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Abstract

Background: Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry
worldwide. In addition to improved management and husbandry practices, the availability of several anti-PCV2
vaccines provides an efficient immunological option for reducing the impact of these diseases. Most anti-PCV2
vaccines are marketed as injectable formulations. Although these are effective, there are problems associated with
the use of injectable products, including laborious and time-consuming procedures, the induction of inflammatory
responses at the injection site, and treatment-associated stress to the animals. Oral vaccines represent an improvement
in antigen delivery technology; they overcome the problems associated with injection management and facilitate
antigen boosting when an animals’ immunity falls outside the protective window.

Methods: Chitosan microparticles were used as both a vehicle and mucosal adjuvant to deliver yeast-derived
PCV2 virus-like particles (VLPs) in an attempt to develop an oral vaccine. The physical characteristics of the microparticles,
including size, Zeta potential, and polydispersity, were examined along with the potential to induce PCV2-specific cellular
immune responses in mice after oral delivery.

Results: Feeding mice with PCV2 VLP-loaded, positively-charged chitosan microparticles with an average size of 2.5 um
induced the proliferation of PCV2-specific splenic CD4/CD8" lymphocytes and the subsequent production of IFN-y to
levels comparable with those induced by an injectable commercial formulation.

Conclusion: Chitosan microparticles appear to be a safe, simple system on which to base PCV2 oral vaccines. Oral
chitosan-mediated antigen delivery is a novel strategy that efficiently induces anti-PCV2 cellular responses in a mouse
model. Further studies in swine are warranted.
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Background

Porcine circovirus-associated diseases (PCVAD) are a
major problem affecting the productivity of the swine in-
dustry, resulting in considerable losses worldwide [1].

Porcine circovirus type 2 (PCV2) is thought to be the
major causative agent of post-weaning multisystemic wast-
ing syndrome (PMWS), a disease characterized by severe
immunosuppression in the porcine host. The latest evi-
dence suggests that PCV2-induced immune disorders are
caused by silencing plasmacytoid dendritic cell responsive-
ness to pathogen-associated danger signals [2].

Consequently, PCV2 is also associated with many other
conditions, including respiratory disease complex, repro-
ductive failure, porcine dermatopathy and nephropathy
syndrome (PDNS), congenital tremor, necrotizing tra-
cheitis, and exudative epidermitis [3]. These diseases are
known as PCVAD or PCV2-associated diseases, a name
that the American Association of Swine Veterinarians
(AASV) uses to group together all diseases attributed to
PCV2, including PMWS [4].

In addition to improved management and husbandry
(e.g., better hygiene, less overcrowding, and better venti-
lation), anti-PCV2 vaccines are an efficient method of
reducing both the impact of the disease and the subse-
quent economic costs; therefore, the worldwide demand
for anti-PCV2 vaccines is high [5].

At present, five vaccines against PCV2 have been intro-
duced into the international market. Three of these contain
PCV2 capsid protein, which is expressed in baculovirus as
an immunogenic virus-like particle antigen, and two con-
tain inactivated PCV2 virions or a PCV2/PCV1 chimera
[1]. In all cases, reports from field trials suggest that com-
mercially available PCV2 vaccines make a significant con-
tribution to reduced mortality and improved pig growth
on PMWS-affected farms, thereby reducing the economic
impact of PCVAD on pig production worldwide [6].

We have long sought to develop an oral PCV2 vaccine
for use by the swine industry. Oral administration should
be more effective and reduce the indirect costs associated
with injectable products. Developing injectable vaccines is
laborious, time-consuming and expensive, and their ad-
ministration is stressful for the animals and the products
often induce inflammatory responses at the injection site
[7]. On the other hand, oral vaccines, which can be ad-
ministered via food or water, represent an improvement in
antigen delivery technology by enabling farmers to boost
an animal’s immunity when it falls outside the protect-
ive window. This makes oral immunization procedures
better suited for mass administration [8]. However, in-
creasing the mucosal immunogenicity of oral vaccines
without compromising safety and tolerability is the holy
grail of the vaccine industry [9]. Furthermore, antigen di-
gestion at mucosal sites is a factor that limits successful
vaccine development; thus recent studies have aimed to
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microencapsulate different antigens within natural poly-
mers, such as a chitosan, as a vehicle for the delivery of
mucosal vaccines [10,11].

Chitosan has well-defined properties, including good
bioavailability and biocompatibility, low cost, and an ability
to open intracellular tight junctions; therefore, it may be a
suitable polymer for use as a delivery vehicle for oral vac-
cines [10]. Moreover, functionalized forms of chitosan have
attracted considerable interest due to improved mucoadhe-
sivity, permeability, stability, and controlled/extended anti-
gen release profiles at mucosal sites [11].

Recent evidence shows that oral administration of chito-
san microparticles increases mucosal and systemic im-
mune responses [12,13]. The most recent oral vaccination
studies show that antigen-loaded chitosan microparticles
gain access to the gut-associated lymphoid tissue (GALT)
by passing through the M-cells, which is a key step for in-
ducing immune responses [14,15]. Therefore, it appears
that antigens carried by chitosan microparticles may be
targeted specifically to the Peyer’s patches, thereby enhan-
cing both local and systemic immune responses [10].

Here, we combined two strategic approaches to de-
velop an experimental oral vaccine against PCV2. The
vaccine was based on yeast-derived PCV2 virus-like par-
ticles (VLPs) microencapsulated with chitosan.

The PCV2 VLPs were produced using a synthetic opti-
mized PCV2 cap gene sequence, which was expressed in
Saccharomyces cerevisiae (S. cerevisiae). The expression
and production of the Cap protein in yeast ensures that
it is folded correctly and carries the appropriate post-
translational modifications, thereby promoting auto-
aggregation and the spontaneous formation of VLPs [7].
In addition to inducing a more efficient immune re-
sponse, such technology provides a new platform for the
production of assembled PCV2 antigens.

Therefore, we set out to show that a new vaccine formu-
lation based on raw yeast extracts containing PCV2 VLPs
microencapsulated with chitosan would show immuno-
genic properties after oral administration. We hypothesized
that oral administration of these chitosan microcapsules
to mice would result in the delivery of VLPs to the GALT
and elicit specific cellular responses against PCV2. A
mouse model was used for these proof-of-concept experi-
ments so that we could examine the immunological basis
of the cellular response to oral immunization in detail and
optimize the adjuvant effects of different chitosan-based
formulations.

Results

Encapsulating the PCV2 cap protein into chitosan
microparticles

Crude yeast extracts containing approximately 10% p/p
PCV2 VLPs were encapsulated with low molecular weight
(LMW) chitosan, which improves both permeability and
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stability. Scanning electron microscopy showed that the
microparticles had an average diameter of 2.5 um and a
spherical morphology (Figure 1A). Analysis of light scatter
and Zeta potential revealed that the microparticles had a
polydispersity size index of 0.005 and an average superfi-
cial charge of 8.19 mV, respectively (Figure 1B and C).

Furthermore, purified LMW chitosan showed improved
adsorptive affinity and trapping of PCV2 VLPs into micro-
particles (Figure 2C). The Dot blots show that purified
LMW chitosan-derived microparticles (Figure 2C, dots A
and C) contained slightly more PCV2 antigen than non-
purified LMW chitosan-derived microparticles (Figure 2C,
dots B and D).

Notably, loading the microparticles with recombinant
yeast extracts resulted in their being recognized by anti-
PCV2 antibodies, as shown by immunofluorescence
analysis (Figure 2A). This suggests that some of the
yeast-derived PCV2 antigen was displayed on the surface
of the microparticles. Also, we confirmed the presence and

Page 3 of 12

integrity of the PCV2 Cap protein in the bulk of chitosan
microparticles by denaturing them and immunoblotting
the released proteins with an anti-PCV2 antibody.
Figure 2B shows that the antibody recognized a spe-
cific band of 30 kDa, which is the predicted size of the
PCV2 Cap protein, indicating that the Cap protein was
not structurally altered during loading into the chitosan
microparticles.

To determine the maximal amount of antigen that can
be captured by a microparticle, we next monitored the
release of the Cap protein from the microparticles by
heating them under acidic conditions and detecting the
release of PCV2 antigen over time (Figure 3A). The Dot
blot results showed that maximum antigen release oc-
curred after heating the microparticles at 90°C for 30 min.

Next, we examined whether the yeast extracts to be
microencapsulated contained the PCV2 Cap protein in
the form of VLPs. Recombinant yeast extracts were puri-
fied by sucrose gradient centrifugation and examined
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index (0.005) was measured by light scatter analysis.

Figure 1 Chitosan microparticles charged with yeast-derived porcine circovirus type 2 (PCV2) virus-like particles (VLPs) by antigen ionic
gelation. Crude yeast extracts containing PCV2 VLPs were coated with low molecular weight chitosan. (A) Particle size and morphology by SEM.
(B) The Zeta potential was measured to ascertain the average superficial charge (8.19 mV) and (C) the overall microparticle size and polydispersity
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Figure 2 The porcine circovirus type 2 (PCV2) Cap protein encapsulated in chitosan microparticles. The PCV2 Cap protein was analysed
by (A) immunofluorescence microscopy (magnification, x100), (B) Western blotting, and (C) Dot blot analysis with an anti-PCV2 monoclonal
antibody. For the Western and Dot blots, microparticles were denatured by heating to 90°C for 15 min under acidic conditions. The PCV2 Cap
protein contained in each formulation was then detected with a PCV2-specific antibody (Jeno Biotech Inc). PCV2 Cap protein was delivered from
purified LMW chitosan-derived microparticles (dots A and C) and from non-purified LMW chitosan-derived microparticles (dots B and D).

under an electron microscope for the presence of nano-
particles, as previously described [7]. The purified yeast
extracts contained numerous nanoparticles with an aver-
age diameter of 18 nm and a morphology consistent with
that of PCV2 VLPs (Figure 3C).

Chitosan microparticles loaded with yeast-derived PCV2
VLPs elicit antigen-specific cellular immune responses in
mice after oral administration

We next examined whether these microparticles could
induce the proliferation of antigen-specific lymphocytes
isolated from the spleens of C57BL/6 mice after oral ad-
ministration. For this purpose, splenocytes from orally
immunized mice were isolated, re-stimulated with PCV2
virions in vitro, and then analysed by flow cytometry.
The animals were divided into two groups (n = 3/group).
Group 1 was immunized four times with the microparti-
cle formulation (each immunization was separated by a
2 week interval), and the responses were compared with
those of the non-immunized control group (group 2).

Flow cytometric analysis of CD4" splenocytes isolated
from immunized mice and re-stimulated in vitro with
PCV2 virions (Figure 4A, right panel) showed several
peaks of low CFSE fluorescence, which is consistent with
the presence of cell progeny and suggests PCV2-specific
lymphocyte proliferation. Analysis of CD8" splenocytes
under the same conditions (Figure 4B, right panel) pro-
duced the same result. We also analysed these T-cell
populations in non-immunized mice, showing a little dif-
ference between the proliferation of cells exposed to the
virus and that of non-exposed cells (Figure 4A and B,
left panels).

This experiment suggests that splenic T-cell populations
(CD4" and CD8") in orally immunized mice actively prolif-
erate upon exposure to the virus. The quantitative data de-
rived from exposed and non-exposed cells inside the
proliferation gate for each group is summarized in Table 1.

An additional control group was used to examine the
immune response elicited by a commercial PCV2 vac-
cine, which was administered subcutaneously. The results
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Figure 3 Presence of the porcine circovirus type 2 (PCV2) Cap protein in the chitosan microparticles. (A) The kinetics of Cap protein
release from chitosan microparticles were analysed by Dot blotting after heating to 90°C for 0, 5, 10, 15 and 30 min under acidic conditions.
(B) Dot blot analysis was used to estimate the amount of Cap protein loaded into chitosan microparticles relative to purified PCV2 6 X his-cap
protein (10 mg/ml). The immunoreactivity of the Cap protein-loaded microparticles was compared with that of PK15-derived PCV2 virions and
yeast-derived PCV2 VLPs. (C) Electron micrographs showing yeast-derived PCV2 VLPs. The VLPs were viewed using by transmission electron
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showed that, even though the animals exhibited an im-
portant base-line proliferative response, the response was
equivalent to that of animals immunized with the oral vac-
cine, particularly in terms of CD8" cells, which showed an
important proliferative response until the third and fourth
cell generations (Figure 5). These data are quantitatively
presented in Table 2.

IFN-y induction after oral immunization

An enzyme-linked immunosorbent assay was used to
measure the concentration of murine IFN-y in spleen
cell culture supernatants. Splenocytes isolated from or-
ally immunized mice and re-stimulated in vitro with
PCV2 virions produced significantly more IFN-y than
splenocytes isolated from non-immunized mice to levels

comparable with those induced by an injectable com-
mercial formulation (p < 0.01) (Figure 6).

Discussion
Here, we examined the oral vaccine concept in mice
by studying the ability of chitosan-microparticles loaded
with minimally purified yeast material enriched with
PCV2 VLPs to elicit PCV2-specific cellular immune
responses.

We previously showed that S. cerevisiae is a simple
and safe system in which to generate virus-like PCV2
particles that induce PCV2-specific antibody responses
in mice after oral administration [7]. Therefore, we hy-
pothesized that the successful initiation of anti-PCV2
mucosal responses after oral administration of yeast-
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Figure 4 Murine T-cell responses elicited by immunization with the oral porcine circovirus type 2 (PCV2) vaccine. The horizontal and
vertical axes denote the fluorescence intensity (CFSE) and the number of acquired events, respectively. The CD4" (A) and CD8" (B) T-cell populations
in the spleens of non-immunized mice (right panels) and in the spleens of mice immunized with the chitosan encapsulated vaccine (left panels).
Splenocytes were harvested 8 weeks after primary immunization and re-stimulated in vitro with PK15-derived PCV2 virions. The cells exposed to PCV2
virions are shown in light red and those not exposed to PCV2 virions are shown in purple (vehicle). As a positive control for non-specific lymphocytic
proliferation, splenocytes were incubated in 96-well plates coated with anti-CD3 antibodies (grey histograms). The results show representative

Cd

expressed PCV2 Cap protein would depend on effective
antigen delivery to mucosal sites, as well as upon correct
folding and self-assembly of the antigen into VLPs. How-
ever, the adjuvant effect of the yeast cell constituents must
also be taken into account. The latter assertion is sup-
ported by several reports showing that yeast cell wall com-
ponents, mainly B-glucans, stimulate immune responses
at mucosal sites [16-20].

On the other hand, the low stability of antigens exposed
to the harsh conditions in the gastrointestinal tract, to-
gether with the induction of mucosal tolerance, make the
induction of a reliable immune response through the oral
delivery of assembled viral antigens very difficult. Thus,
either large doses of antigens or very stable antigens are
required. Therefore, to circumvent these issues, we encap-
sulated crude yeast extracts containing PCV2 VLPs with
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Table 1 Flow cytometry analysis of splenic CD4+ and CD8
+ cells inside the proliferation gate for mice immunized
with the experimental oral PCV2 vaccine
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Table 2 Flow cytometry analysis of splenic CD4+ and CD8
+ cells inside the proliferation gate for mice immunized
with a commercial anti-PCV2 vaccine

Oral vaccine Non-immunized Circoflex™ Non-immunized
CD4+ Non-stimulated 2937 +£204 13.08 £4.83 CD4+ Non-stimulated 31.38+14.08 13.08 +4.83
PCV2-stimulated 48.60 +6.92 2830+883 PCV2-stimulated 50.03 £9.71 2830+883
CD8+ Non-stimulated 38.16+5.02 1939+527 CD8+ Non-stimulated 3943 +9.75 1939+527
PCV2-stimulated 63.26 £1.23 3295+ 1.14 PCV2-stimulated 6329+ 1333 3295+ 1.14

The table shows the percentage of CFSE-stained CD4* and CD8" cells (derived
from orally immunized and non-immunized mice) present in the proliferation
gate after re-stimulation (or vehicle stimulation) with PCV2 virions. Data represent
the mean + standard deviation of two independent experiments.

LMW chitosan, which improves both cell permeability
and antigen stability. LMW chitosan also shows good ad-
sorptive affinity for the PCV2 antigen, enabling it to be ef-
ficiently encapsulated into microparticles. Our rationale
was based on the hypothesis that chitosan structurally
resembles heparan sulfate, a glycosaminoglycan that is
the natural receptor for PCV2 on host cells [21]. Also,
yeast-derived PCV2 VLPs have a negative Zeta potential
(-12 mV, data not shown), which is opposite to that of
chitosan microparticles (+8.19 mV); thus the chitosan
and the PCV2 VLPs may be electrostatically attracted
to each other.

It is also worth considering that part of the yeast-
derived PCV2 antigen is located on the surface of the chi-
tosan microparticle, enabling it to react specifically with
the anti-PCV2 antibody. Thus, in this case, the micropar-
ticle formulation did not follow a core-shell stratification,
meaning that the antigen is located within the core and
the chitosan simply coats the surface. Therefore, when the
antigen is microencapsulated by ionotropic gelation from
a homogeneously dispersed polymer-antigen solution, a
percentage of the antigen is retained in the matrix of the
microparticle and the rest is displayed on the microparti-
cle surface. Thus, the exposed antigen could be detected

The table shows the percentage of CFSE-stained CD4+ and CD8+ cells (derived
from mice immunized with CircoFLEX™ as a market anti-PCV2 vaccine and
non-immunized mice) present in the gate of proliferating cells after re-stimulation
with PCV2 virions or vehicle stimulation. Data represent the mean + standard
deviation of two independent experiments.

by immunofluorescence analysis using an anti-PCV2 anti-
body. This experiment confirmed that the PCV2 antigen
was displayed on the microparticle surface (Figure 2A).
Similar fluorescent data have been observed for other chi-
tosan microparticle formulations [22].

Previous in vivo studies show that coating vaccine an-
tigens with chitosan microparticles is the key to the suc-
cess of mucosal immunization in mice. For example, van
der Lubben et al. carried out extensive research into the
use of chitosan microparticles for the delivery of muco-
sal vaccines and, in particular, their uptake by Peyer’s
patches [10,14,15,23]. They generated a human intestinal
M-cell model by co-culturing intestinal epithelial cells
(Caco-2) and GALT-derived B-lymphocytes (Raji cells),
and then investigated the uptake of microparticles [15].
They found that chitosan microparticles were taken
up by M-like cells within the artificial epithelium; up-
take by Peyer’s patches was also confirmed in a mur-
ine model [23]. A common finding of these studies was
that the size of microparticles is a key factor: efficient
uptake by M-cells requires microparticles measuring <
10 pm in diameter if they are to reach the dome of
the Peyer’s patches [24]. Since chitosan is biodegradable,
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Figure 5 Murine T-cell responses elicited by immunization with a commercial porcine circovirus type 2 (PCV2) vaccine. The horizontal
and vertical axes denote the fluorescence intensity (CFSE) and the number of acquired events, respectively. The CD4" (left) and CD8" (right) T-cell
populations in the spleens of mice immunized subcutaneously with a commercially available PCV2 vaccine, CircoFLEX™. Splenocytes were harvested
8 weeks after primary immunization and re-stimulated in vitro with PK15-derived PCV2 virions. Cells exposed to PCV2 virions are shown in light red and
those not exposed to PCV2 virions are shown in purple (vehicle). The results show representative histograms from two independent experiments.
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Figure 6 IFN-y levels in the supernatants of splenocytes
harvested from immunized mice. Splenocytes were isolated

8 weeks after the first immunization and re-stimulated in vitro
with porcine circovirus type 2 virions. IFN-y levels in the supernatant
were analysed in a mouse IFN-y enzyme-linked immunosorbent
assay. Data represent the mean + standard deviation of triplicate wells.

van der Lubben et al. also demonstrated that antigen was
released from microparticles after their uptake by M-cells
[23]. In general, the behaviour of chitosan microparti-
cles (both in vitro and in vivo) depends on physicochemi-
cal properties such as size, Zeta potential, and surface
characteristics [10,14,15,23].

The microparticles formulated and used in the present
study measured ~2.5 pm in diameter, and showed very
low polydispersity and a slight positive charge. Consid-
ering the effect of micro-carrier surface charges on
cellular uptake, it is postulated that a positive Zeta
potential is beneficial for M-cell transport because the
M-cell membrane is negatively charged [25]. In con-
clusion, both the size and Zeta potential of chitosan
microparticles loaded with yeast-derived PCV2 VLPs
are key factors that determine access to the GALT,
thereby inducing the proliferation of PCV2-specific T-
cells and the production of IEN-y to levels compar-
able with those induced by an injectable commercial
formulation.

This is the first report to explore cell-mediated im-
mune response induced by oral administration of PCV2
antigen encapsulated within chitosan microparticles.

The functionalized (chemically modified) form of chito-
san used for preparing microparticles has attracted con-
siderable interest of late due to improved mucoadhesivity,
permeability, stability, and a controlled/extended antigen
release profile at mucosal sites [11,26]. Therefore, our fu-
ture studies will explore the use of these functionalized
forms of chitosan for the preparation of microencapsu-
lated PCV2 antigens and their optimization for use as oral
vaccines.
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Materials and methods

Transformation and expression of the PCV2 cap gene in

S. cerevisiae and production of yeast extracts for
microencapsulation

PCV2 cap gene expression was optimized as previously
described by Bucarey et al. [7], with some modifications.
Briefly, the pYES2::0pt-cap plasmid was transformed into
the expression host, S. cerevisiae INVScl (genotype:
MATa his3A1 leu2 trp1-289 ura3-52/MATa his3A1 leu2
trp1-289 ura3-; phenotype: His-, Leu-, Trp-, Ura-) using
the lithium acetate/single-stranded carrier DNA/poly-
ethylene glycol method [27]. Transformed colonies were
cultured in selective autotrophic yeast nitrogen base
(YNB) URA medium (6.7 g of YNB (US Biological, MA,
USA), 5 g of casamino acid, 20 g of glucose, 0.03 g of
tryptophan (Sigma-Aldrich Co., MO, USA), and 20 g of
bactoagar (US Biological, Ma, USA) in 1,000 ml of dis-
tilled water) for 48 h at 30°C. The recombinant colonies
were picked and transferred into 10 ml of liquid YNB
URA medium and cultured overnight at 30°C until the
optical density reached 0.6-0.7 at 600 nm (ODggp). The
cells were then harvested, washed twice with phosphate-
buffered saline (PBS), and inoculated into 50 ml of in-
duction medium (YNB URA medium containing 2%
galactose (Sigma-Aldrich Co., MO, USA) instead of glu-
cose) to a final ODgyy of 0.1-0.3. The cells were then
cultured at 30°C with shaking. The cells were induced
for 24 h, harvested by centrifugation at 1,500 x g for
5 min at 4°C, and then resuspended in 5 ml of 0.6 M
KCl. The cell walls were then digested with liticase
(0.1 mg/ml; Sigma-Aldrich Co., MO, USA) at 37°C for
1 h. The resulting protoplasts were sonicated on ice (5 x
60 s cycles with 20 s intervals) using a 102C model
Branson Digital Sonifier (Branson Ultrasonics Corporation,
CT, USA) operated at 40% amplitude. The raw cell ex-
tracts were clarified by centrifugation at 1,500 x g for
5 min at 4°C and analysed by SDS-PAGE followed by
Western blotting with a mouse anti-Cap PCV2-specific
monoclonal antibody (isotype 1gG2a; 1:100 dilution; Jeno
Biotech Inc., Republic of Korea), as described by Bucarey
et al. [7]. The raw extracts (without clarification) were ly-
ophilized and ground to produce the yeast powder used
for microencapsulation into LMW chitosan (75-85% dea-
cetylated; Sigma-Aldrich Co., MO, USA).

Chitosan and yeast-derived PCV2-antigen
microencapsulation

Preparation of the vaccine formulation included the mi-
croencapsulation of the viral antigen to protect it and
control its release at the mucosal level. Approximately
30 mg of PCV2 Cap protein was used for each microen-
capsulation. The amount was calculated by assuming
that approximately 10% p/p of the dry weight of the re-
combinant yeast extract comprised PCV2 VLP (data
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obtained from a previous report [7]). The PCV2 VLP anti-
gen was coated with LMW chitosan (Sigma-Aldrich, MO,
USA) by ionotropic gelation as previously described [23],
with some modifications. Briefly, 30 ml of LMW chitosan
(1% w/v in 2.5% acetic acid) was mixed with 375 mg of
dry raw yeast extract (S. cerevisiae/pYES2:opt-cap) with
mechanical stirring (1510 rpm). The microencapsulation
reaction was initiated by the drop-wise addition of 5 ml of
sodium tripolyphosphate (TPP; 3 mg/ml) (Sigma-Aldrich,
MO, USA) at a rate of approximately 1 ml/min (with con-
stant stirring). The solution was then stirred for a further
20 min at room temperature.

The resulting microparticle suspension was centri-
fuged at 3,000 x g for 10 min. The efficiency of the mi-
croencapsulation process was 90-95% (estimated by
subtracting the total amount of yeast-derived protein
remaining in the supernatant from the initial amount of
protein added). Protein concentrations were measured
using the BCA™ protein assay kit (Pierce, Rockford, IL,
USA). The pelleted microparticles were washed twice
with Milli-Q water, lyophilized, weighed, and stored.
Samples of the lyophilized microparticles were sus-
pended in PBS (pH 7.0; final concentration, 35 mg/ml)
and stored at 5°C. These samples were used to test
PCV2 antigen delivery in vitro and to induce cellular im-
mune responses in mice following oral administration.

Scanning electron microscopy, size estimation, and
measurement of the Zeta potential of chitosan
microparticles

Each microparticle formulation was examined under a
scanning electron microscope (SEM; Tesla BS 343 oper-
ating at 15 KeV; x3,300 magnification) to examine the
morphology and size of the individual microparticles.
Briefly, the freeze-dried microparticles were spread onto
metallic discs and gold-coated (20 nm thick) using an
EMS-550 automated sputter coater.

The Zeta potential of the chitosan microparticles was mea-
sured using a Zeta potential analyser (Zeta plus, Brookhaven
Instruments Co., NY, USA). All Zeta potential measure-
ments were determined at 25°C in an electric field of
11.00 V/cm. The size and polydispersity index were deter-
mined by light scattering using a multi-angle particle siz-
ing option (90PLUS/BI-MAS, Brookhaven Instruments
Co.). A stock solution of each chitosan microparticle sam-
ple (1.6 mg/ml in ultra-pure water) was used for both Zeta
potential and particle size measurements. Ten millilitres
of each solution were mixed with 10 ml of bi-filtered KCl
(I mM in ultra-pure water; pH 7).

Immunofluorescence microscopy of chitosan
microparticles

For immunofluorescence microscopy, 10 mg of freeze-
dried chitosan microparticles were blocked overnight in
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200 pl of PBS/5% skim milk at 4°C and then incubated
overnight at 4°C with a mouse anti-Cap PCV2-specific
monoclonal antibody (isotype IgG2a, Jeno Biotech Inc.)
diluted 1:100 in PBS/0.1% Tween-20 (PBST). After wash-
ing with PBST, the microparticles were incubated with
FITC-conjugated goat anti-mouse IgG (H + L) (Kirkegaard
& Perry Laboratories Inc.) for 1 h. After further washing,
the microparticles were visualized under a Nikon Eclipse
E400 fluorescence microscope interfaced to a PC running
capture software (Nis-Element Br, Nikon).

Microparticles loaded with extracts of S. cerevisiae
transfected with an empty plasmid (S. cerevisiae/pYES2)
were subjected to the same treatment and used as a
negative fluorescence control.

PCV2 antigen loading and delivery efficiency of the
chitosan microparticles

The release of PCV2 VLP from the chitosan microparti-
cles was measured in Tris-HCI (pH 1). After antigen load-
ing, the microparticles were resuspended in Tris-HCI to
yield a 1% w/v suspension. Samples (200 pl) were then in-
cubated at 90°C with gentle shaking. After 0, 5, 10, 15 and
30 min, the tubes were centrifuged (10,000 x g for 2 min).
Samples of the supernatant (100 pl) were taken and the
amount of non-bound PCV2 VLP was determined using
the Dot blot method. Briefly, samples were transferred
onto a nitrocellulose membrane using a Biodot™ microfil-
tration apparatus (Bio-Rad, CA, USA). The nitrocellulose
membrane was then blocked overnight in 5% skim milk
at 4°C and then incubated overnight at 4°C with a mouse
anti-Cap PCV2-specific monoclonal antibody (isotype
IgG2a, Jeno Biotech Inc.) diluted 1:100 in PBS/0.1% Tween-
20 (PBST). After washing with PBST, the membrane was
incubated with horseradish peroxidase-conjugated goat
anti-mouse IgG (H+L) (1:1,000 dilution; Kirkegaard &
Perry Laboratories Inc.) for 1 h. After further washing, the
signal was detected using 4-chloro-1-naphthol/H,O, as
directed by the manufacturer (Pierce, Rockford, IL, USA).
The concentration of yeast-produced Cap protein was es-
timated by comparing the signal intensities of the blots
with those of known concentrations of a highly purified
6xhis-Cap fusion protein as previously described [7].

Purification of yeast-derived PCV2 virus-like particles

Clarified yeast extract (500 pl) expressing PCV2 Cap
protein was layered onto a discontinuous sucrose gradi-
ent (20-50%) and centrifuged at 80,000 x g for 18 h
using a Beckman SW-28 rotor. The gradients were frac-
tioned by puncturing the bottom of the centrifuge tube and
collecting approximately ten fractions. The fraction dens-
ities were determined using a refractometer (32-G110e;
Carl Zeiss Jena, Germany). Fractions with a density be-
tween 1.2 and 1.27 g/cm?® (three fractions in all) were
pooled, and the presence of Cap protein was determined
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by SDS-PAGE. The VLP preparations were dialyzed against
PBS and stored at —20°C until visualization by transmission
electron microscopy (TEM).

Purification of the PCV2 6xhis-Cap protein

The complete PCV2 capsid protein gene was subcloned
in a pQE8OL expression vector (Qiagen, Inc., USA) via
the Sphl and Kpnl restriction sites to generate an in-
frame genetic fusion bearing a polyhistidine tag. The
bacterial Cap protein was used to produce a purified
6xhis-Cap fusion protein for use as a PCV2 protein
standard for blotting as described previously [7]. Briefly,
the recombinant E. coli strain, BL21 (Amersham), con-
taining the pqE80L:cap plasmid was grown in Luria
Broth medium (10 g I yeast extract, 16 g I tryptone,
5 g 1"' NaCl, 100 pg/ml ampicillin, pH 7.0) and induced
for 5 h at 37°C with isopropylthio-b-D-thiogalactoside
(IPTG) at a final concentration of 0.1 mM. The cells
were pelleted and resuspended in lysis buffer (8 M Urea,
10 mM Tris, 100 mM NaH,PO,, 1% Triton X-100,
pH 8.0) and then lysed by sonication on ice for two
60 s cycles using a Branson Digital Sonifier® operated at
10% amplitude. After centrifugation at 10,000 x g for
10 min at 4°C, the supernatant was loaded onto a Ni-NTA
affinity column (Ni-NTA Purification System, Invitrogen,
CA, USA) according to the manufacturer’s protocol. After
washing twice with PBS, the Cap protein was eluted in elu-
tion buffer (50 mM Tris-HCI, 10 mM imidazole, pH 8.0)
and collected. The collected samples were analysed by
SDS-PAGE and Western blotting, as described below. The
concentration of Cap protein was determined using a
Coomassie (Bradford) Protein Assay Kit (Pierce, Rockford,
IL, USA).

Transmission electron microscopy

Yeast-produced VLP preparations (20 ul) were diluted 1/10,
adsorbed onto a carbon-coated copper grid, and incubated
for 5 min. The grids were then dried using filter paper,
negatively stained with 3% phosphotungstic acid (PTA)
for 5 min, and viewed using a transmission electron
microscope (Zeiss EM 109) operating at 80 kV.

Animal experiments

Male C57BL/6 mice (5 weeks old) were obtained from
the Faculty of Veterinary Sciences at the University of Chile.
The animals were assigned to two experimental groups
(n=3 mice/group) and maintained in a temperature
and light-controlled environment with access to food
and water ad libitum. One group (group 1) was used to
evaluate specific anti-PCV2 cellular responses against
PCV?2 virions after oral administration of chitosan micro-
particles loaded with raw extracts of S. cerevisiae express-
ing the yeast-optimized cap gene (S. cerevisiae/pYES2:
opt-cap). The second group comprising untreated (control)
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mice (group 2) was subjected to the same treatment regi-
men, but they received PBS alone.

Group 1 received four 200 pl doses of a solution con-
taining 35 mg of chitosan microparticles dissolved in
1 ml of PBS (approximately 7 mg of microparticles per
mouse) via oral gavage, with a 14 day interval between
doses. The concentration of PCV2 Cap protein in each
dose (approximately 300 pg) was determined by densito-
metric analysis of Dot blots generated using standard dilu-
tions of known concentrations of a bacterially produced
Cap-6 x his fusion protein. Group 2 received four 200 pl
doses of PBS.

These immunization experiments were repeated twice
under the same conditions; thus the total number of ani-
mals analysed was 12.

An additional control group (n = 3) was used to examine
the immune response elicited by a commercially available
PCV2 vaccine (Ingelvac® CircoFLEX™, Boehringer Ingel-
heim Vetmedica GmbH), which was administered subcuta-
neously. Briefly, 0.1 ml of formulated vaccine, containing
approximately 100 pg of PCV2 antigen, was injected sub-
cutaneously, followed by a booster immunization (with the
same dose) 2 weeks later. A third and final immunization
was performed 2 weeks after boosting [28].

Animals were sacrificed by an overdose of a mixture of
isoflurane/O,. The experimental protocol was approved
by the institutional animal bioethics committee as stipu-
lated in the guide to the care and use of experimental ani-
mals of the Canadian Council on Animal Care.

Analysis of T-cell proliferation

Animals were euthanized on Day 42 of the experiment
as described above, and the spleens were aseptically re-
moved and ground through a sterile cuprous mesh into
PBS. A suspension of individual cells was then obtained
by repeated passage through a 21G syringe. The spleno-
cytes were then centrifuged and resuspended in erythro-
cyte lysis buffer (150 mM NH,Cl, 10 mM KHCOs,
1.3 mM EDTA). After washing with PBS, the cells were
stained with CFSE (CellTrace™; CFSE Cell Proliferation
Kit, Molecular Probes) as previously described [29], with
some modifications. Briefly, cells (5x 10”) were incu-
bated with 1 ml of PBS containing 10 uM CESE at 37°C
for 10 min. The cells were then washed twice with PBS/
5% FBS (Foetal Bovine Serum) resuspended (at 2 x 10°
cells/ml) in RPMI medium (Thermo Scientific™, MA,
USA) supplemented with 10% FBS and then seeded into
96-well plates at a density of 4 x10° cells/well. The
stained splenocytes were then re-stimulated with PCV2
virions (10 TCIDsy in 50 pl of MEM-«a) obtained from
PCV2-positive PK-15 cells (ATCC CCL-33) [30]. Non-
stimulated splenocytes were used as a negative control
(vehicle). As a positive control for non-specific lympho-
cytic proliferation, splenocytes were incubated in 96-well
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plates coated with anti-CD3 antibodies (polyclonal stimula-
tors). The cultures were incubated for 96 h and lymphocyte
proliferation was examined by acquiring 100,000 events
in a FACSCalibur® flow cytometer (Becton Dickinson
Immunocytometry Systems, CA, USA). Data were ana-
lysed using Flowing Software, version 2.5.

Initially, the population of interest was defined by gating
on SSC (cellular complexity) and FSC (cell size). The
population of interest was further defined as viable mature
and immature lymphocytes, as previously described [31].
This population contained the highest percentage of CD3"
cells. Further population analysis was performed by gating
on FSC and the CD4 or CD8 lymphocyte markers.

Measurement of IFN-y secretion

A mouse IFN-y enzyme-linked immunosorbent assay
(ELISA) Kit (Thermo Fisher Scientific Inc, MA, USA)
was used to measure the concentration of IFN-y in
T-cell culture supernatants according to the manufac-
turer’s instructions. Briefly, culture supernatants from
splenocytes derived from immunized and controls mice
were diluted 1:50 in PBS, and 100 pL of the resulting solu-
tion was added to triplicate wells of the ELISA plate. The
absorbance was measured at 550 nm and at 450 nm in a
Microplate Reader (Bio-Rad Instruments, CA, USA). The
former value was then subtracted from the latter. A stand-
ard curve was constructed using a set of standards pro-
vided by the manufacturer and the experimental values
were read off this curve.

Statistical analysis

The IFN-y ELISA assay results were expressed as the
mean * standard deviation. Differences between groups
were analysed by ANOVA with Tukey’s post-test. A
p-value < 0.01 was considered significant. Analyses were
performed using GraphPad Prism software.
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