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Abstract

viral-chromosomal junctions.

Background: Adeno-associated virus (AAV) serotype 2 prevalently infects humans and is the only described
eukaryotic virus that integrates site-preferentially. In a recent high throughput study, the genome wide distribution
of AAV-2 integrants was determined using Integrant Capture Sequencing (IC-Seq). Additional insight regarding the
integration of AAV-2 into human genomic DNA could be gleaned by low-throughput sequencing of complete

Findings: In this study, 140 clones derived from Integrant-Capture Sequencing were sequenced. 100 met sequence
inclusion criteria, and of these 39 contained validated junction sequences. These unique sequences were analyzed
to investigate the structure and location of viral-chromosomal junctions.

Conclusions: Overall the low-throughput analysis confirmed the genome wide distribution profile gathered through
the IC-Seq analysis. We found no unidentifiable sequence inserted at AAV-2 chromosomal junctions. Assessing both left
and right ends of the AAV genome, viral breakpoints predominantly occurred in one hairpin of the inverted terminal
repeat and AAV genomes were preferentially integrated as single copies.
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Findings

Adeno-associated virus, a human Parvovirus in the genus
Dependovirus, possesses a linear single-strand 4.7 Kb
genome [1]. AAV serotype 2 infects up to eighty percent
of the human population [2,3] and is the only described
eukaryotic virus that integrates site-preferentially [4-6].
The dominant integration hotspot, AAVSI, is located
in the first exon of protein phosphatase 1 regulatory
subunit 12C (PPP1R12C) [1,7]. Site-preferential integration
requires two cell-extrinsic factors: the large AAV replication
proteins, Rep68 or Rep78 [8-11], and DNA integration
substrates containing Rep binding sites, which are GAGC
repeats [12-14].

The genome-wide integration profile of AAV-2 has
recently been revealed by a high-throughput sequencing
approach coupled with bioinformatics [15]. That study
was the first high-throughput analysis of AAV integration

* Correspondence: efalckp@med.cornell.edu

’Department of Microbiology and Immunology, Weill Medical College of
Cornell University, New York, NY 10065, USA

Full list of author information is available at the end of the article

( BiolMed Central

and led to a number of discoveries, including the presence
of several thousand novel genomic hotspots. However,
paired-end sequencing generates short reads that do not
sequence the entirety of viral-chromosomal junctions.

We reasoned that additional insight regarding the inte-
gration of AAV-2 into human genomic DNA could be
gleaned by low-throughput sequencing of complete viral-
chromosomal junctions. In this study, junctions were
assayed from wild-type AAV-2 infected HeLa cells
processed through the Integrant-Capture Sequencing
(IC-Seq) protocol (Figure 1A and B). AAV-2 generated
from helper-free plasmid transfection (Applied Viromics)
and applied at 1E4 viral genomes per cell. These conditions
provide maximal integration efficiency with minimal
residual episomal virus, as previously described [15,16].
Since this protocol generates random chromosomal breaks
using sonication and does not rely on locus-specific
primers, it should be less biased than previous junction
studies [15,17,18]. Primer sets to both the left and right
portions of the AAV-2 genome were used to assess
each biological replicate. The L1/L2 primer set was
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Figure 1 Schematic of AAV genome and experimental design. (A) Overview of AAV genome features (elements of this diagram are not to
scale). Inverted terminal repeats (green) cap the ends of the single-strand 4.7 Kb viral genome. Expression of two viral genes, Rep (red) and Cap
(blue), is driven by three promoters, P5, P19, P40. L1/L2 and R1/R2 (black arrows) are locations for left and right primer pair binding sites, with
biotinylation indicated (grey circle). (B) Modified IC-Seq outline for junction analysis. AAV-2 infected Hela cells were grown for three weeks prior
to DNA extraction. Human genomic DNA was sonicated, blunted, A-tailed, and ligated to T-tailed asymmetric linkers. Integration junctions were
amplified by semi-nested ligation-mediated PCR, incorporating bead pull-down target enrichment. Libraries were then cloned into bacterial
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previously described [15,19] and the R1/R2 oligonucleo-
tides were five-prime modified from a previous study [20]
to include [Bio-TEG]C and CGTTT respectively. Methods
for IC-Seq are presented in references [15,17,18], and we
hope to publish a step-by-step methods guide for future
reference. Subsequent to the main phase of IC-Seq, sample
pools were cloned into bacterial plasmids, and individual
clones were sequenced.

In total, 140 clones were sequenced encompassing
two biological replicates assayed using both primer sets
(Figure 2A). One hundred of the clones met the inclusion
criteria for valid sequences, as previously described [15].
Briefly, these criteria included the presence of correct
AAV sequence following the AAV-specific primer and
correct linker-tag sequence on the opposing end. These
sequence constraints mitigate the possibility of artifactual
products [15,17,18]. Of the 100 validated sequences, 39
contained AAV-chromosomal junctions. The remaining
sequences were relatively short, representing either
uninterrupted viral genome, or viral sequence with a
DNA fragment too small to unambiguously assign to the
human genome. The 39 confirmed cellular sequences cap-
tured averaged 103 base pairs, allowing high-confidence
placement in the human genome. Since both the location
of the integration junction in the viral inverted terminal
repeats and the nature of cellular sequences recovered for
the left and right primer sets were extremely similar, they
were pooled for further analysis.

Integration junction sequences mapped to ten chromo-
somes, with chromosome 19 receiving 36% of all events
(Figure 2B). Three genomic loci were represented by
greater than one unique integrant (Figure 2C and E).
AAVS1 was the most frequent site of viral genome
insertion, accounting for one-third of all events, while the
other two sites, PTHIR (chromosome 3) and LOC729862
(chromosome 5), each represented five percent of detected
integrations. These were also the three largest hotspots
identified via IC-Seq [15], and two of these hotspots were
detected in a previous low-throughput analysis [19]. The
thirteen unique integrants identified in AAVS1 begin
proximal to the AAV Rep binding site and span the first
15 Kb of PPP1R12C (Figure 2D). This distribution mir-
rors, on a diminutive scale, the peak-and-tail integration
phenotype described in the high-throughput analysis [15].

Examining the viral portion of the recombination
junctions revealed additional insights into AAV-2 inte-
gration biology. Of the 39 integrations, 92.3% involved
contiguous, identifiable viral sequence ligated directly
to human chromosomal sequence. The three instances
that displayed non-contiguous viral sequence involved
viral-viral recombination events in addition to the viral-
chromosomal recombination. For the sequences in which
contiguous viral regions recombined with chromosomal
DNA, 91.6% of viral junctions occurred in the external
120 bp of the inverted terminal repeats (Figure 3A).
Within this region, a 19 bp span (position 65-83) accounts
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Sample Sequences Valid reads Integrations
AAV-2 left (2) 80 52 19
AAV-2 right (2) 60 48 20
AAV-2 total (4) 140 100 39
Rank Chrom. Gene Integrations Percent
1 Chr 19 PPP1R12C 13 33.3
2 Chr 3 PTH1R 2 5.1
3 Chr 5 LOC729862 2 5.1
loci; all sites with greater than one insertion are shown.
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Figure 2 Chromosomal distribution of integration junctions. (A) Summary of junction data obtained using both the left and right AAV-2

primer sets; the number in parenthesis represents biological replicates. (B) Unique integration events per mappable megabase of human chromosomes.
(C) Genome-wide view of all integration events (red dots) and genes (blue bars). Darkness, size, and proximity to the center correspond with increasing
insertions per locus. Chromosome sizes and banding pattems are presented in the outermost ring. (D) Profile of unique integrations around AAVST in 1
Kb intervals, with genes and gene orientation (blue arrow). RBS = Rep binding site of AAVS1 (red arrow). (E) Summary of most frequent AAV integration
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for 69.4% of all viral junctions. This small sequence forms
one of the two hairpin loops of the viral ITR and is part of
the region that occurs in either a flip or flop orientation
[21]. Its position relative to the Rep binding and nicking
sites provides insight that may explain the targeting of this
region (Figure 3B). After a Rep complex engages the Rep
binding sequence (RBS), the terminal resolution site (TRS)
is nicked, and the complex proceeds with 3'-5" helicase
activity [22-24]. Therefore, the hairpin loop identified as a
viral recombination hotspot is the first strong secondary
structure encountered by the amplification polymerase
complex and may serve to halt progression long enough
to facilitate recombination with host DNA via cellular
pathways. Additionally, previous work has identified that
this internal hairpin loop is specifically bound by AAV
Rep during I'TR nicking [25]. Thus, the positioning of the

Rep nicking complex may contribute to the creation of
the observed recombination hotspot.

Several previous studies, mostly involving AAV vectors,
have identified the ITRs as frequent viral recombination
points in the absence of Rep [20,21,26,27]. Since the
AAV genome is linear and flanked by ITRs, viral-cellular
recombination would be expected to occur in this region.
Additionally, the complex secondary structure of the ITRs
is sufficient to induce a host DNA damage response
[28-30]. Based on the data presented in this study, and
considering the accumulated insight from previous work
[20,21,26-30], the identification of the extreme targeting of
one specific ITR hairpin as the primary recombination
hotspot is an important observation.

Interestingly, the data provided in this study offer
insight into the question of whether wild-type AAV
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Figure 3 ITR recombination frequency and structure. (A) Number of unique viral breakpoints recorded for each nucleotide position in the
first 120 bases of the ITR; numeral represents distance from the viral 5" end. Colored bars correlate with TR features as described in panel B. (B)
Nucleotide positions and features of the AAV [TR, with numerals indicating distance from 5" viral end. Green represents unassigned activity; red
represents the recombination hotspot hairpin; blue denotes the rep binding sites; and orange reflects the Rep nicking site (TRS). (C) The percent of
total recombination events involving viral-chromosomal junctions, viral-viral junctions, and mixed junctions, i.e. both viral-viral and viral-chromosomal
recombination in the same molecule. (D) The percent of total validated sequences that are intact virus, viral-chromosomal junctions with intact,

single-copy virus, and sequences involving viral-viral recombination.

genomes integrate as single copies or concatamers.
Previous work using Southern blotting to characterize
integrations from several cell lines suggested that AAV
integrates as head-to-tail concatamers [31]. The data
analyzed in this study are one hundred unique sequences
from a diverse cell population. Of the one hundred
sequences that met our inclusion criteria, forty-six were
intact viral sequence, thirty-six were direct viral-chromo-
somal events, fifteen were viral-viral recombinations
and three sequences possessed both viral-viral and
viral-chromosomal recombination. Therefore, 66.7% of all
recombination events captured were between single viral
genomes and human chromosomal DNA (Figure 3C).
Additionally, we noted that 82% of all sequences were
free of viral-viral recombinations (Figure 3D). Thus,
analyzing both ends of integrated AAV-2 sequences,
the data indicate viral genomes predominantly integrate
into host DNA as single copies.

This study of complete viral-chromosomal junctions
derived from cloning and sequencing IC-Seq DNA
pools provides valuable insight into AAV integration.

The structurally complex, repetitive, and GC-rich nature
of these sequences may hinder capture of the entire
junction-population. We have taken many steps to
mitigate these effects. These steps included using: short
sequences from random breaks, two primer sets, stringent
sequence validation, robust polymerases, and high melting
temperatures. Therefore, we believe that the junctions
captured and analyzed in this study are not unduly
influenced by sequence constraints, and present a valuable
representation of the AAV-2 junction population. The
insertion profile of AAV-2 maintained the same top
three hotspots found using high-throughput technology
and the distribution around AAVS], the largest hotspot,
was also quite similar. In the absence of Rep, the unique
AAV-2 ITR structure is a target for cellular DNA repair
and recombination pathways which can vary in a cell
dependent manner [21,30,32,33]. In the case of wild-type
AAV-2, Rep binding to the RBE as well as the hairpin
stem influences helicase activity [25]. Therefore, Rep,
in concert with cellular DNA repair complexes, may
contribute to formation of the internal stem-loop ITR
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recombination hotspot identified in this study. We
anticipate that cell-specific differences in DNA repair
proteins and Rep interacting proteins may also influence
the integration profile to some extent. However, direct
Rep-DNA interactions appear to play the dominant role in
defining the genome-wide targets for AAV-2 integration
[15,19]. Finally, based on the population of junctions
captured, AAV-2 genomes were found to predominately
integrate as single genome copies, and viral-viral recombin-
ation was modest. This study may impact Rep-mediated
gene therapy approaches and highlights how long read
length, even on a modest scale, may serve to significantly
augment the understanding of high-throughput data sets.
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