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and analysis of multiple specificities expressed by
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Abstract

Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for
antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine
leukocyte antigens (SLA), thus play a crucial role in the process that leads to elimination of viruses such as swine
influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for
a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets.

Findings: Four SwIV derived peptides were identified as T cell epitopes using fluorescent influenza:SLA tetramers. In
addition, multiple CTL specificities were analyzed using peptide sequence substitutions in two of the four epitope
candidates analyzed. Interestingly both conserved and substituted peptides were found to stain the CD4−CD8+ T
cell subsets indicating multiple specificities.

Conclusions: This study describes a timely and cost-effective approach for viral epitope identification in livestock
animals. Analysis of T cell subsets showed multiple specificities suggesting SLA-bound epitope recognition of
different conformations.
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Background
During the last two centuries influenza virus has con-
stantly challenged animal and human health by seasonal
outbreaks, most recently illustrated in the emerging 2009
pandemic H1N1 virus which, according to the World
Health Organization (WHO), lead to more than 18.000
human deaths. Swine influenza virus (SwIV) is a common
pathogen involved in the porcine respiratory disease
complex. Beyond the veterinary implications, influenza
infections in pigs also imply an important public health
risk due to potential inter-species transmission of new
reassortant strains of influenza viruses with pandemic
capacity [1-4]. Human influenza virus vaccines are regu-
larly updated with contemporary strains in contrast to
commercially SwIV vaccines leading to inadequate pro-
tection against antigenic diverse viruses. In order to ad-
dress new vaccine approaches which, based on common
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T cell epitopes, are able to provide a broader protection
against a range of antigenic different viral strains, it is
necessary to identify the peptide epitopes that are tar-
gets for a swine cytotoxic T cell response.
The selective binding and presentation of peptides in

MHC complexes play a crucial role in the adaptive im-
mune response to infectious diseases and vaccines [5,6].
Such peptide:MHC (pMHC) complexes are scanned by
circulating CD4−CD8+ cytotoxic T cells (CTLs) of the
host immune system, occasionally leading to immune
activation if the peptide is of foreign origin representing
a potential danger to the host. To date pMHC tetramers
have been described in work related to the analysis of
mice [7], human [8,9], bovine [10], and porcine [11] im-
mune responses. In pigs, MHC class I molecules are
termed swine leukocyte antigens (SLA) and one of the
most commonly occurring SLA alleles, the SLA-1*0401
[12], has recently been mapped for its peptide binding
preferences [13]. This study illustrates the use of pSLA
fluorescent tetramers to identify SwIV derived epitopes. In
summary, porcine fluorescent tetramers were generated
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with carefully selected influenza virus peptide ligands to
measure immune responses against swine influenza virus
after immunization of SLA class I matched pigs with inac-
tivated virus.

Methods
A total of 20 pigs were used in this study of which 16
expressed the SLA-1*0401 class I molecule. All pro-
cedures of animal handling and experimentation were
approved by the Danish Animal Experiments Ins-
pectorate. Experimental animals received chemically
(C3H4O2) inactivated swine influenza A virus of dif-
ferent strains given in equal volumes of Freund’s
Incomplete adjuvant with 4 repeated immunizations
at three-week intervals (Table 1). Initially, blood sam-
ples were collected from all pigs followed by SLA al-
lele typing using PCR-SSP [14-16]. Candidate SwIV
epitopes were selected using in silico predictions for
binding by the online available NetMHCpan algo-
rithm [17-19], and combined with previously mapped
preferences expressed by SLA-1*0401 [13]. Chosen
candidate epitopes were then tested for SLA-1*0401
binding affinity using a previously described immuno-
sorbent assay [20]. pSLA-1*0401 based fluorescent
tetramers were produced as described previously [9],
and porcine CD8+ cytotoxic T cell labeling was ana-
lyzed by flow cytometry. APC- and BV421-fluoro-
chromes were used for labeling tetramers whereas
PE-conjugated mAb against porcine CD8α (clone 76-
2-11, BD Pharmingen) and FITC-conjugated mAb
against porcine CD4 (clone 74-12-4, BD Pharmingen)
were used for additional cell surface staining.

Results
Virally derived T cell epitopes in swine were identified
by ex vivo analysis of candidate epitope peptides, based
on in silico predictions and in vitro validation. Four
influenza virus derived candidate epitope peptides
(CTELKLSDY, GTEKLTITY, SSSFSFGGF, YVFVGTSRY)
Table 1 Influenza peptide epitopes and immunization strains

SLA tetramer peptide epitopes

1

SwIV
candidate
epitope

Viral protein
of origin

AA position*
in virus

Nucleotide
position*
in virus

A/swine/Den
mark/101310-

1/2011(H1N1pdm

CTELKLSDY NP 44-52 130-156 +

GTEKLTITY PB2 623-531 1567-1593 +

SSSFSFGGF PB2 320-328 958-984 +

YVFVGTSRY HA 215-223 643-669 +

Comparison of influenza virus candidate epitope sequences within the different vira
conserved in the viral strain used for immunization. (*) Amino acid position relative
influenza virus encoding a human-like N2 gene [21]. Amino acids in bold mark subs
respective candidate epitopes used for tetramer analysis.
and one synthetically designed reference peptide
(ASYGAGAGY) were selected for analysis based on a
prediction to be bound by the SLA-1*0401 molecule.
All selected peptides had NetMHCpan prediction
rank scores of 1.00 or lower meaning that the pep-
tide had a predicted affinity within the 1 percentile
best candidates compared to a pool of 1,000.000 nat-
ural peptides (Table 2) [17-19]. Following in vitro
testing it was found that all four influenza virus pep-
tides were bound with high affinity by the SLA-
1*0401 MHC class I molecule, and identified as T
cell epitopes by ex vivo flow cytometry analysis using
influenza:SLA tetramers. Positive samples were de-
fined by a minimum threshold of 2-fold higher stain-
ing percentage compared to the negative background
control, as previously set by others [22]. Six of the
16 SLA-matched pigs were found to express activated
CTL populations showing specificities against the
SwIV peptides post immunization (Table 3). SwIV
tetramer staining above the 2-fold threshold ranged
between 0.8 and 5.3% of the total CD4−CD8αhigh cell
population depending on the different epitopes and
animals (Table 3, bold numbers). A specific T cell
subset of 6.5% of the CD4−CD8αhigh population
stained positive for the GTEKLTITY epitope as com-
pared to the negative background control of 1.2%
(Figure 1). In addition, substitutions were introduced
in 50% of the epitope candidates to examine individ-
ual T cell subsets in regard to the expression of mul-
tiple T cell receptor (TCR) specificities. Interestingly
both conserved and substituted epitope candidates
were found to stain the CD4−CD8αhigh T cell subsets.
Staining percentages of epitopes including amino acid
substitutions compared to their respective immunization
strain are marked by an asterix (Table 3).

Discussion and conclusion
This study describes a timely and cost-effective ap-
proach for viral epitope analysis and identification in
Immunization strains 1-5

2 3 4 5

09)

A/swine/
Denmark/

101568-1/2011
(H1pdmN2†)

A/swine/
Denmark/
19126/1993

(H1N1)

A/swine/
Denmark/

101490-3/2011
(H1N1)

A/swine/
Denmark/1037-
2/2011(H1N2†)

+ CTELQLSDY CTELQLSDY CTELQLSDY

+ + + +

+ + + +

+ YVSVESSKY YVSVVSSKY YVSVVSSKY

l strains used for immunizations. (+) SwIV candidate epitope sequence is 100%
to start codon in virus A/swine/Denmark/12687/2003, (†) reassortant swine
titutions in the sequence within the immunization strain compared to the



Table 3 Influenza virus tetramer staining

Animal ID/
SwIV strain

Tetramer
SwIV peptide

Peptide substituted
from immunization

strain

Frequency of tetramer (APC + BV421+) cells

(Tetramer + cells subtracted negative control)

ASYGAGAGY Negative control 0.80 (0.00)

1/ CTELKLSDY No 1.70 (0.90)

1 GTEKLTITY No 1.90 (1.10)

SSSFSFGGF No 1.70 (0.90)

YVFVGTSRY No 1.60 (0.80)

ASYGAGAGY Negative control 0.60 (0.00)

2/ CTELKLSDY No 1.70 (1.10)

3 GTEKLTITY No 1.50 (0.90)

SSSFSFGGF No 1.40 (0.80)

YVFVGTSRY No 1.50 (0.90)

ASYGAGAGY Negative control 1.20 (0.00)

CTELKLSDY No 6.30 (5.10)

4/ GTEKLTITY No 6.50 (5.30)

3 SSSFSFGGF No 3.90 (2.70)

YVFVGTSRY No 5.80 (4.60)

ASYGAGAGY Negative control 2.60 (0.00)

CTELKLSDY Yes 5.80 (3.20*)

6/ GTEKLTITY No 5.80 (3.20)

3 SSSFSFGGF No 4.90 (2.30)

YVFVGTSRY Yes 5.90 (3.30*)

ASYGAGAGY Negative control 0.90 (0.00)

CTELKLSDY Yes 3.00 (2.10*)

8/ GTEKLTITY No 2.40 (1.50)

4 SSSFSFGGF No 1.90 (1.00)

YVFVGTSRY Yes 2.70 (1.80*)

ASYGAGAGY Negative control 1.10 (0.00)

CTELKLSDY Yes 2.80 (1.70*)

16/ GTEKLTITY No 2.50 (1.40)

5 SSSFSFGGF No 2.30 (1.20)

YVFVGTSRY Yes 2.70 (1.60*)

Tetramer staining frequencies. Percentile numbers in bold show specific tetramer staining post background subtraction. The relative background staining has
been defined for each animal by a negative control tetramer (ASYGAGAGY). Italic percentile numbers indicate non-specific staining. Percentages marked by an
asterix (*) indentify positive staining by influenza peptides which are sequence substituted compared to the respective immunization strains.

Table 2 Peptide predictions and affinities

Peptide sequence NetMHCpan prediction rank SLA-1*0401 affinity KD (nM)

CTELKLSDY 1.00 16

GTEKLTITY 0.80 34

SSSFSFGGF 0.80 378

YVFVGTSRY 0.10 325

ASYGAGAGY 0.05 19

Peptide sequences selected for affinity analysis based on NetMHCpan prediction ranks and SLA-1*0401 amino acid requirements for binding. The lower the KD
value the higher the affinity for binding. Peptides having KD values <500 nM are considered as intermediate affinity ligands whereas a KD value <100 nM represents a
high affinity binding peptide ligand.

Pedersen et al. Virology Journal 2014, 11:163 Page 3 of 5
http://www.virologyj.com/content/11/1/163



Figure 1 Influenza virus tetramer staining of porcine CD4−CD8αhigh T cells. SwIV tetramer staining of CD4−CD8αhigh T cell subsets. Individual
samples were stained by an epitope candidate tetramer (GTEKLTITY) and a negative control tetramer (ASYGAGAGY). Singlet lymphocytes are
gated in P1 (blue). CD4−CD8αhigh cells are gated in P2 (orange), and CD4−CD8αhigh APC+BV+ tetramer double positive cells are shown in P3
(green) for animal number 4. Percentages of tetramer reactive cells within the CD4−CD8αhigh population are shown for each sample.
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livestock animals. In addition, we hypothesized CD8+

cytotoxic T cell subsets to possess multiple specificities.
Interestingly, it was found that conserved as well as
substituted epitopes positively stained T cell subsets
suggesting SLA-bound epitope recognition of different
conformations. These findings correlate with previous
studies showing that CTL subsets expressing individ-
ual TCRs are capable of recognizing ligands of various
conformations presented by the same MHC [23,24].
In conclusion, the data and approaches described have

great potential for future studies using the pig as a large
animal model for viral epitope identification. Furthermore,
by including sequence substituted MHC ligands in the
analysis it was illustrated how CD4−CD8+ T cell subsets
were capable of expressing multiple T cell receptor ligand
specificities. Finally, identification of T cell epitopes con-
served across all types, subtypes and strains of influenza vi-
ruses, and including mutations, can be valuable knowledge
in terms of future vaccine design as well as in achieving a
better understanding of the immune responses elicited by
vaccination and natural infection.
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