized to the levels in
the cells transfected with the empty vector and then ana-
lyzed by unsupervised hierarchical clustering.
We first performed hierarchical clustering of the three

PrP mutants to evaluate any potential (unexpected) similar-
ities in changes in protein kinase expression. If two different
cytoplasmic PrP mutants resulted in identical changes in
protein kinase expression, the correlation would be 1; a cor-
relation of 0 indicates no relationship. The city-block dis-
tance metric correlation between CyPrPEGFP124stop and
CyPrPEGFP124-230 was 0.088, and between them and
CyPrPEGFP was 0. The lack of the correlation indicated that,
as expected, the different cytoplasmic PrP mutants dysregu-
lated different signaling pathways.
We next performed hierarchical clustering of protein ki-

nases by their expression levels in cells transfected with
each of the three cytoplasmic PrP mutants (Figure 5). The
log2 relative expression levels were classified in categories
each encompassing 18% changes in expression, three times
the 6% changes that the tests detect linearly (Figure 2). We
then identified the clusters that contained protein ki-
nases involved in any given signaling pathways. We
were most interested in clusters containing protein ki-
nases that were expressed to different levels in cells
expressing CyPrPEGFP than in cells expressing
CyPrPEGFP124stop or CyPrPEGFP124-230. We excluded
clusters containing protein kinases expressed to similar
levels in cells expressing empty vector or CyPrPEGFP. Five
clusters were identified following these criteria (Figure 5,
grey boxes). The mTOR signaling pathway includes the
mTOR complex 2 (mTORC2), which activates Akt,
PKCα, and SGK1, and the mTOR complex 1 (mTORC1),
which activates p70S6K and eukaryotic initiation factor
4E-binding protein (eIF4E-BP) [57]. Two clusters contain-
ing protein kinases most affected in cells expressing
CyPrPEGFP included all the mTORC substrates included in
the primary screens (PKCα, Akt, p70S6K) (Figure 5, i
and ii). PKCα and p70S6K clustered together because
their levels were lowest in cells expressing CyPrPEGFP. Ad-
enosine monophosphate-activated protein kinase catalytic
subunit alpha-1 (AMPKα1), which also regulates mTOR
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signaling, clustered together with Akt1 because their levels
were highest in cells expressing CyPrPEGFP. The mTOR
signaling pathway regulates protein synthesis, which is
inhibited in cells expressing CyPrPEGFP [43]. The results
from the primary kinomic screens therefore suggested that
CyPrP-mediated neurotoxicity in N2a cells might involve
dysregulated mTOR signaling.

The levels of proteins in the Akt1/p70S6K branch of the
mTOR signaling pathway decreased synchronously with
time of CyPrPEGFP expression
If the changes in the levels of the proteins involved in
mTOR signaling were the result of CyPrPEGFP expression,
then their levels would be expected to change in synchrony
with time of expression. We analyzed three sets of N2a
cell lysates prepared 12, 24 and 48 h after transfection
with the CyPrPEGFP-expressing construct in three inde-
pendent biological repeats. Cells expressing EGFP were
used as control.
The levels of EGFP increased from 12 to 48 h after

transfection (Figure 6). In contrast, those of CyPrPEGFP

changed little (slightly decreased) with time. Targeted
secondary analyses characterized the expression levels of
ten proteins involved in the mTOR signaling pathway.
Four of the antibodies used in these targeted multiplex
Western blots had already been used in the primary
screen (Akt1, p70S6K, PKCα, AMPKα1). New antibodies
were selected to analyze two protein kinases (mTOR and



Figure 5 Identification of the mTOR signaling pathway as
potentially dysregulated in cells expressing CyPrPEGFP.
Hierarchical clustering of 76 protein kinases using the normalized
and log2 transformed densitometric data from primary multiplex
Western blots. Red, higher expression levels; green, lower expression
levels. Each category encompasses changes in expression levels of
18% (0.23 in log2 scale), 3 times the 6% linear changes detected by
the technique. Grey boxes indicate clusters of protein kinases most
differentially expressed in cells expressing CyPrPEGFP. The clusters (i)
and (ii) consist of PKCα, p70S6K, Akt1, and AMPKα1 involved in
mTOR signaling. The protein kinases highlighted in Figure 4, p70S6K
and PKACβ, are indicated by (●).
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mitogen-activated protein kinase-interacting kinase 1
[Mnk1]) and four downstream substrates (eIF4B, eukaryotic
initiation factor 4E [eIF4E], ribosomal protein S6 [S6], and
eukaryotic elongation factor 2 [eEF2]), which were not
included in the primary screens. These antibodies were
optimized as those used in the primary screens. The nor-
malized expression levels were grouped into categories
spanning 20% changes, slightly above 3 times the 6%
changes that the tests detect linearly (Figure 2).
The levels of Akt1, mTOR, p70S6K, eEF2, and PKCα

were higher at 12 h in all three samples of cells express-
ing CyPrPEGFP than in those of cells expressing EGFP
(Figure 7). At 24 h, in contrast, the levels of all proteins
analyzed were consistently lower than (or at the most,
equal to) those in cells expressing EGFP. Little change
Figure 6 Levels of CyPrPEGFP and EGFP in the samples used for
targeted secondary and tertiary analyses. Western blots of lysates
from three biological repeats expressing CyPrPEGFP (A) or EGFP (B)
for 12, 24, and 48 h. CyPrPEGFP (48 kDa) was detected by α-PrP and
α-GFP primary antibodies, and EGFP (28 kDa) by α-GFP antibody
only. Different exposures are shown for (A) and (B).



Figure 7 Lower levels of mTOR signaling proteins in cells expressing CyPrPEGFP for 24 and 48 h. Targeted secondary analyses of mTOR
signaling in N2a cells expressing CyPrPEGFP for 12, 24, or 48 h. The normalized expression levels of 10 protein kinases or substrates in each of the
three biological repeats are shown by individual color bars. Each color-coded category encompasses 20% changes in the levels of expression,
greater than 3 times the 6% linear changes detected by the technique. Proteins indicated by dashed lines were not analyzed. The expression
levels of mTORC1 and mTORC2 represent the levels of mTOR.
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was observed from 24 to 48 h, with exception to PKCα,
eIF4E, and eEF2, which were expressed to their highest
levels in the cells expressing the lowest levels of CyPrPEGFP.
We performed a time-course analysis of the proteins
in the Akt1/p70S6K branch of the mTOR signaling path-
way (Figure 8). Akt1, mTOR, p70S6K, and eEF2, in the
Figure 8 The levels of proteins in the Akt1/p70S6K branch of the mTOR
normalized expression levels of Akt1, mTOR, p70S6K, S6, eIF4B, and eEF2 in N2
Akt1/p70S6K branch, were expressed to higher levels in
cells expressing CyPrPEGFP than in cells expressing EGFP
at 12 h, and then to lower levels at 24 or 48 h (except for
Akt at 24 h). The levels of the other p70S6K substrates
tested, S6 and eIF4B, also decreased with time. In sum-
mary, the levels of the proteins involved in Akt1/p70S6K
signaling pathway change coordinately. Time-course analyses of the
a cells expressing CyPrPEGFP for 12, 24, or 48 h. Mean ± SD; n = 3.
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signaling decreased synchronously after 12 h of CyPrPEGFP

expression.

Inhibition of Hsp70-regulated Akt/p70S6K/eIF4B signaling
in cells expressing CyPrPEGFP

To test whether Akt1/p70S6K signaling was dysregulated
in cells expressing CyPrPEGFP, we characterized the acti-
vation states of the ten proteins previously tested. We
optimized phosphorylation-specific antibodies for the
sites directly phosphorylated by the relevant upstream
protein kinases. Akt is activated by phosphorylation on
S473 by mTORC2 and on T308 by 3-phosphoinositide-
dependent protein kinase 1 (PDK1) [58,59]. The synthe-
sis of Hsp70, which activates mTORC2, is inhibited in
cells expressing CyPrP [43,46]. We focused on Hsp70-
regulated phosphorylation of Akt1. No available anti-
body was specific for the phosphorylation at the
activation-specific site S473 on Akt1 only. We used an
antibody that detects S473 phosphorylation on all Akt
isoforms (Akt1, 2, and 3). Although mTOR phosphoryl-
ation is not required for mTORC1 activation, active
mTORC1 typically contains S2448 phosphorylated
mTOR [60]. We included an antibody specific for this
phosphorylation (P-S2448). We also included anti-
bodies specific for the phosphorylation at activation-
specific sites (activating phosphorylation) on AMPKα
(P-T172), Mnk1 (P-T197/202), PKCα (P-S657), p70S6K
(P-T389), S6 (P-S235/236; P-S240/244), eIF4B (P-S422)
and eIF4E (P-S209), or the inhibition-specific site (inhibi-
tory phosphorylation) on eEF2 (P-T56) [61-67]. The phos-
phorylation level of Akt (P-S473) at 12 h could be tested
in only two of the three independent biological replicates
due to limiting sample.
Active mTORC2 activates Akt by phosphorylation on

S473, which then activates mTORC1 which, in turn, ac-
tivates p70S6K by phosphorylation on T389. Active
p70S6K activates eIF4B by phosphorylation on S422.
The levels of activated Akt (P-S473), p70S6K (P-T389),
and eIF4B (P-S422) were consistently lower in cells ex-
pressing CyPrPEGFP than in cells expressing EGFP at all
times (Figure 9). Phosphorylated mTOR (P-S2448) levels
were also lower, or equal, in cells expressing CyPrPEGFP

than in those expressing EGFP, except for one sample at
48 h. We performed nonlinear regression analyses (the
regressions are non-linear) to test whether the changing
phosphorylation levels of any proteins involved in the
mTOR signaling pathway were different in cells expressing
CyPrPEGFP or EGFP. The levels of activated Akt (P-S473),
p70S6K (P-T389), and eIF4B (P-S422) were different in
cells expressing CyPrPEGFP or EGFP (replicates test for
lack-of-fit; Akt [P-S473], P = 0.02; p70S6K [P-T389], P =
0.001; eIF4B [P-S422], P = 0.0002) (Figure 10). In conclu-
sion, Akt/p70S6K/eIF4B signaling is inhibited in cells ex-
pressing CyPrPEGFP.
Discussion
Here we describe the development of kinomic analyses
aimed at identifying signaling pathways dysregulated
during chronic pathologies. We designed and optimized
multiplex Western blots to quantitate the expression of
137 protein kinases (including regulatory subunits) in a
single membrane, and using only 1.2 mg of sample.
These multiplex Western blots were reproducible, sensi-
tive and linear, detecting 6% incremental changes in pro-
tein level. We tested the multiplex Western blots in a
kinomic screen of an in vitro model of prion pathogenesis,
N2a neuroblastoma cells expressing cytoplasmic PrP mu-
tants. The mTOR signaling pathway was identified in the
primary screen. The levels of proteins involved in the Akt1/
p70S6K branch of the mTOR signaling pathway changed
synchronously and were phosphorylated or unphosphory-
lated to their inhibited states in CyPrPEGFP expressing cells.
Hsp70 overexpression inhibits CyPrP-mediated toxicity

and the synthesis of Hsp70 is inhibited in cells expressing
CyPrPEGFP [43-45]. The inhibition of Hsp70-regulated
Akt/p70S6K/eIF4B signaling in cells expressing CyPrPEGFP

is fully consistent with those previous data [43-45], sup-
porting the ability of the approach to detect kinomic
changes. Inhibition of Hsp70-activated Akt/p70S6K/eIF4B
signaling may also be important in CyPrP pathogenesis.
Depletion of eIF4B by RNA interference promotes cell
death [48]. Hsp70 overexpression protects against this cell
death in part by promoting the expression of the anti-
apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) [68,69].
Active eIF4B is also required for the translation of Bcl-2
(and other proteins translated from mRNAs with highly
structured 5’ untranslated regions). CyPrP may promote
cell death by inhibiting Bcl-2 synthesis through the Akt/
p70S6K/eIF4B pathway. Overexpression of Akt1, mTOR,
and p70S6K in cells expressing CyPrPEGFP for 12 h may
well be an ultimately fruitless early attempt to overcome
neurotoxic inhibition of Akt/p70S6K/eIF4B signaling.
Active eIF4B promotes translation initiation by stimu-

lating the helicase activity of eukaryotic initiation factor
4A (eIF4A) and promoting ribosome binding [70-73].
Global protein synthesis is inhibited in cells expressing
CyPrPEGFP [43]. Previous studies have indicated that
eukaryotic initiation factor 2 alpha (eIF2α) was inhibited
in cells expressing CyPrPEGFP in a protein kinase R
(PKR)-dependent manner [43]. The inhibition of eIF4B
also inhibits protein synthesis [48], suggesting that the
inhibition of Akt/p70S6K/eIF4B signaling may too con-
tribute to the inhibition of protein synthesis in cells ex-
pressing CyPrPEGFP.
The kinomics approach we describe here is dependent

on the primary screens to first identify signaling path-
ways of potential interest. The protein kinases for the
primary screens were selected based on their potential
roles in prion or other neurodegenerative diseases, or in



Figure 9 Lower levels of activating phosphorylation of Akt, p70S6K, and eIF4B in cells expressing CyPrPEGFP. Targeted tertiary analyses of
mTOR signaling in N2a cells expressing CyPrPEGFP for 12, 24, or 48 h. The normalized absolute phosphorylation levels of 10 protein kinases or
substrates in each of the three biological repeats are shown by the color bars. The phosphorylation sites evaluated are indicated above each
protein. Proteins indicated by dashed lines were not analyzed. Due to limited sample, the levels of p-Akt at 12 h were measured only in two of
the three biological repeats. The color bars for S6 indicate the normalized phosphorylation levels of S235/236 (top) and S240/244 (bottom).
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pathologies associated with prion disease. However, the
screens are extensive, evaluating almost one-third of the
protein kinases in the mouse (or human) genome. Other
kinomic analyses [15] used peptide arrays to identify dif-
ferent signaling pathways induced by PrPC stimulation
with a PrP antibody (6H4) or a small peptide (PrP106-
126). These assays are limited by the availability of the
peptide arrays and the different activities of several ki-
nases on small peptide or protein substrates. Other pre-
vious studies have only analyzed a limited number of
protein kinases (c-Abl, Src, Fyn, Yes, Lck, Lyn, Syk, Akt,
mTOR, p70S6K, CaMK2α, CDK5, PYK2, PKA, PKC,
PKR, PERK, MEK1/2 and MAPKs), based mostly on
their hypothesized involvement in prion disease patho-
genesis [13,14,17-20,22,74-88]. Such analyses provide in-
formation about the selected signaling pathways only.
High-throughput reverse-phase protein arrays [89] can
also be used to analyze changes in protein kinase levels.
This approach requires highly specific antibodies, how-
ever, limiting the number of protein kinases that can be
analyzed. The antibodies included in the experiments
described here are also specific. Nonetheless, multiplex
Western blots discriminate specific from non-specific
binding (by molecular weight), tolerating some level of
cross-reactivity. More proteins can therefore be analyzed
by the multiplex Western blot approach than by protein
arrays.
High-throughput gene arrays have identified hundreds

of genes expressed differentially during, and a number of
cellular processes affected by, prion diseases [90-102].
However, only 518 or 540 of the approximately 30,000
genes in the human or mouse genomes encode for
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protein kinases. Hierarchical clustering of gene array
data thus results in very few clusters with multiple pro-
tein kinases, making it difficult to identify any particular
signaling pathway. Moreover, protein kinases are exten-
sively regulated post-transcriptionally and therefore their
mRNA and protein levels often do not correspond [103].
Global analyses of changes in microRNA (miRNA) which
may post-transcriptionally regulate as many as 60% of hu-
man genes [104], have also been performed during prion
disease pathogenesis, and have identified potentially dys-
regulated signaling pathways [100,105,106]. However, the
biological roles of most miRNAs have yet to be character-
ized, which makes it difficult to interpret the effects medi-
ated by many of the identified miRNAs.
The kinomics approach described here of course has

limitations, too. First, the primary screens identify sig-
naling pathways of potential interest using hierarchical
clustering. The identification of potentially dysregulated
pathways requires multiple kinases in the pathway to be
included in the primary screen. The 137 protein kinases
selected for the screens are involved in most of the best
characterized signaling pathways. The approach is thus
unable to detect signaling pathways that are less well
characterized, or for which only one or very few kinases
are included in the primary screen. Protein kinases are
also extensively regulated post-translationally. Dysregula-
tion of signaling pathways during chronic conditions
often result in, or is the result of, changes in expression
levels of involved proteins. We therefore screened for
expression levels in the primary analysis. Consequently,
these screens cannot detect pathways that are only af-
fected post-translationally (unless the posttranslational
regulation is at the level of degradation). The described
approach is also unable to differentiate signaling path-
ways dysregulated as a result of disease from those crit-
ical in the pathogenesis. Previous studies have screened
protein kinase inhibitors and identified STI571 (an in-
hibitor of c-Abl, c-Kit, and PDGFR kinases) as promoting
PrPSc degradation [20]. The signaling pathway identified
by the kinomics approach can be tested with siRNA,
knockouts, or specific inhibitors, to identify whether it is
involved in CyPrP pathogenesis, or dysregulated as a re-
sult of it.

Conclusions
We used N2a cells expressing cytoplasmic PrP mutants
to test the sensitivity and specificity of kinomics analyses
developed to detect the dysregulation of specific signal-
ing pathways. The assays identified a dysregulated sig-
naling pathway which is fully consistent with previous
data. We conclude that the kinomics analyses are sensi-
tive and specific enough to detect signaling pathways
dysregulated in a simple in vitro model of prion patho-
genesis. We have now used these analyses to test critical
signaling pathways dysregulated in brains of prion-
infected animals (see companion paper).
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Materials and methods
Cloning, cell culture and transfections
Cloning of CyPrPEGFP, CyPrPEGFP124stop and CyPrPEGFP124-
230 in pCEP4β (Life Technologies Inc., Carlsbad, California,
USA) was previously described [56]. Mouse N2a neuro-
blastoma cells were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10%
fetal bovine serum (Wisent, St. Bruno, Quebec, Canada).
Transfections were carried out using Exgen (MBI
Fermentas, Burlington, Ontario, Canada) or GeneCellin
(BioCellChallenge, Toulon, France), according to the man-
ufacturer’s protocol. To evaluate transfection efficiency,
cells were harvested with trypsin and EDTA and centri-
fuged for 5 min at 500 × g. Following a wash with PBS,
cells were fixed with 4% paraformaldehyde in 4% sucrose
for 20 min at room temperature, washed with PBS and an-
alyzed on a cytometer for GFP expression.
Mouse 3T3 cells were propagated in DMEM (Life

Technologies Inc.) supplemented with 5% fetal bovine
serum (FBS; PAA Laboratories GmbH, Pasching, Austria),
50 U/mL penicillin and 50 U/mL streptomycin (Life Tech-
nologies Inc.), at 37°C in 5% CO2.

Cell lysis and brain homogenization
Mouse 3T3 and transfected N2a cells were cultured to
approximately 85% confluency on 8 × 10 cm tissue cul-
ture dishes. All subsequent procedures were performed on
ice or at 4°C using reagents pre-chilled to 4°C. Each dish
was washed twice with 2 mL of phosphate-buffered saline
(PBS; 150 mM NaCl, 1 mM KH2PO4, 3 mM Na2HPO4,
pH 7.4). Cells were collected by scraping into freshly
prepared lysis buffer (0.2 mL per dish) (20 mM MOPS
[pH 7.0)], 2 mM EGTA, 5 mM EDTA, 1% Nonidet
P-40, 0.001% phosphatase inhibitor cocktail [Pierce,
Rockford, Illinois, USA], 0.002% protease inhibitor
cocktail [Sigma-Aldrich, St. Louis, Missouri, USA], 1
mM DTT, pH 7.2). The lysates were passed twice
through a 20 gauge needle, sonicated five times for 20 s
intervals at 88 W output (XL-2020; Misonix, Farming-
dale, New York, USA), and pre-cleared at 14,000 × g for
30 min (JA.14 rotor, Avanti J-E centrifuge; Beckman/
Coulter, Brea, California, USA). Approximately 1 mL vol-
umes of supernatant were aliquoted, snap frozen in liquid
nitrogen, and immediately stored at −80°C (3T3 lysates)
or shipped on dry ice and then stored at −80°C (N2a
lysates).
Brain homogenates were prepared using snap-frozen

mouse brains stored at −80°C. Weighed brains were ho-
mogenized in 3 mL freshly prepared lysis buffer per 250 mg
of brain, using a tissue homogenizer (TH; OMNI Inter-
national, Kennesaw, Georgia, USA) with disposable tips
(hard tissue OMNI tip; OMNI International). Homogenates
were then sonicated, centrifuged, and stored as described
for cell lysates.
Protein quantitation
Protein concentration was determined by Bradford’s
assay (Bio-Rad Laboratories, Hercules, California, USA).
Protein concentration and equal sample loading were
then verified by preliminary sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE). Brain ho-
mogenates or cell lysates were mixed with equal volumes
of 2X SDS loading buffer (125 mM Tris-Cl [pH 6.8], 20%
glycerol, 4% SDS, 0.005% bromophenol blue, 260 mM
DTT), denatured at 100°C for 10 min, and loaded onto
10- or 15-well 8% SDS-PAGE gels (Mini-PROTEAN;
Bio-Rad Laboratories) (running buffer; 190 mM gly-
cine, 24.8 mM Tris, 0.1% SDS, pH 8.3). Proteins were run
through the stacking gel at 50 V, and then resolved for
90 min at 100 V, always at room temperature. Proteins were
stained with Coomassie blue G-250 (Bio-Safe Coomassie;
Bio-Rad Laboratories) according to the manufacturer’s in-
structions. Signal from Coomassie-stained protein was de-
tected using an Odyssey infrared imaging system (LI-COR
Biosciences, Lincoln, Nebraska, USA) in the 700 nm chan-
nel and quantitated using Odyssey 3.0 software (LI-COR
Biosciences). Protein amounts were calculated relative to a
pre-quantitated standard brain homogenate.

Western blot
All procedures were performed at room temperature
and all washes used gentle rocking. Proteins were dena-
tured by incubating for 10 min at 100°C with an equal
volume of 2X, or one-fifth volume of 6X (375 mM Tris-
Cl [pH 6.8], 60% glycerol, 12% SDS, 0.015% bromophe-
nol blue, 780 mM DTT), SDS-PAGE loading buffer.
For Western blots of PrP and EGFP, lysates from N2a

cells transfected with empty vector (100 μg), or vector en-
coding EGFP (50 μg), CyPrPEGFP (200 μg), CyPrPEGFP124-
stop (100 μg), or CyPrPEGFP124-230 (100 μg) were loaded
onto 15-well 10% SDS-PAGE gels (Mini-PROTEAN;
Bio-Rad Laboratories). Proteins were resolved as described
for protein quantitation and the gels were then equilibrated
in transfer buffer (384 mM glycine, 49.6 mM Tris, 20%
methanol, 0.01% SDS) [107] for 30 min. Meanwhile, poly-
vinylidene fluoride (PVDF) membranes (Immuno-Blot, 0.2
μm; Bio-Rad Laboratories) were soaked in methanol for 2
min, and equilibrated in transfer buffer for 20 min. For
each membrane, four sheets of filter paper were equili-
brated in transfer buffer for 5 min. Transfer cassettes
were loaded into a transfer tank (TE22; Hoefer, Holliston,
Massachusetts, USA) filled with transfer buffer at 4°C. Pro-
teins were transferred for 23 h at 4°C; 1 h at 54 mA, 4 h at
189 mA, 8 h at 270 mA and finally 10 h at 378 mA. The
temperature was maintained at 4°C by heat exchange
(Isotemp 1016D; Thermo Fisher Scientific, Waltham,
Massachusetts, USA) and gentle stirring of the transfer
buffer. After transfer, membranes were dried, soaked in
methanol for 2 min and then washed twice for 10 min
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each in Tris-buffered saline (TBS; 140 mM NaCl, 3 mM
KCl, 25 mM Tris, pH 7.6). Membranes were blocked for 1
h in 10% blocking buffer (Sigma-Aldrich) then simultan-
eously probed for 18 h at 4°C with primary antibodies
specific for GFP (a kind gift from Dr. Luc Berthiaume,
University of Alberta) and PrP (clone 3F4; a kind gift from
Dr. Deborah McKenzie, University of Alberta) diluted to
1:10,000 and 1:2,500, respectively, in 10% blocking buffer
with 0.1% Tween-20. Afterward, membranes were washed
in TBS with 0.1% Tween-20 (TBST) once for 5 min
and thrice for 10 min each. Membranes were incu-
bated with donkey anti-mouse IRDye 680- and donkey
anti-rabbit IRDye 800-labeled secondary antibodies
(LI-COR Biosciences), diluted to 1:20,000 in 10% block-
ing buffer with 0.1% Tween-20 and 0.01% SDS for 1 h.
Membranes were washed thrice in TBST for 10 min each
and once in TBS for 5 min. Signal from pre-stained pro-
tein standards and IRDye 680-labeled secondary antibody
was detected at 700 nm, and from IRDye 800-labeled sec-
ondary antibody at 800 nm, using an Odyssey infrared im-
aging system. Signal was quantitated using Odyssey 3.0
software. To evaluate the amounts of protein transferred
to the membranes, the membranes were stained with
Coomassie blue R-250 (Bio-Rad Laboratories) for 10 min
and destained with 40% methanol in 10% glacial acetic
acid thrice for 10 min each, or until excess stain was re-
moved. Signal from Coomassie-stained protein was de-
tected at 700 nm using the Odyssey and quantitated using
Odyssey 3.0 software.
For multiplex Western blot spiking experiments, 85 μg

(for p39 and TrkB) or 200 μg (for PKCγ, CaMK4, CDK1,
CHK1, RSK2, CDK4, PDGFRβ, BTK and PKCθ) of total
protein was loaded per linear cm of four- or five-well 8%
SDS-PAGE gels. For primary multiplex Western blots of
N2a cells expressing cytoplasmic PrP mutants, 150 μg of
protein was loaded per linear cm of single-well 8% SDS-
PAGE gels; 8 or 10% gels, as appropriate for the target
MW, loaded with 150, 300, or 450 μg of protein per lin-
ear cm were used for targeted analyses. Similar signal in-
tensities were reached using 150 μg of N2a or 200 μg of
brain lysates (Additional file 4: Figure S3). Proteins were
resolved and transferred to PVDF membranes as de-
scribed for Western blots of EGFP or CyPrPEGFP. Mem-
branes were blocked for 1 h in 10% blocking buffer
(Sigma-Aldrich) for protein-specific antibodies, or in 3%
BSA (Rockland, Gilbertsville, Pennsylvania, USA) for
phosphorylation-specific antibodies. Membranes were
rinsed briefly with TBS and positioned within a 20-lane
multi-screen apparatus (Bio-Rad Laboratories, Hercules,
California, USA). Meanwhile, combinations of primary
antibodies were diluted in 2.6 mL (primary blots) or
3.9 mL (spiked, secondary and tertiary blots) of 10%
blocking buffer or 3% BSA with 0.1% Tween-20. Six
hundred microliters of antibody solutions were loaded in
each lane of the multi-screen apparatus and incubated
for 18 h at 4°C. Membranes were then briefly washed
once with TBST within the multi-screen apparatus, re-
moved from the apparatus and further washed in TBST,
once for 5 min and four times for 15 min each. Mem-
branes were incubated with secondary antibody diluted
to 1:20,000 in 10% blocking buffer or 3% BSA with 0.1%
Tween-20 and 0.01% SDS for 1 h. Mouse monoclonal
primary antibodies were detected with goat anti-mouse
Alexa Fluor (Molecular Probes, Eugene, Oregon, USA)
or IRDye (LI-COR Biosciences) 680-labeled secondary
antibody. Rabbit or goat polyclonal primary antibodies
were detected with goat anti-rabbit or donkey anti-goat
(LI-COR Biosciences or Rockland) IRDye 800-labeled
secondary antibodies, respectively. Signal from pre-
stained protein standards and Alexa Fluor or IRDye 680-
labeled secondary antibody was detected at 700 nm, and
from IRDye 800-labeled secondary antibody at 800 nm,
using the Odyssey system. Signal was quantitated using
Odyssey 3.0 software.
Membranes with protein from cells expressing cytoplas-

mic PrP mutants were always stripped (only once) in par-
allel with the membranes from the control cells, under
conditions that minimize protein loss [108]. Membranes
were washed with a mild stripping buffer (25 mM glycine,
1% SDS, pH 2.0) once for 5 min and twice for 15 min
each. Membranes were then washed with TBST once and
TBS once for 5 min each. If necessary, they were further
washed with mild stripping buffer for a maximum of six
times of 15 min each. If still necessary, membranes were
then incubated with harsh stripping buffer (50 mM Tris-Cl
[pH 7.0], 2% SDS, 50 mM DTT) [109] for 15 min at 65°C
with gentle rocking. Membranes were then washed with
TBST once for 5 min and TBS twice for 10 min each.
Stripped membranes were blocked and reprobed with an-
other set of primary antibodies as described. No mem-
brane was stripped more than once.

Hierarchical cluster analysis
The integrated intensity levels (pixel volume) of proteins
in cells expressing cytoplasmic PrP mutants were nor-
malized to levels in cells expressing empty vector, and
then log2 transformed to avoid bias by proteins with ex-
treme changes in expression. Hierarchical clustering was
performed with Gene Cluster 3.0 [110] using city-block
distance (similarity metric) and complete linkage (clus-
tering method). Java Treeview was used to present the
resulting clusters [111].

Time-course data normalization
To evaluate the changes in protein and phosphorylation
levels in cells actually expressing CyPrPEGFP, the raw levels
(in the population containing expressing and non-expressing
cells) were corrected for differences in transfection efficiency
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in each biological replicate and then expressed as relative
to the levels in cells transfected with the EGFP expression
construct using Equation 1.

Gi þ Pi−Gi
TE

� �

Gi
ð1Þ

Where,
Gi: pixel volume in lysates from cells expressing EGFP

in replicate “i”,
Pi: pixel volume in lysates from cells expressing

CyPrPEGFP in replicate “i”, and
TE: transfection efficiency.
The differences in the integrated intensity levels (pixel

volume) in the populations of cells transfected with the
vectors expressing CyPrPEGFP or EGFP from the same bio-
logical replicate were corrected by the fraction of cells ac-
tually expressing the recombinant proteins (transfection
efficiency, 47, 45 and 34% for replicates 1, 2 and 3, respect-
ively), which are the cells in which the expressed proteins
directly induce changes in signaling, and added to the basal
levels (those in the population of cells transfected with the
vector expressing EGFP). The corrected levels in cells ex-
pressing CyPrPEGFP were then normalized to the levels in
cells expressing EGFP in the same biological replicate.

Statistical analyses
All data was analyzed using Prism (Version 5.0f; GraphPad
Software Inc., La Jolla, California, USA). For nonlinear re-
gression analyses, curves of the normalized phosphoryl-
ation levels were compared to a straight line (y-intercept =
1; slope = 0), representing the levels in cells expressing
EGFP, using a replicates test for lack-of-fit.

Additional files

Additional file 1: Figure S1. The protein kinases selected for primary
multiplex Western blots represent all major groups of the human protein
kinases. The human kinome, the protein kinase complement of the
human genome, clustered by protein kinase domain homology
(modified from Manning et al., 2002 [50]) The 145 protein kinases initially
selected for analyses are outlined in red. ATM, which is a member of the
atypical group of protein kinases, does not cluster with any group, and is
therefore not presented.

Additional file 2: Table S1. Accession number and antibody source for
each of the 127 protein kinases and 10 regulatory subunits optimized for
analyses in primary multiplex Western blots. One hundred and twenty-two
protein kinases or regulatory subunits included in the multiplex Western
blots were detected in 200 μg of mouse brain homogenate per linear well
cm. The other 15 (indicated by the asterisks) were detected in multiplex
Western blots using an equivalent amount of cell lysate from cycling 3T3
mouse fibroblasts. The human accession number and source of the
antibody used for each protein are indicated.

Additional file 3: Figure S2. Western blot for cytoplasmic PrP mutants
in N2a cells. Protein from N2a cell lysates transfected with empty vector,
or vector encoding CyPrPEGFP (CyPrP), CyPrPEGFP124stop (124stop), or
CyPrPEGFP124-230 (124-230) was resolved, transferred to membranes and
probed with α-PrP (which recognizes an epitope in residues 109-112) and
α-GFP antibodies. Molecular weights in kDa are indicated to the right.
The arrowheads to the left indicate the molecular weight of CyPrPEGFP

(48 kDa), CyPrPEGFP124stop (38 kDa), and CyPrPEGFP 124-230 (34 kDa). Asterisks
indicate specific bands. CyPrPEGFP and CyPrPEGFP124stop were detected
by α-PrP and α-GFP antibodies, CyPrPEGFP 124-230, which does not have
the epitope recognized by the α-PrP antibody, was recognized only by
the α-GFP antibody. A background band with a molecular weight close
to that of CyPrPEGFP cross-reacted with the α-GFP antibody. Membranes
were stained with Coomassie to analyze total protein. Dashed lines separate
different blots.

Additional file 4: Figure S3. Frequency distribution of signal intensity
in N2a and mouse brain lysates. Signal for each protein kinase detected
was quantitated after multiplex Western blots with 200 μg of mouse
brain or 150 μg of N2a cell lysate per linear centimeter of gel. The
number of protein kinases yielding signal intensities in each range is
plotted. The frequency distribution of the signal intensity in both lysates
is highly similar.
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