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Substitution of the premembrane and envelope
protein genes of Modoc virus with the
homologous sequences of West Nile virus
generates a chimeric virus that replicates in
vertebrate but not mosquito cells
Rungrat Saiyasombat1†, Jimena Carrillo-Tripp2†, Wyatt Allen Miller2, Peter J Bredenbeek3 and Bradley J Blitvich1*
Abstract

Background: Most known flaviviruses, including West Nile virus (WNV), are maintained in natural transmission
cycles between hematophagous arthropods and vertebrate hosts. Other flaviviruses such as Modoc virus (MODV)
and Culex flavivirus (CxFV) have host ranges restricted to vertebrates and insects, respectively. The genetic elements
that modulate the differential host ranges and transmission cycles of these viruses have not been identified.

Methods: Fusion polymerase chain reaction (PCR) was used to replace the capsid (C), premembrane (prM) and
envelope (E) genes and the prM-E genes of a full-length MODV infectious cDNA clone with the corresponding
regions of WNV and CxFV. Fusion products were directly transfected into baby hamster kidney-derived cells that
stably express T7 RNA polymerase. At 4 days post-transfection, aliquots of each supernatant were inoculated onto
vertebrate (BHK-21 and Vero) and mosquito (C6/36) cells which were then assayed for evidence of viral infection by
reverse transcription-PCR, Western blot and plaque assay.

Results: Chimeric virus was recovered in cells transfected with the fusion product containing the prM-E genes of
WNV. The virus could infect vertebrate but not mosquito cells. The in vitro replication kinetics and yields of the
chimeric virus were similar to MODV but the chimeric virus produced larger plaques. Chimeric virus was not
recovered in cells transfected with any of the other fusion products.

Conclusions: Our data indicate that genetic elements outside of the prM-E gene region of MODV condition its
vertebrate-specific phenotype.
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Introduction
All viruses in the genus Flavivirus (family Flaviviridae)
possess a single-stranded, positive-sense RNA genome of
approximately 11 kb [1]. The genome contains a single
open reading frame (ORF) flanked by 5’ and 3’ untranslated
regions (UTRs) of ~100 and 400–700 nt, respectively [2].
The 5’ end of the genome contains a type I cap structure
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and the 3’ end is non-polyadenylated. The ORF encodes a
single polyprotein that is co- and post-translationally
cleaved to generate three structural proteins, designated
the capsid (C), premembrane/membrane (prM/M) and
envelope (E) proteins, and at least seven non-structural
(NS) proteins in the gene order: 5′–C–prM(M)–E–NS1–
NS2A–NS2B–NS3–NS4A–NS4B–NS5-3′ [1,3]. Cleavage
events are mediated by a combination of endoplasmic
reticulum signalases, furin and the viral trypsin-like serine
protease [1,4,5].
The flavivirus genome is packaged in an icosahedral

nucleocapsid with multiple copies of the C protein [1].
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The nucleocapsid is surrounded by a lipid envelope,
acquired from the host cell, in which the prM(M) and
E proteins are embedded. The E protein is required for
receptor binding, host membrane fusion and viral assembly,
while the prM protein protects the E protein from
undergoing an irreversible conformational change as the
virion is secreted through acidified sorting compartments
[6-9]. RNA replication occurs in the cytoplasm in close
association with the rough endoplasmic reticulum and
requires the participation of several NS proteins including
the viral helicase and protease (NS3), viral protease
cofactor (NS2B) and RNA-dependent RNA polymerase
and methyltransferase (NS5) [4,10,11].
Flaviviruses can be divided into three distinct groups

based upon their mode of transmission [12,13]. The first
group is comprised of viruses that are transmitted
horizontally between hematophagous arthropods and
vertebrate hosts. This group can be further divided
into mosquito-borne and tick-borne viruses. Examples
of mosquito-borne flaviviruses include West Nile virus
(WNV), dengue virus (DENV), yellow fever virus (YFV)
and Japanese encephalitis virus (JEV), all of which are
human pathogens of global concern [14]. Tick-borne
flaviviruses associated with serious human disease include
tick-borne encephalitis virus (TBEV), Langat virus (LGTV)
and Powassan virus. Flaviviruses in the second group have
no known arthropod vector (NKV) and are considered to
be vertebrate-specific. NKV flaviviruses have been isolated
exclusively from bats and rodents, and examples include
Modoc virus (MODV) and Rio Bravo virus [15,16]. The
mechanism(s) by which NKV flaviviruses are maintained in
nature is poorly defined but it has been suggested that they
are transmitted between hosts by nasal and/or oral contact
[17-19]. The final group is comprised of insect-specific
flaviviruses (ISFs). These viruses are assumed to be insect-
specific because they have been isolated from mosquitoes
but do not replicate in mice or any vertebrate cell lines that
have been tested. More than 20 ISFs have been discovered
including Culex flavivirus (CxFV), cell fusing agent virus
and Kamiti River virus [20-23]. Recent data indicate that
ISFs are maintained in nature by transovarial transmission
[24]. It is not known whether ISFs and NKV flaviviruses
were originally arthropod-vertebrate flaviviruses that lost
the ability to replicate in one host or if they are progenitor
viruses from which the arthropod/vertebrate flaviviruses
evolved, although the latter theory is favored [25,26].
The evolutionary processes and underlying genetic

basis for the differential host ranges and transmission
cycles of flaviviruses have not been identified. Thus, the
overall goal of this study is to characterize the in vitro host
ranges of chimeric viruses constructed using representative
viruses from the vertebrate-specific, insect-specific and
arthropod/vertebrate flavivirus groups (MODV, CxFV and
WNV, respectively) in order to increase our knowledge of
the genetic elements that condition the vastly different host
ranges and transmissibilities of these viruses.

Materials and methods
Cell lines
BSR-T7/5 cells, which are baby hamster kidney-derived
cells that constitutively express T7 RNA polymerase
[27], were kindly provided by Cathy Miller (Iowa State
University). Baby hamster kidney (BHK-21), African
Green Monkey kidney (Vero) and Aedes albopictus (C6/36)
cells were obtained from the American Type Culture
Collection (Manassas, VA). BSR-T7/5 and BHK-21 cells
were cultured in minimum essential medium (Invitrogen,
Carlsbad, CA), Vero cells were cultured in Dulbecco’s
modified Eagle medium (Invitrogen) and C6/36 cells were
cultured in Liebovitz L15 medium (Invitrogen). All media
was supplemented with 10% fetal bovine serum (FBS), 2
mM L-glutamine, 100 units/ml penicillin and 100 μg/ml
streptomycin. Mammalian cells were cultured at 37°C with
5% CO2 whereas C6/36 cells were cultured at 28°C.

Viruses
pACNR-FLMODV, which contains full-length cDNA of
MODV (strain M544) downstream of a T7 Ф2.5 pro-
moter (Peter J. Bredenbeek, unpublished data), was used
as template for fusion PCR reactions. The plasmid was
also used to amplify the full-length product needed to
generate MODV. WNV (strain NY99-flamingo382-99)
was kindly provided by Aaron Brault (Centers for
Disease Control and Prevention). CxFV (strain Iowa07)
was originally isolated from Culex pipiens in Iowa in
2007 [28]. cDNAs were generated from WNV and CxFV
RNA and used as template for fusion PCR reactions
as described below.

Construction of chimeric cDNAs
Four full-length chimeric flavivirus fusion products,
designated fpMODV-WNV(C-prM-E), fpMODV-WNV
(prM-E), fpMODV-CxFV(C-prM-E) and fpMODV-CxFV
(prM-E), were generated by replacing the C-prM-E and
prM-E genes of MODV with the homologous genes of
WNV and CxFV. Four conventional PCRs and three
fusion-PCRs were required to generate each full-length
fusion product (Table 1). The process was facilitated
by chimeric primers (half MODV sequence and half
heterologous virus sequence) that worked as linkers to fuse
the intermediate reaction products and subsequently
assemble the final chimeras. The strategy used to construct
fpMODV-WNV(prM-E) is depicted in Figure 1 and
described below as an example of the chimeric viral cDNA
construction process. In the first reaction, a 523 bp
product (designated MW1) was amplified by PCR
using pACNR-FLMODV as template, a forward primer
(M-F1; see Tables 1 and 2) specific to the vector sequence



Table 1 PCR products generated during the construction of full-length flavivirus chimeric DNAs

Reaction
no.

Reaction
type

Primers
(forward, reverse)

PCR product

Name Size (bp)

1a PCR M-F1, MW-R1 MW1’ 191

1b M-F1, MC-R1 MC1’ 194

1c M-F1, MWi-R1 MW1 523

1d M-F1, MCi-R1 MC1 521

2a RT-PCR MW-F2, MW-R2 MW2’ 2,415

2b MC-F2, MC-R2 MC2’ 2,167

2c MWi-F2, MWR2 MW2 2,066

2d MCi-F2, MCR2 MC2 1,777

3a,c PCR MW-F3, M-R3 MW3 2,575

3b,d MC-F3, M-R3 MC3 2,580

4a-d PCR M-F4, M-R10600 M4 6,227

5a Fusion-PCR M-F1, MW-R2 MW5’ 2,563

5b M-F1, MC-R2 MC5’ 2,320

5c M-F1, MW-R2 MW5 2,542

5d M-F1, MC-R2 MC5 2,251

6a Fusion-PCR M-F1, M-R3 MW6’ 5,100

6b M-F1, M-R3 MC6’ 4,854

6c M-F1, M-R3 MW6 5,079

6d M-F1, M-R3 MC6 4,785

7a Fusion-PCR T7MOD-F, M-R10600 fpMODV-WNV(C-prM-E) 10,730

7b T7MOD-F, M-R10600 fpMODV-WNV(prM-E) 10,708

7c T7MOD-F, M-R10600 fpMODV-CxFV(C-prM-E) 10,484

7d T7MOD-F, M-R10600 fpMODV-CxFV(prM-E) 10,415

Reactions ending with a, b, c and d were used to generate fpMODV-WNV(C-prM-E), fpMODV-CxFV(C-prM-E), fpMODV-WNV(prM-E) and
fpMODV-CxFV(prM-E), respectively.
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upstream of the MODV 5’UTR and a chimeric reverse
primer (MWi-R1) specific to the distal 3’ and 5’ ends of
the MODV C and WNV prM genes, respectively. In the
second reaction, a 2066 bp product (MW2) that contains
the entire prM-E genes of WNV was amplified by
RT-PCR using total RNA extracted from WNV-infected
C6/36 cells as template, a forward chimeric primer
(MWi-F2) specific to the sequences at the distal 3’
and 5’ ends of the MODV C and WNV prM genes,
respectively and a reverse chimeric primer (MW-R2)
specific to the sequences at the distal 3’ and 5’ ends
of the WNV E and MODV NS1 genes, respectively. In the
third reaction, a 2575 bp product (MW3) that contains the
entire NS1-NS2A-NS2B genes and part of the NS3 gene of
MODV was amplified by PCR using pACNR-FLMODV as
template, a forward chimeric primer (MW-F3) specific to
the WNV E and MODV NS1 genes and a reverse primer
(M-R3) specific to an internal region of the MODV NS3
gene. In reaction four, the remainder of the NS3 gene
and the entire NS4A-NS4B-NS5-3’UTR region of MODV
was amplified by PCR using pACNR-FLMODV as template
and MODV-specific forward and reverse primers (M-F4
and M-R10600, respectively) to give a 6227 bp product
(M4). Reaction 5 was a fusion-PCR in which MW1 and
MW2 were used as templates and M-F1 and MW-R2 as
primers for the generation of a 2542 bp product designated
MW5. Reaction 6 was another fusion-PCR in which MW3
and MW5 were used as templates and M-F1 and M-R3 as
primers for the generation of a 5079 bp product designated
MW6. In the final reaction, a full-length 10,708 bp chimeric
fusion product designated fpMODV-WNV(prM-E)
was generated by fusion-PCR using M4 and MW6 as
templates and T7-MOD-F and M-R10600 as forward and
reverse primers, respectively. The 5’ end of T7-MOD-F
contains the T7 promoter sequence. A similar strategy was
adopted for the construction of fpMODV-WNV(C-prM-E),
fpMODV-CxFV(C-prM-E) and fpMODV-CxFV(prM-E)
with the primers used in these experiments and the sizes of
the resulting amplification products denoted in Tables 1
and 2. Full-length MODV was also amplified in a single
PCR using pACNR-FLMODV as template, T7-MOD-F as
the forward primer and M-R10600 as the reverse primer



Figure 1 (See legend on next page.)
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Figure 1 Schematic of the fusion-PCR strategy used to generate viral chimeras. (A). Strategy used to generate fpMODV-WNV(prM-E) in
seven steps. The approximate location of primers and intermediate PCR products are shown on each viral genome (not scaled). Note that just
viral sequences are depicted, the actual MODV template was pACNR-FLMODV while WNV template was viral cDNA (see materials and methods).
All intermediate products and primers are further described in accompanying Table 1. Chimeric primers are represented by bicolor arrows. Steps
1–4: Products MW1, MW2, MW3 and M4 were generated by PCR with the indicated primers. These fragments were used as construction blocks in
subsequent steps in fusion PCRs. Step 5: Products MW1 and MW2 were fused amplifying with primers M-F1 and MW-R2 to generate product
MW5. Step 6: MW5 was fused with MW3 using primers M-F1 and M-R3 to give MW6. Step 7: In the final reaction, a full-length chimeric product
was generated by fusing MW6 to M4 using primers T7-MOD-F and M-R10600. (B). Maps of final constructs highlighting the resulting amino acid
chimeric sequences. Arrows indicate protease cleavage sites. Sequences from the heterologous viruses (WNV or CxFV) are underlined.
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(Table 2). All full-length products were purified by phenol/
chloroform extraction and ethanol precipitation, and
sequenced across the junctions using overlapping
primers for junction verification.

Transfections and virus recovery
Full-length PCR products (chimeras and full-length
MODV) were transfected directly into BSR-T7/5 cells
(which stably express T7 RNA polymerase) in order to
avoid the in vitro transcription step. BSR-T7/5 cells were
seeded into 60 mm2 sterile plates and incubated until
there were approximately 9.5x105 cells per plate. Cells
were transfected with 5 μg of purified full-length flavivirus
cDNA mixed with 500 μl of serum-free Opti-MEM
(Invitrogen) and 15 μl of TransIT-LT1 transfection reagent
(Mirus Bio, Wisconsin) according to the manufacturer’s
instructions. For those constructs that failed to generate
virus, at least three independent transfections were
performed and the full-length MODV construct was
included as a positive control in each experiment.
Table 2 Primers used during the construction of full-length fl

Primer Polarity Sequencea

M-F1 Sense 5’ACATTTCCCCGAAAAGT

MW-R1 Antisense 5’CCTCCTGGTTTCTTAGACA

MWi-R1 Antisense 5’TAACTGCTCCTACGCTGGC

MC-R1 Antisense 5’CTTACCGTCGTCCTTTCCC

MCi-R1 Antisense 5’ACGGCGCCCAGCACCATC

MW-F2 Sense 5’CCACTTTTTGTGGCGGGA

MWi-F2 Sense 5’ATGGATGATGGGAACCA

MC-F2 Sense 5’CCACTTTTTGTGGCGGGA

MCi-F2 Sense 5’ATATGGATGATGGGAAC

MW-R2 Antisense 5’CAAGGACACAGCCATGA

MC-R2 Antisense 5’CATCAAGGACACAGCCA

MW-F3 Sense 5’CTCCGTGAACGTGCACGC

MC-F3 Sense 5’GGATACTTTATCTACACCA

M-R3 Antisense 5’TCCATTTGCATTGATGAC

M-F4 Sense 5’AGACTCTTATTCTTGGGG

T7MOD-F Sense 5’TAATACGACTCACTAT

M-R10600 Antisense 5’AGCGGAGGTCATATTCA
aHeterologous virus sequences are italicized in chimeric primers, T7 promoter seque
Transfected BSR-T7/5 cells were incubated for 4 days
then aliquots of each supernatant were collected and
inoculated onto subconfluent monolayers of Vero,
BHK-21 and C6/36 cells. Several more passages were
performed in the same cell type or, where specified,
an alternate cell type. Cells were monitored daily for
cytopathic effect (CPE). Cell monolayers and supernatants
were harvested when 50-70% of the cells exhibited CPE. If
CPE was not observed, cells were harvested at 7 to 9 days
post-inoculation (p.i.), with the exception of BHK-21 cells
which were harvested at 4 days p.i. since all BHK-21
cell cultures (including the negative control cultures)
displayed considerable cell death at this time.

Reverse transcription-polymerase chain reaction
Total RNA was extracted from cell monolayers and
supernatants using Trizol Reagent (Invitrogen) and
the QIAamp viral RNA mini kit (Qiagen, Valencia, CA),
respectively. Complementary DNAs were generated
using Superscript III reverse transcriptase (Invitrogen).
avivirus chimeric DNAs

Target

GCCACCTGACGTCTCGAC3’ Cloning vector

TTCCCGCCACAAAAAGTGG3’ WNV/MODV

GATTGACAATATGGTTCCCATCATCC3’ WNV/MODV

ATTCCCGCCACAAAAAGTGG3’ CxFV/MODV

ATTGACAATATGGTTCCCATCATC3’ CxFV/MODV

ATGTCTAAGAAACCAGGAGG3’ MODV/WNV

TATTGTCAATCGCCAGCGTAGGAGCAG3’ MODV/WNV

ATGGGAAAGGACGACGGTAAG3’ MODV/CxFV

CATATTGTCAATGATGGTGCTGGGCGCCGTC3’ MODV/CxFV

TCAGCGTGCACGTTCACGGAG3’ MODV/WNV

TGATCTGCCTTGGTGTAGATAAAGTATCC3’ MODV/CxFV

TGATCATGGCTGTGTCCTTG3’ WNV/MODV

AGGCAGATCATGGCTGTGTCCTTGATG3’ CxFV/MODV

TGGAGAACCAGATGAACCAGGAGG3’ MODV

TGGG3’ MODV

AGGAGTTGATCCTGCCAGCGGTG3’ T7/MODV

TGACCACACAGATTACATG3’ MODV

nce is bolded.
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Where specified, RNA templates were treated with
deoxyribonuclease I (DNase I; Invitrogen) prior to reverse
transcriptions. PCRs were performed using high fidelity Taq
polymerase (Invitrogen). MODV, WNV and CxFV-specific
primers were designed using published sequences (Genbank
Accession No. AJ242984, AF196835 and FJ663034, respect-
ively). PCR products were examined by 0.8-1% agarose gel
electrophoresis, purified using QIAquick spin columns
(Qiagen) and sequenced using a 3730x1 DNA sequencer
(Applied Biosystems, Foster City, CA).

Preparation of protein lysates
BHK-21, Vero and C6/36 cell monolayers, approaching
confluency in 75 cm2 flasks, were inoculated with parental
or chimeric virus at a multiplicity of infection (m.o.i) of 0.1
and incubated for 4 days (BHK-21 cells) or 7 days (Vero
and C6/36 cells). Cells were scraped from the surface of
the flask, clarified by centrifugation (10,000 g, 10 min, 4°C),
washed twice with cold phosphate-buffered saline (PBS),
resuspended in lysing buffer [10 mM Tris–HCl pH 7.5,
150 mM NaC1, 5 mM EDTA, 1% sodium deoxycholate, 1%
Triton X-100, 0.1% SDS and a cocktail of protease
inhibitors (Sigma, St. Louis, MO)] and placed on ice
for 15 min. Samples were microfuged at 4°C for 15 min
and supernatants collected and stored at −80°C.

Western blots
Protein samples were mixed with an equal volume of
reducing sample buffer, heated (95°C for 5 min) and
resolved on 8-16% Tris-glycine gels (Invitrogen). Proteins
were transferred to 0.45 μm nitrocellulose membranes
(Invitrogen) following published protocols [29]. Membranes
were blocked overnight at 4°C in phosphate-buffered saline
(PBS, pH 7.2) with 5% (wt/vol) non-fat dried milk.
Membranes were incubated with (i) 1/100 immune
ascitic fluid obtained from mice inoculated with
MODV (American Type Culture Collection) or a (ii)
1/100 pooled suspension of anti-WNV E protein
monoclonal antibodies 3.67G and 3.91D (Millipore,
Billerica, MA) for 1 hr at room temperature. Membranes
were then washed and incubated with 1/2000 horseradish
peroxidase-conjugated anti-mouse IgG antibody (Invitrogen)
for 1 hr at room temperature. Specifically bound antibody
was visualized using 3,3’-diaminobenzidine (0.05% in
PBS with 0.018% H2O2).

Plaque assays
Viruses were subjected to serial tenfold dilutions, inoculated
onto confluent monolayers of Vero cells in 35-mm culture
dishes then incubated at 37°C for 60 min. Three milliliters
of neutral red-deficient minimum essential medium
(Invitrogen) supplemented with 2% FBS, antibiotics and
1% agar were added to each well. Plates were incubated at
37°C for 3, 5 or 7 days for WNV, chimeric virus and
MODV plaque assays, respectively. Another 3 ml of the
same medium containing 0.22% neutral red was then
added to each well, and plaques were counted 24 h later.
Viral titers were expressed as plaque-forming units per
milliliter (pfu/ml).

Plaque morphology comparisons
Viruses were inoculated onto confluent monolayers
of Vero cells in 35-mm culture dishes then incubated at
37°C for 60 min. Three milliliters of neutral red-deficient
minimum essential medium (Invitrogen) supplemented
with 2% FBS, antibiotics and 1% agar were added to each
well, and plates were incubated at 37°C for 3, 5 or 7 days.
To fix the cells, 2 ml of 10% formaldehyde was added
directly onto each agar overlay and the plates were
incubated at 37°C for 60 min. Agar overlays were
gently removed, and 0.5 ml of 0.25% crystal violet (w/v) in
20% methanol was added to each well. Once the desired
intensity was reached, plates were rinsed several times
with tap water and photographed.

Growth curve comparisons
Subconfluent monolayers of Vero cells in 150 cm2 flasks
were inoculated with chimeric virus, MODV or WNV
at a m.o.i. of 0.1 Supernatants were collected daily for
7 days, clarified by centrifugation (10,000 g, 10 min, 4°C)
and stored in aliquots at −80°C until titrated by plaque
assay. Three independent experiments were performed.
Within each experiment, six replicates of each virus/
dilution/timepoint were tested. Data were used to calculate
mean viral titers ± 1 standard deviation.

Results
We initially attempted to create chimeric viruses by
replacing the C-prM-E and prM-E genes of the MODV
infectious cDNA clone with the corresponding sequences
of WNV and CxFV using restriction enzyme digestion
and direct cloning strategies (data not shown). More than
2,000 bacterial colonies were screened by PCR but none
contained full-length C-prM-E or prM-E sequences from
the heterologous virus. Approximately 10% of the colonies
contained WNV or CxFV sequences that had been
truncated or contained transposon insertions. These
findings led us to speculate that the structural genes
of WNV and CxFV are toxic to E. coli cells. In order to
overcome this problem, the use of bacteria and traditional
cloning was replaced by a fusion PCR-based strategy
coupled to an in vitro transcription-free system for virus
production. Similar methodologies have been developed
for other arboviruses [30,31].
Four full-length chimeric flavivirus fusion products,

designated fpMODV-WNV(C-prM-E), fpMODV-WNV
(prM-E), fpMODV-CxFV(C-prM-E) and fpMODV-CxFV
(prM-E), were generated by substituting the C-prM-E and
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prM-E genes of MODV with the corresponding regions
of WNV and CxFV. The strategy used to generate
fpMODV-WNV(prM-E) is shown in Figure 1, and a simi-
lar approach was used to create the three other full-length
fusion products. Full-length constructs were transfected
into BSR-T7/5 cells. Since all of the full-length products
contain a T7 promoter at the 5’ end and because BSR-T7/5
cells constitutively express T7 RNA polymerase [27], there
was no need to perform an in vitro transcription before the
transfection. At 4 days post-transfection, aliquots of each
supernatant were collected and inoculated onto Vero,
BHK-21 and C6/36 cells. Supernatants were harvested from
these cell cultures at 4 days p.i. (BHK-21 cells) or 7 to 9
days p.i. (Vero and C6/36 cells) then passed several more
times in the same cell type (or, where specified, a different
cell type). Cell monolayers and supernatants were harvested
and tested for evidence of virus infection by RT-PCR,
Western blot and plaque assay.
Chimeric virus was successfully generated in BSR-T7/5

cells transfected with fpMODV-WNV(prM-E). None of
the other full-length chimeric flavivirus fusion products
produced detectable virus under these conditions.
The chimeric virus, designated MODV-WNV(prM-E),
possessed the capacity to infect and replicate within
vertebrate but not mosquito cells (Figures 2 and 3).
Supernatants harvested from MODV-WNV(prM-E)-
infected Vero and BHK-21 cells produced distinct
MODV   MODV-WNV(prM-E) WNV

Day 3

Day 5

Day 7

Figure 2 Comparison of the plaque morphologies of
MODV-WNV(prM-E) and the parental viruses in Vero cells.
Confluent monolayers of Vero cells in six-well plates were inoculated
with MODV-WNV(prM-E), MODV or WNV. Cells were fixed and plaques
were visualized by staining with crystal violet at 3, 5 and 7 days p.i.
Images were transferred into Microsoft Photoshop and plaque diameters
were measured. The chimeric virus had been passaged one in BHK-21
cells and twice in Vero cells prior to this experiment.
plaques in Vero cells (Figure 2) whereas supernatants
harvested from C6/36 cells inoculated with the chimeric
virus did not (data not shown). MODV-WNV(prM-E)
plaques were larger and could be visualized earlier than
MODV plaques but were smaller and visualized later than
WNV plaques. At 3 days p.i., MODV and MODV-WNV
(prM-E) plaques were barely visible (and too small to be
measured accurately) whereas WNV plaques had a mean
diameter ± 1 standard deviation of 1.9 ± 0.15 mm. At
5 days p.i., MODV, MODV-WNV(prM-E) and WNV
plaques were 0.1 ± 0.02, 1.8 ± 0.14 and 7.5 ± 0.46 mm in
diameter, respectively. At 7 days p.i., MODV, MODV-WNV
(prM-E) and WNV plaques were 0.9 ± 0.11, 2.9 ± 0.20 and
11.7 ± 0.85 mm in diameter, respectively. Analyses of
variance (ANOVA) F-test showed significant difference
among the plaque sizes of the three viruses on both day 5
(F = 5833.24, DF = 2, 87, p-value <0.0001) and day 7
(F = 3705.42, DF = 2, 67, p-value <0.0001). Post-hoc
Tukey’s t-test showed that all pairwise comparisons
were significant (adjusted p-value <0.0001).
Chimeric flavivirus RNA was detected by RT-PCR in

supernatants harvested from Vero and BHK-21 cells,
but not C6/36 cells, that had been inoculated with
MODV-WNV(prM-E) (data not shown). Nucleotide
sequencing of the RT-PCR products confirmed these
findings. WNV antigen was detected in cell lysates har-
vested from MODV-WNV(prM-E)-inoculated Vero cells,
but not C6/36 cells, in Western blots performed using
WNV-specific monoclonal antibodies (Figure 3). MODV
antigen was not detected by Western blot in any cells
inoculated with chimeric virus or MODV (both fusion-
PCR-derived and wild-type MODV) when commercial
immune ascitic fluid obtained from mice infected with
MODV was used, possibly because the mice failed to
generate a sufficient immune response.
It is interesting to note that the chimeric virus did not

always produce CPE in Vero cells. CPE was not observed
in Vero cells directly inoculated with supernatants
harvested from fpMODV-WNV(prM-E)-transfected
BSR-T7 cells. An additional passage in Vero cells also
failed to result in CPE despite the detection of chimeric
viral RNA in these cultures by RT-PCR. However, after a
third passage in Vero cells, CPE was clearly observed. In
contrast, CPE was observed after one passage in Vero cells
when the chimeric virus first underwent one passage in
BHK-21 cells (Figure 4).
We sequenced the complete C-prM-E genes of chimeric

virus before and after it had been subjected to multiple
cell culture passages to assess the genetic stability of the
virus as well as to determine whether the acquisition of
mutations within the structural genes could explain why
some virus stocks possessed the ability to cause CPE in
Vero cells while others did not. First, the entire C-prM-E
region of MODV-WNV(prM-E) harvested from transfected



Figure 3 Western blot analysis reveals the presence of WNV antigen in Vero cells, but not C6/36 cells, inoculated with MODV-WNV
(prM-E). Lysates were prepared from (A) Vero and (B) C6/36 cells that had been mock-inoculated (lane 1) or inoculated with chimeric virus (lane 2),
MODV (lane 3) or WNV (lane 4) at a m.o.i. of 0.1. Lysates were harvested at 7 days p.i. and equal amounts of protein were resolved on 8-16% Tris-glycine
gels and immunoblotted using a pooled suspension of anti-WNV E protein monoclonal antibodies. M denotes the SDS PAGE low-range molecular
weight standards (Invitrogen). The arrow shows the expected migration position of the WNV E protein (molecular weight: 53 KDa).
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BSR-T7/5 cell cultures were sequenced, and shown to
contain one transition (coordinate 1457) resulting in a
conservative substitution when compared to the cor-
responding region of the parental WNV (Table 3).
We also sequenced the C-prM-E genes of chimeric
virus that had undergone one passage in BHK-21 cells
followed by two passages in Vero cells. Three additional
transitions were identified; two mutations were silent and
the other was conservative. In addition, we sequenced the
C-prM-E region of chimeric virus that had undergone
three passages in Vero cells and identified the change in
nucleotide coordinate 1457 and four extra substitutions.
One mutation was silent, one conservative and two were
non-conservative.
MODV-WNV(prM-E) and MODV demonstrated similar

replication kinetics and yields in Vero cells while WNV
replicated faster and produced a higher peak titer (Figure 5).
The chimeric virus and MODV reached mean peak titers
of 7 (±0.06) log10 pfu/ml at 5 days p.i. and 6.7 (±0.05) log10
pfu/ml at 4 days p.i., respectively. In contrast, the mean
peak titer for WNV was 22 to 48-fold higher and occurred
2 to 3 days earlier.
Figure 4 Detection of cytopathic effect in Vero cells inoculated with M
passaged twice in Vero cells were inoculated onto fresh monolayers of Ver
Vero cells that were incubated for 5 days were also included. Magnification
Discussion
Most chimeric flaviviruses have been developed for vaccine
purposes. In these studies, live-attenuated vaccine candi-
dates were created by inserting specific genetic elements
(typically the prM-E genes) of the flavivirus of interest
into a full-length infectious cDNA backbone of another
flavivirus such as the YFV vaccine vector, YFV-17D, or an
attenuated strain of DENV [32-38]. The construction and
characterization of chimeric flaviviruses has also provided
critical information on the genetic elements that modulate
the differential vector ranges, transmissibilities and disease
phenotypes of divergent flaviviruses. Several of these stud-
ies have been performed using representative flaviviruses
from the tick-borne and mosquito-borne groups [39-44].
More pertinent to this investigation are the few studies
that describe the construction and characterization of viral
chimeras between NKV and arthropod/vertebrate flavi-
viruses [45-47]. Five chimeric flaviviruses have now been
created between viruses from these two groups. The first
chimeric virus was generated by substituting the prM-E
genes of an infectious YFV cDNA infectious clone with
the homologous genes of MODV [46] and the second
ODV-WNV(prM-E). MODV-WNV(prM-E) and MODV that had been
o cells that were monitored for 5 or 8 days, respectively. Mock-infected
= 100×.



Table 3 Mutations accrued in the C-prM-E genes of MODV-WNV(prM-E) during transfection and passage in designated
cell types

Passage history Nucleotide position Amino acid position Nucleotide change Amino acid change

Original Inoculum (BSR-T7) 1457 E-167 C→ T Leu→ Phe

BHK-21 + Vero + Vero 323 C-72 T→ C Silent

1457 E-167 C→ T Leu→ Phe

1771 E-271 T→ C Silent

2372 E-472 A→ G Met→ Val

Vero + Vero + Vero 462 prM-2 C→ T Thr→ Ile

1307 E-117 G→ A Ala→ Thr

1457 E-167 C→ T Leu→ Phe

1894 E-216 T→ C Silent

2261 E-435 T→ C Phe→ Leu
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contains the prM-E genes of MODV in a DENV-2
backbone [45]. Both chimeric viruses replicated in
C6/36 cells indicating that the inability of NKV flaviviruses
to infect mosquito cells is not mediated by the viral
envelope but by a post-entry event. Two more chimeric
viruses were constructed by replacing the conserved
pentanucleotide sequence (CPS) or variable region (VR)
of the 3’ UTR of a DENV-4 infectious clone with the
corresponding region of MODV. Both viruses could infect
C6/36 cells and adult mosquitoes at similar efficiencies to
DENV-4 suggesting that the CPS and VR of mosquito/
vertebrate flaviviruses are not required for mosquito
infectivity. We too have successfully created a chimeric
virus using a NKV and mosquito-borne flavivirus but,
unlike the above studies, our virus was constructed
using the vertebrate-specific virus as the backbone.
The virus, designated MODV-WNV(prM-E), was created
Days post-inoculation

0 1 2 3 4 5 6 7 8

Vi
ru

s 
tit

er
 (l

og
10

 p
fu

/m
L)

0

1

2

3

4

5

6

7

8

9

rWNV
MODV-WNV(prM-E)
rMODV

Figure 5 Comparison of the replication kinetics of MODV-WNV
(prM-E), MODV and WNV in Vero cells. Subconfluent monolayers
of Vero cells were inoculated with MODV-WNV(prM-E), MODV and
WNV at a m.o.i of 0.1. Supernatants were collected daily for 7 days
and tested by plaque assay. MODV-WNV(prM-E) had been passaged
once in BHK-21 cells and once in Vero cells prior to the experiments.
by replacing the prM-E genes of a MODV infectious clone
with the corresponding sequences of WNV. MODV-WNV
(prM-E) possesses the capacity to infect and replicate
within vertebrate but not mosquito cell cultures indicating
that there are sequence elements outside of the prM-E
region that dictate the vertebrate-specific host range of
MODV. However, it is important to note that the mosquito
cells were cultured at a much lower temperature than the
mammalian cells and thus, it is not known whether
MODV-WNV(prM-E) was unable to infect mosquito
cells due to a cell tropism restriction or a temperature-
dependent restriction.
The fusion product designated fpMODV-CxFV(prM-E),

which was created by replacing the prM and E genes of
MODV with the homologous sequences of CxFV, failed to
yield detectable virus. This finding is in contrast to the
numerous studies that report the successful production of
chimeric virus after the prM-E genes of one flavivirus are
replaced with those of another [42,48-54]. However, all of
these studies were performed with flaviviruses that possess
at least one common host. Indeed, although chimeric
viruses have been created between viruses as divergent as
tick- and mosquito-borne flaviviruses, and NKV and
mosquito-borne flaviviruses, all viruses within these groups
possess the ability to replicate within vertebrate cells. In
contrast, ISFs and NKV flaviviruses do not possess a
common host by virtue of their insect and vertebrate-
specific phenotypes. Thus, the generation of chimeric
viruses between ISFs and NKV flaviviruses may not be
achievable or, at the very least, will prove extremely
challenging because their genomes and resulting translation
products may be fundamentally incompatible as a conse-
quence of their evolutionary divergence and specialization
to vastly different hosts.
Conserved complementary cyclization sequences reside

within the capsid gene and 3’ UTR of the flavivirus genome.
These sequences interact with one another to facilitate
genome cyclization and are essential for viral replication
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[55,56]. Thus, one explanation for the inability to produce
infectious virus with the fusion products containing
the C-prM-E genes of WNV and CxFV is because the
genome cyclization elements within the 3’ UTR of MODV
and the C gene of the alternate virus do not have sufficient
complementary to support genome cyclization. In this
regard, replacement of the 3’UTR of a DENV-4 infectious
clone with the corresponding region of MODV also failed
to produce virus [47]. Virus was also unable to be
recovered when both UTRs as well as the C gene of
DENV-4 were replaced with the corresponding regions
of either LGTV or MODV, despite the presence of
complementary cyclization sequences [44,47]. The authors
speculated that infectious virus was not produced
because fundamental incompatibilities exist between the
UTRs and replication complexes of highly divergent
(e.g. mosquito-borne, tick-borne and vertebrate-specific)
flaviviruses. However, C-prM-E gene substitutions between
divergent flaviviruses have occasionally proven successful;
Pletnev and colleagues produced chimeric virus after
replacing all three structural genes of DENV-4 with
those of TBEV [41].
The inability to produce chimeric virus with fpMODV-

CxFV(prM-E), fpMODV-CxFV(C-prM-E) and fpMODV-
WNV(C-prM-E) is unlikely due to aberrant replication
complex formation. Assembly of the viral replication
complex should not have been impeded due to mismatches
between the various viral and cellular proteins that interact
during this process because no nonstructural gene substitu-
tions were made. It is also unlikely that correct proteolytic
processing of the chimeric polyproteins could not occur.
Amino acid sequence alignments have shown that the
predicted cleavage sites required for proteolytic cleavage of
the CxFV and MODV polyproteins are similar to one an-
other and to those of WNV and other dual-host flaviviruses
[22,57-59]. Although the junctions of all four constructs
were sequenced and shown to contain no nucleotide errors,
these constructs were not sequenced in their entirety and
thus, we cannot dismiss the possibility that the non-viable
constructs contained lethal mutations outside the junctions
that occurred during one of the PCR amplifications.
Another explanation why fpMODV-CxFV(C-prM-E)
and fpMODV-WNV(C-prM-E) failed to produce virus
is because the encapsidation signal sequence of MODV
(which, as with all flaviviruses, remains to be identified
[60]) is not recognized by the capsid proteins of WNV
or CxFV.
The replication kinetics and yields of MODV-WNV

(prM-E) in Vero cells were similar to those of MODV.
These data suggest that genetic elements outside of the
prM-E region dictate the in vitro replication profiles of
NKV flaviviruses in vertebrate cells. Other studies have
also shown that chimeric flaviviruses generated by prM-E
gene substitutions exhibit replication kinetics and yields
similar to the virus from which the nonstructural genes
were derived but distinct from the virus that contributed
the prM-E sequences [46,51,61]. For instance, the in vitro
replication kinetics of a chimeric virus that possessed the
prM-E genes of MODV in a YFV-17D backbone were
similar to those of YFV-17D but distinct from MODV
which reached a higher peak titer [46]. Although the
chimeric virus and MODV displayed similar in vitro
replication kinetics, these two viruses exhibited differential
plaque morphologies in Vero cells. MODV-WNV(prM-E)
plaques were at least threefold larger than MODV plaques
but approximately fourfold smaller than WNV plaques.
These findings indicate that genetic elements both within
and outside of the prM-E region modulate the plaque
sizes of NKV flaviviruses. These findings differ from most
other studies which compare the plaque sizes of chimeric
flaviviruses generated by prM-E gene substitutions to
those of both parental viruses. Usually prM-E gene
substitutions generate chimeric viruses that produce
plaques that are indistinguishable from one of the
parental viruses [51,62-64] or are smaller than both
parental viruses [46,65,66]. However, replacement of the
prM-E genes of JEV with those of DENV-4 produced a
chimeric virus which, like our chimeric virus, exhibited an
intermediate plaque phenotype; the chimeric virus
produced plaques that were smaller than JEV but larger
than DENV-4 in mammalian cells [67].
MODV-WNV(prM-E) did not always cause CPE in Vero

cells, and the occurrence of CPE appeared dependent on
the passage history of the virus. MODV-WNV(prM-E) was
able to induce CPE after a single passage in Vero cells if it
had first been cultured in BHK-21 cells. In contrast, CPE
did not occur in Vero cells until the third passage when the
virus had not been passaged in BHK-21 cells. One explan-
ation for these findings is that MODV-WNV(prM-E) repli-
cates more efficiently in BHK-21 cells as compared to Vero
cells, possibly because it is a rodent cell line and most of
the chimeric flaviviral genome was acquired from a virus
with a natural host range that is apparently restricted to
rodents. Alternatively, repeated passaging of the virus in
Vero cells could have resulted in the accumulation of muta-
tions that altered its ability to induce CPE in this cell type.
In this regard, the C-prM-E gene sequence of chimeric virus
derived from the original inoculum contained one non-
synonymous mutation when compared to the correspond-
ing regions of parental viruses while chimeric viruses that
had undergone three passages in BHK-21 and/or Vero cells
acquired three to four additional mutations in the structural
gene region. Whether these mutations, or mutations that
may have occurred elsewhere in the viral genome, altered
the ability of the virus to induce CPE is not known but it
does offer a likely explanation.
In summary, we report the first chimeric flavivirus to

be constructed using a NKV flavivirus as the backbone.
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We also report the first attempts to create a chimeric
flavivirus between an ISF and NKV flavivirus. Two
constructs were generated, including one that contains
the CxFV prM-E genes in a MODV backbone, but neither
yielded detectable virus. Most success in the generation of
chimeric flaviviruses has been achieved through prM-E
gene substitutions. However, unlike our study, all previous
studies were performed using flaviviruses that share a
common host. These findings indicate that the successful
generation of chimeric viruses between ISFs and NKV
flaviviruses will prove extremely challenging due to the
evolutionary divergence and differential host ranges of
these viruses.
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