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Abstract

Background: Co-infection of multiple genotypes of human papillomavirus (HPV) is commonly observed among
women with abnormal cervical cytology, but how different HPVs interact with each other in the same cell is not
clearly understood. A previous study using cultured keratinocytes revealed that genome replication of one HPV
type is inhibited by co-existence of the genome of another HPV type, suggesting that replication interference
occurs between different HPV types when co-infected; however, molecular mechanisms underlying inter-type
replication interference have not been fully explored.

Methods: Replication interference between two most prevalent HPV types, HPV16 and HPV18, was examined in
HPV-negative C33A cervical carcinoma cells co-transfected with genomes of HPV16 and HPV18 together with
expression plasmids for E1/E2 of both types. Levels of HPV16/18 genome replication were measured by quantitative
real-time PCR. Physical interaction between HPV16/18 E1s was assessed by co-immunoprecipitation assays in the
cell lysates.

Results: The replication of HPV16 and HPV18 genomes was suppressed by co-expression of E1/E2 of heterologous
types. The interference was mediated by the heterologous E1, but not E2. The oligomerization domain of HPV16 E1
was essential for HPV18 replication inhibition, whereas the helicase domain was dispensable. HPV16 E1 co-precipitated
with HPV18 E1 in the cell lysates, and an HPV16 E1 mutant Y379A, which bound to HPV18 E1 less efficiently, failed to
inhibit HPV18 replication.

Conclusions: Co-infection of a single cell with both HPV16 and HPV18 results in replication interference between
them, and physical interaction between the heterologous E1s is responsible for the interference. Heterooligomers
composed of HPV16/18 E1s may lack the ability to support HPV genome replication.
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Background
Human papillomavirus (HPV) has a circular double-
stranded DNA genome of approximately 8 kilo base-
pairs packaged in a capsid composed of two proteins L1
and L2 [1]. HPVs are classified into at least 170 types
based on the homology of nucleotide sequences of the
L1 gene [2], among which HPV16 and HPV18 are re-
sponsible for approximately 70% of cervical cancer cases
worldwide.
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The life cycle of HPV is tightly linked to the differenti-
ation of host epithelial cells. HPV infects basal cells of
stratified epithelia through small lesions, in which the
viral genome is maintained as episomes without express-
ing capsid genes and is passed on to daughter cells.
When the host cells initiate epithelial differentiation, the
HPV genome starts to replicate, and infectious virions
are produced and released from terminally differentiated
cornified cells [3].
Productive replication of the HPV genome in differen-

tiated cells requires a viral DNA helicase E1, a viral rep-
lication/transcription factor E2, and a replication origin
DNA, containing specific binding sites for E1 (E1BS)
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Figure 1 Expression of FLAG-tagged E1/E2s of HPV16/18 in
C33A cells. C33A cells were transfected with the indicated amounts
(ng) of the expression plasmids for E1/E2s of HPV16/18. Two days
after transfection, FLAG-tagged E1/E2s in the cell lysates were
detected by Western blotting with anti-FLAG antibody. β-actin
was detected as loading control.
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and E2 (E2BS) [4]. To initiate viral genome replication,
E2 binds to the E2BS at the origin and recruits E1, lead-
ing to the formation of an E1/E2 complex at the replica-
tion origin [4]. Then, E1 changes its conformation by
binding to ATP, which causes a release of E2 from the
origin. After dissociation of E2, E1 assembles into double
trimers to unwind double-stranded DNA. The E1 double
trimers serve as precursors for subsequent formation of
double hexamers that finally function as a processive
DNA helicase at replication forks [5].
E1 consists of four domains: an N-terminal domain

(ND), a DNA-binding domain (DBD), an oligomerization
domain (OD), and a helicase domain (HD) [4]. The ND
contains nuclear localization and export signals, and has a
regulatory role in viral genome replication, by controlling
subcellular localization of E1 [6]. The DBD is required for
E1 binding to the E1BS at the replication origin [7,8]. The
OD is responsible for E1-oligomerization [9,10]. The HD
has nonspecific DNA-binding and ATPase activities, and
mediates interaction with E2 [5,7].
Co-infection with multiple HPV types in a single cer-

vical specimen has been reported in 30–45% of HPV-
positive women [11-15]. Furthermore, several studies
indicate recombination between different HPV types
[16-19], which strongly suggests that a single cell can be
co-infected with different HPV types in vivo.
A previous study reported that HPV45 genomes are not

maintained in cultured keratinocytes co-transfected with
genomes of other HPV types, such as HPV18, HPV31,
and HPV39 [20]. This study also demonstrated that while
HPV31 and HPV39 genomes are stably maintained within
the same cell, copy numbers of genomes of both types are
extremely low compared to those in cells containing each
genotype individually. These observations suggest an
interference of genome replication between different HPV
types. However, mechanisms underlying the replication
interference have not been fully explored.
In this study, to examine simultaneous replication of

HPV16 and HPV18 genomes in the same cell, we used a
cell-based transient replication assay that has been used
to study E1/E2-dependent HPV replication [21-26]. The
HPV-negative C33A cervical cancer cell line was co-
transfected with HPV16 and HPV18 genomes together
with E1/E2 expression plasmids for both types, and
levels of genome replication were measured by quantita-
tive real-time PCR. We report replication interference
between HPV16 and HPV18, and propose a molecular
mechanism of the interference.

Results
Expression of FLAG-tagged E1/E2s of HPV16 and HPV18
in C33A cells
We constructed expression plasmids for FLAG-tagged
HPV16 E1 (F16E1), HPV16 E2 (F16E2), HPV18 E1
(F18E1), and HPV18 E2 (F18E2), and named them:
pF16E1, pF16E2, pF18E1, and pF18E2, respectively. Figure 1
shows the expression of the FLAG-tagged E1/E2s in
HPV-negative C33A cells transiently transfected with
different mixtures of pF16E1 and pF16E2, and/or
pF18E1 and pF18E2. The E1/E2 proteins of both types
were detected by Western blotting with anti-FLAG anti-
body. The expression levels of E1/E2 of HPV18 were
higher than those of HPV16. Although the expression
level of HPV16 E2 was extremely low, the level was suffi-
cient to support HPV16 replication (see below).

Replication of HPV16 or HPV18 genomes supported by
homologous or heterologous E1/E2s
E1/E2s of HPV16 and HPV18 supported genome repli-
cation of both the homologous and heterologous types
(Figure 2). C33A cells were transfected with circularized
full-genome DNA (gDNA) of HPV16 (Figure 2A) or
HPV18 (Figure 2B) together with increasing amounts of
pF16E1 and pF16E2, or pF18E1 and pF18E2. Three days
after transfection, low molecular weight DNA was iso-
lated using the Hirt procedure, digested with DpnI, and
DpnI-resistant HPV gDNA quantified by real-time PCR
as previously reported [22,25,26]. The maximum levels
of replication for HPV16 and HPV18 genomes were ob-
served when cells were transfected with 40 ng of each



Figure 2 Replication of HPV16 or HPV18 genomes supported by homologous or heterologous E1/E2s. C33A cells were transfected with
1 ng of the HPV16 (A) or HPV18 (B) gDNAs together with the indicated amounts (ng) of the expression plasmids for E1/E2s. Three days after
transfection, low molecular weight DNA was isolated by the Hirt procedure and digested with DpnI. The DpnI-resistant HPV gDNA was quantified
by real-time PCR and normalized to the luciferase gene. The level of the replication was presented as the relative amount of the DpnI-resistant
DNA compared to that obtained by the replication when cells were transfected 20 ng of each pF16E1 and pF16E2 (A) or 10 ng of each pF18E1
and pF18E2 (B). Each bar represents the average of two independent experiments with the standard error of mean.
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pF16E1 and pF16E2 and 20 ng of each pF18E1 and
pF18E2, respectively. Compared to the replication levels
for HPV16 or HPV18 supported by the homologous
E1/E2, replication supported by the heterologous E1/E2
was relatively inefficient.
Transfection with excess amounts of the E1/E2 ex-

pression plasmids (>80 ng of each pF16E1 and pF16E2,
and >40 ng of each pF18E1 and pF18E2) decreased the
replication levels for both types (Figure 2) and increased
the number of detached cells (data not shown). Since E1
is known to activate a cellular DNA damage response,
which results in delayed S phase [27,28], overexpression of
E1 may be toxic for C33A cells and reduce the replication
efficiency. Therefore, in later experiments, we transfected
cells with suboptimal amounts of the expression plasmids
(<20 ng of each pF16E1 and pF16E2, and <10 ng of each
pF18E1 and pF18E2).

Simultaneous replication of HPV16 and HPV18 genomes
in the presence of E1/E2s of both types
Replication of HPV16 and HPV18 genomes was sup-
pressed by co-expression of the heterologous E1/E2
(Figure 3). C33A cells were transfected with a mixture
of gDNAs and E1/E2 expression plasmids for both
types to mimic simultaneous replication of HPV16 and
HPV18 genomes in a co-infected cell. When cells were
transfected with 20 ng of each pF16E1 and pF16E2 to-
gether with 10 ng of each pF18E1 and pF18E2, the rep-
lication levels of both types were reduced to around
20%. The inhibitory effect of HPV18 E1/E2 on HPV16



Figure 3 Simultaneous replication of HPV16/18 genomes in the presence of E1/E2s of both types. C33A cells were transfected with a
mixture of HPV16 and HPV18 gDNAs (1 ng each) together with the indicated amounts (ng) of the expression plasmids. Three days after
transfection, low molecular weight DNA was isolated by the Hirt procedure and digested with DpnI. The DpnI-resistant HPV16 (upper panel)
and HPV18 (lower panel) gDNAs were quantified by real-time PCR and normalized to the luciferase gene. The level of the replication was
presented as the relative amount of the DpnI-resistant DNA compared to that obtained by the replication with the homologous E1/E2 alone.
Each bar represents the average of three independent experiments with the standard deviation.
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replication was more pronounced than that of HPV16
E1/E2 on HPV18 replication.

Effects of heterologous E1 or E2 on HPV16/18 replication
The heterologous E1, but not E2 inhibited HPV16 and
HPV18 replication (Figure 4). HPV18 E1 inhibited HPV16
replication to the level observed in the presence of E1/E2s
of both types (Figure 4A). The same was true for HPV16
E1 in HPV18 replication inhibition (Figure 4B). These
results clearly indicate that the replication interference be-
tween HPV16 and HPV18 is mediated by the heterol-
ogous E1, not by E2.

Effects of HPV16 E1 mutants on HPV18 replication
To examine which functional domain of HPV16 E1 is
responsible for the inhibition of HPV18 replication, we
constructed expression plasmids for deletion mutants of
HPV16 E1 (Figure 5A), and tested their capability to in-
hibit HPV18 replication.
As shown in Figure 5B, the OD of HPV16 E1 was es-
sential for the inhibition of HPV18 replication, whereas
the HD is dispensable. A deletion mutant F16E1-439,
which lacks the HD, inhibited HPV18 replication as effi-
ciently as full-length F16E1. In contrast, deletion mu-
tants F16E1-359 and F16E1-184 failed to inhibit HPV18
replication. As expected, all of the deletion mutants
completely lost the ability to support HPV16 replication
(data not shown). Furthermore, an amino-acid substitu-
tion mutant F16E1-Y379A, which is supposed to negate
the ability of E1 to oligomerize on single-stranded DNA
and to bind to the replication origin [9,29], did not in-
hibit HPV18 replication. These results indicate that the
OD of HPV16 E1 is responsible for the observed reduc-
tion in HPV18 replication efficiency.

Physical interaction between E1s of HPV16/18 in C33A cells
The requirement of the OD of HPV16 E1 for the inhib-
ition of HPV18 replication strongly suggests that a



Figure 4 Effects of heterologous E1 or E2 on HPV16/18 replication. C33A cells were transfected with 1 ng of the HPV16 (A) or HPV18
(B) gDNAs together with the indicated amounts (ng) of the expression plasmids for E1/E2s. Three days after transfection, low molecular weight
DNA was isolated by the Hirt procedure and digested with DpnI. The DpnI-resistant HPV gDNA was quantified by real-time PCR and normalized
to that of the luciferase gene. The level of the replication was presented as the relative amount of the DpnI-resistant DNA compared to that
obtained by the replication with the homologous E1/E2 alone. Each bar represents the average of two independent experiments with the
standard error of mean.
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Figure 5 Effects of HPV16 E1 mutants on HPV18 replication. (A) Schematic representation of HPV16 E1 mutants. F, FLAG-tag; ND, N-terminal
domain; DBD, DNA-binding domain; OD, oligomerization domain; HD, helicase domain. (B) C33A cells were transfected with 1 ng of the HPV18
gDNA together with the indicated amounts (ng) of the expression plasmids. Three days after transfection, low molecular weight DNA was isolated
by the Hirt procedure and digested with DpnI. The DpnI-resistant HPV18 gDNA was quantified by real-time PCR and normalized to the luciferase
gene. The level of the replication was presented as the relative amount of the DpnI-resistant DNA compared to that obtained by the replication
with the HPV18 E1/E2 alone. Each bar represents the average of two independent experiments with the standard error of mean.
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physical interaction between the heterologous E1s is
involved in the interference. Thus, we examined the
interaction between E1s of HPV16 and HPV18 using
co-immunoprecipitation assays. C33A cells were trans-
fected with HPV18 gDNA together with expression
plasmids for hexahistidine (6×His)-tagged HPV18 E1
(pH18E1), untagged HPV18 E2 (p18E2), and each of
the HPV16 E1 mutants described above. Two days
after transfection, F16E1 in cell lysates was immuno-
precipitated with anti-FLAG antibody, followed by
detection of H18E1 co-precipitated with F16E1 by
Western blotting with anti-6×His antibody. H18E1 effi-
ciently co-precipitated with F16E1 in the cell lysate
(Figure 6A). Similarly H18E1 co-precipitated with F16E1
in the absence of HPV18 E2 and gDNA (Figure 6B),
suggesting that the interaction is direct and not medi-
ated by either HPV18 E2 or gDNA. H18E1 bound less
efficiently to F16E1-439 and F16E1-359, but not to
F16E1-184 (Figure 6A). Importantly, the OD mutant,
F16E1-Y379A, showed reduced binding efficiency com-
pared to F16E1.
The direct interaction between E1s of HPV16 and

HPV18 was further confirmed by using purified E1 pro-
teins: 6xHis-tagged HPV16 E1 (H16E1) and FLAG-
tagged HPV18 E1 (F18E1). H16E1 was incubated with
F18E1, and F18E1 in the mixture was immunoprecipi-
tated with anti-FLAG antibody, followed by Western
blotting with anti-6×His antibody. Clearly H16E1 co-
precipitated with F18E1 (Figure 6C), indicating that
HPV16 E1 directly binds to HPV18 E1.
Taken together, these results strongly suggest that

HPV16 E1 interacts with HPV18 E1 through the region
containing the DBD, OD, and HD, and that the OD is
an important determinant for efficient interaction.



Figure 6 (See legend on next page.)
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(See figure on previous page.)
Figure 6 Interaction between E1s of HPV16/18. (A) C33A cells were transfected with the HPV18 gDNA together with the expression plasmids
for hexahistidine (6×His)-tagged HPV18 E1 (pH18E1), the untagged HPV18 E2 (p18E2), and one of the FLAG-tagged HPV16 E1 mutants. Two days
after transfection, the FLAG-tagged HPV16 E1s in cell lysates were immunoprecipitated with anti-FLAG antibody, and HPV18 E1 co-precipitated
with HPV16 E1s was detected by Western blotting with anti-6×His antibody (upper panel). HPV18 E1 (middle panel) and HPV16 E1s (lower panel)
in the total cell lysates were detected by Western blotting with anti-6×His and anti-FLAG antibodies, respectively. (B) C33A cells were transfected with
pH18E1 and pF16E1 without HPV18 gDNA and p18E2, followed by immunoprecipitation and Western blotting as described above. (C) Purified 6×His-
tagged HPV16 E1 (H16E1) was incubated with or without purified FLAG-tagged HPV18 E1 (F18E1), followed by immunoprecipitation with anti-FLAG
antibody. H16E1 and F18E1 in the immunoprecipitates were detected by Western blotting with anti-6×His (upper panel) and anti-FLAG antibodies
(middle panel), respectively. H16E1 in the input mixture was visualized with anti-6×His antibody (lower panel).
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Discussion
In this study using cell-based transient replication assays
we found replication interference between HPV16 and
HPV18 and explored the underlying molecular mecha-
nisms. We examined replication of HPV16/18 genomes
under conditions of exogenous expression of E1/E2 for
both types from the Cytomegalovirus promoter because
expression of E1/E2 from native HPV promoters is too
weak to support HPV genome replication in C33A cells.
Although these experimental conditions do not neces-
sarily reflect a natural context of HPV transcription, the
results obtained in this study provide a novel mechanis-
tic insight into inter-type HPV replication interference,
which could not be addressed in the previous study
using transfection of HPV genomes alone [20].
The mutational analysis of HPV16 E1 indicates that

the OD, which is responsible for the E1-E1 interaction
[9,10], is essential for the inhibition of HPV18 replica-
tion. In particular, the inability of the OD mutant
F16E1-Y379A to inhibit HPV18 replication strongly im-
plies that the OD-mediated interaction between HPV16
and HPV18 E1s is critical for replication interference.
On the other hand, the deletion mutant F16E1-439,
which lacks the HD and shows reduced binding (at a
similar level to the OD mutant), still retains the capabil-
ity to inhibit HPV18 replication, suggesting that the
binding between HPV16 and HPV18 E1s via the HD
does not contribute to the replication interference. Fur-
thermore, because the HD is essential for helicase activ-
ity, as well as E1 binding to E2 [30-32], the results
clearly indicate that the enzymatic activity of E1 and its
binding to E2 are not involved in replication inhibition.
It is also worth noting that the replication interference is
not simply due to competition between heterologous
E1/E2s for origin binding because E1/E2s of HPV16 and
HPV18 supported genome replication of heterologous
types (Figure 2).
A comparison of amino acid sequences between HPV16

and HPV18 E1s reveals that the OD is the most conserved
region between the two (Figure 7A). The amino acid iden-
tities in the ND, DBD, OD, and HD are 46, 60, 66, and
64% homologous, respectively (Figure 7B). The high se-
quence similarity observed between ODs strongly sup-
ports the possibility of heterooligomer formation between
the two types. Collectively, these results implicate E1 het-
erooligomer formation via the OD as the molecular mech-
anism behind replication inhibition.
We propose a model in which HPV16 and HPV18 E1

heterooligomers do not have proper configurations and
are deficient in the ability to support genome replication
for both HPV16 and HPV18. Since the amino acid se-
quence in the ND is less conserved between HPV16 and
HPV18 E1s (Figure 7), it may exert a negative effect on
the replication activities of E1 heterooligomers, although
the exact functions of the ND in the conformation of E1
homooligomers are not yet well understood. Alterna-
tively, it is possible that the E1 heterooligomers are
unable to bind efficiently to the replication origin or un-
wind double-stranded DNA, and/or that they are defi-
cient in recruiting cellular factors required for HPV
replication, such as DNA polymerase alpha [34], replica-
tion protein A [35], and topoisomerase I [36].
Serological studies have shown that seropositivities for

HPV6 and HPV11 significantly antagonize the develop-
ment of HPV16-related cervical cancer [37,38]. Interest-
ingly, these studies also demonstrated a tendency for
antagonistic interactions between HPV16 and HPV18.
Seropositivity for HPV18 reduces the risk of HPV16-
related cervical cancer, although statistical significance
was not achieved. Although the underlying mechanism
of such serological interaction is not clear, interference
of genome replication between HPV16 and other HPV
types may be involved, as observed in this study. It is un-
likely that antibodies against HPV6, HPV11, or HPV18
capsids protect women from infection with HPV16, be-
cause antisera against these types do not cross-neutralize
HPV16 in vitro [39]. It will thus be of interest to investi-
gate whether HPV6 and HPV11 interfere with HPV16
replication in transient replication assays such as those
described here.
Interference between multiple HPV types has been

also proposed in several pathological studies. Genomes
of different HPV types were detected in distinct, non-
overlapping areas of the same genital tissue by in situ
hybridization [40-42]. When cervical tumor biopsies, in
which genomes of both HPV16 and HPV18 were de-
tected by PCR, were analyzed by fluorescence in situ
hybridization, the integrated form of either HPV16 or



Figure 7 Amino acid sequence similarity between HPV16/18 E1s. (A) The amino acid sequence alignment between HPV16/18 E1s using
MAFFT [33]. Identical residues are indicated with asterisks (*). Highly conserved residues are indicated with colons (:). Semi-conserved residues are
indicated with periods (.). (B) The amino acid sequence identities of the ND (amino acids 1 to 190 of HPV16 E1 and 1 to 197 of HPV18 E1), DBD
(amino acids 191 to 352 of HPV16 E1 and 198 to 359 of HPV18 E1), OD (amino acids 353 to 430 of HPV16 E1 and 360 to 437 of HPV18 E1), HD
(amino acids 431 to 649 of HPV16 E1 and 438 to 657 of HPV18 E1), or the entire regions (amino acids 1 to 649 of HPV16 E1 and 1 to 657 of
HPV18 E1) between HPV16/18 E1s are presented.
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HPV18 was detected in an individual cell [43]. Although
the genomes of HPV1 and HPV63 were detected in the
same cell of a plantar wart, only a cytopathogenic effect
typical of HPV63 infection was seen in the cell [44].
Our experimental results and previous observations

reported by others indicate that interactions between
different HPV types during their life cycle may affect the
propagation, pathogenesis, and evolution of HPVs.
Conclusions
This study indicates that co-infection of a single cell
with HPV16 and HPV18 results in replication interfer-
ence between them, and that interaction between the
heterologous E1s is responsible for the interference.
Materials and methods
Plasmids and HPV genomes
The codon-optimized E1 and E2 genes of HPV16 and
HPV18 were synthesized by Life Technologies (Carlsbad,
CA, USA) and cloned into the NotI site of pCMV, which
had been created by removing the β-galactosidase gene
from pCMVβ (Clontech, Mountain View, CA, USA).
The FLAG-tag sequence was added to the 5′-terminus
of each gene in pCMV by using PCR to produce
pF16E1, pF16E2, pF18E1, and pF18E2. The 6xHis-tag se-
quence was added to the 5′-terminus of the HPV18 E1
gene in pCMV to produce pH18E1. A stop codon was
introduced into pF16E1 by using PCR to produce ex-
pression plasmids for HPV16 E1 deletion mutants;
pF16E1-439, pF16E1-359, and pF16E1-184 express
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amino acid (aa) 2 to 439, aa 2 to 359, and aa 2 to 184 of
the HPV16 E1, respectively. The codon 379 of the E1
gene in pF16E1 was changed from TAC to GCA by
using PCR to produce pF16E1-Y379A, which expresses
HPV16 E1 with amino acid substitution of tyrosine to
alanine at aa residue 379.
The circularized HPV16 and HPV18 gDNAs were pre-

pared by in vitro self-ligation of linear viral genomes. The
full-length genomes of HPV16 and HPV18 were released
from the cloned vector pUC18 by digestion with BamHI
and EcoRI, respectively. The linearized genomes were incu-
bated with T4 DNA ligase at final concentration 2.5 μg/ml
of DNA for overnight at 4°C. The ligated DNAs were puri-
fied and concentrated by using the QIAprep Spin Miniprep
Kit (Qiagen GmbH, Hilden, Germany).

Cell culture
C33A cervical carcinoma cells were cultured in Dulbecco’s
modified minimal essential medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and grown in
5% CO2 at 37°C.

Western blot
C33A cells (1 × 106 cells) were grown in a 6-well plate
for 6 h and then transfected with the expression plas-
mids for FLAG-tagged E1/E2 of HPV16/18 using the
FuGene HD (Roche Diagnostics, Indianapolis, IN, USA).
Two days after transfection the cells were lysed in
SDS-sample buffer, followed by boiling of the cell lys-
ate for 5 min. The extracted proteins were separated
by SDS-PAGE and transferred to a PVDF membrane
(Life Technologies). After blocking the membrane with
phosphate-buffered saline (PBS) containing 0.02% Tween-
20 and 5% skimmed milk, FLAG-tagged E1/E2s were
probed with rabbit polyclonal anti-FLAG antibody
(Sigma-Aldrich Co. St. Louis, Mo, USA) and horserad-
ish peroxidase conjugated anti-rabbit IgG goat antibody
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA).
The immunoreactive proteins were visualized using the
Pierce Western Blotting Substrate Plus (Thermo Fisher
Scientific Inc. Waltham, MA, USA) and the Typhoon
9410 Image Scanner (GE Healthcare, Piscataway, NJ,
USA).

Transient replication assay
C33A cells (2 × 105 cells) were grown in a 24-well plate
for 6 h and then transfected with HPV gDNAs and the
expression plasmids for E1/E2 together with 1 ng of
pGL3-Basic (Promega, Madison, WI, USA), which lacks
a replication origin for HPV, using the FuGene HD. The
total amount of transfected DNA was adjusted to 400 ng
with the empty vector, pCMV. The next day of the
transfection, the medium was changed to DMEM con-
taining 10% FBS. Three days after transfection low
molecular weight DNA was isolated by the Hirt proced-
ure. Briefly, 200 μl of lysis solution (10 mM Tris–HCl
[pH 8.0], 10 mM EDTA [pH 8.0], and 1% SDS) was
added to the cells, followed by cell lysis for 10 min at
room temperature with gentle agitation. Fifty μl of 5 M
NaCl was then added to the cell lysate, and incubated
overnight at 4°C. The mixture was centrifuged at
50,000 × g for 30 min at 4°C to precipitate proteins and
genomic DNA of the cells. The HPV gDNAs were iso-
lated from the supernatant using the QIAamp DNA
Blood Mini Kit (Qiagen GmbH), and eluted with 50 μl
of elution buffer (10 mM Tris–HCl [pH 8.0] and 1 mM
EDTA). To digest the transfected DNA, 2 μl of the DNA
sample was incubated with 10 U of DpnI in 20 μl of 1 ×
reaction buffer (New England Biolabs, Ipswich, MA,
USA) for 2 h at 37°C, followed by heat inactivation of
DpnI at 80°C for 20 min. The amounts of DpnI-resistant
HPV16/18 gDNAs were quantified by real-time PCR
with HPV16/18 type-specific primers and SYBR-green
dye. Total 20 μl of a PCR reaction mixture containing
2 μl of the DpnI-digested sample, 10 μl of SYBR Green
Realtime PCR Master Mix (TOYOBO CO., LTD, Osaka,
Japan), and 0.4 μM of each primer was subjected to real-
time PCR analysis using the LightCycler 480 (Roche
Diagnostics). The nucleotide sequences of primers are as
follows: forward primer for HPV16, 5′-CACCTCCAG-
CACCTAAAGAA; reverse primer for HPV16, 5′-TTGC
GTCCTAAAGGAAACTG; forward primer for HPV18,
5′-GATGTGAGAAACACACCACA; reverse primer for
HPV18, 5′-GCAGTGAAGTGTTCAGTTCC; forward pri-
mer for the luciferase gene, 5′-AGGCGAACTGTGTGT
GAGAG; reverse primer for the luciferase gene, TTCA
GGCGGTCAACGATGAA. Each amplicon of the HPV16/
18 genomes contains two DpnI sites, whereas that of the
luciferase gene has no DpnI site. The amounts of DpnI-
resistant HPV gDNA were normalized to those of the lucif-
erase gene.

Immunoprecipitation
C33A cells (1 × 106 cells) were grown in a 6-well plate
for 6 h and then transfected with HPV18 gDNA,
pH18E1, and p18E2, together with one of the expression
plasmids for HPV16 E1 mutants, using the FuGene HD.
Two days after transfection the cells were lysed in 100 μl
of RIPA buffer (25 mM Tris–HCl [pH7.6], 150 mM
NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1%
SDS), followed by centrifugation of the cell lysate at
10,000 × g for 10 min at 4°C. The supernatant was di-
luted 4-fold with PBS, and precleared with 20 μl of
Dynabeads protein G magnetic beads (Life Technologies)
for 30 min at 4°C. The precleared lysate was further in-
cubated with 2 μg of the rabbit polyclonal anti-FLAG
antibody (Sigma-Aldrich Co.) and 20 μl of the protein G
magnetic beads for 2 h at 4°C. The beads were then
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washed with PBS containing 0.02% Tween-20 four times,
and the bound proteins were eluted by boiling the beads
in 20 μl of SDS-sample buffer. The recovered proteins
were resolved by SDS-PAGE and transferred to a PVDF
membrane. 6×His-tagged HPV18 E1 on the membrane
was probed by mouse monoclonal anti-6×His antibody
(Qiagen GmbH) and detected with horseradish peroxid-
ase conjugated anti-mouse IgG goat antibody (Santa
Cruz Biotechnology, Inc.) as described above.
6×His-tagged HPV16 E1 (H16E1) protein was pre-

pared from bacterial cells. Briefly, the H16E1 gene was
cloned into pET-30 (Novagen, Madison, WI, USA), and
the H16E1 protein was purified from Escherichia coli
BL21(DE3) pLysS that had been transformed with the
expression plasmid as described previously [45]. FLAG-
tagged HPV18 E1 (F18E1) protein was prepared from in-
sect cells by using the baculovirus expression system
(Life Technologies). Briefly, the F18E1 gene was cloned
into pFastBac1 (Life Technologies), and the resultant
plasmid was introduced into E. coli DH10Bac-competent
cells (Life Technologies) to obtain recombinant Bacmid
DNA. A recombinant baculovirus expressing F18E1 was
produced in Sf9 cells transfected with the recombinant
Bacmid DNA. The F18E1 protein was purified from Sf9
cells that had been infected with the recombinant
baculovirus as described previously [45]. For binding re-
action, 1 μg of H16E1 and 4 μg of F18E1 were diluted
with 200 μl of binding buffer (20 mM Tris–HCl [pH8.0],
150 mM NaCl, 2 mM MgCl2, and 0.01% NP-40), and in-
cubated with 4 μl of the rabbit polyclonal anti-FLAG
antibody (Sigma-Aldrich Co.) and 15 μl of the protein G
magnetic beads (Life Technologies) for 1 h at 4°C. The
beads were then washed with the binding buffer four
times, and the bound proteins were analyzed by Western
blotting as described above.
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