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Abstract

Background: Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces

early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the
structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped
to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction.

Methods: A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct

binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP4,¢ 15-ala6); and
three residues in the hydrophobic face were altered to charged amino acids (NSP44¢ 175-HydroMut). In total, twelve
mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic
and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a
neonatal mouse study.

Results: Mutations of the hydrophilic face (NSP4441,5-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption
of the hydrophobic face (NSP444 175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a
hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic
domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4yyqromuti12-140, that contains three
charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4aaacidic112-140 that
contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce
diarrhea. Whereas peptides NSPAwild type 115 140 and NSP4aagasic112-140 that contained three alanine substituted
for positively charged (aa115, 119, 133) amino acids, induced diarrhea.

Conclusions: These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic
helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a

connection between NSP4 functional and binding activities.

Background

Rotaviruses (RV) induce a secretory and malabsorptive
diarrhea, both of which are multi-factorial [1,2]. RV
NSP4 is the first described viral enterotoxin and induces
early secretory diarrhea in rodents [1,3-6]. Exogenously
added NSP4 mobilizes intracellular calcium ([Ca*]i) levels
through an integrin receptor-mediated, phospholipase C
(PLC)-dependent pathway [3,6], whereas endogenously
expressed NSP4 mobilizes [Ca*']i by a PLC-independent
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mechanism, i.e. by NSP4 functioning as a viroporin in the
endoplasmic reticulum (ER) [7,8]. These data indicate
unique activities of NSP4 in different environments. At
the exofacial surface of the plasma membrane (PM), in-
creasing evidence has established that NSP4 activates a
calcium signal transduction pathway with the release of
chloride and water into the lumen of the gut [9,10]. It has
been hypothesized that de novo NSP4 is released from
RV- infected cells whereupon it binds to neighboring or
the same cell to initiate secretory diarrhea [5,11,12].

In addition to its enterotoxic activity, NSP4 performs
multiple intracellular functions that contribute to RV mor-
phogenesis and replication. Early reports show NSP4 is an
ER transmembrane glycoprotein that serves as an intracel-
lular receptor that binds double layered particles [13-16],
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and facilitates entry into the ER and acquisition of the
outer coat to form triple layered particles with a transient
ER membrane [10,15-17]. Subsequent silencing studies
(siRNA) of RV-infected cells reveal that in the absence of
NSP4 there are: (1) abnormal distributions of viral proteins
in the viroplasm [18]; (2) little to no infectious viral parti-
cles present in the cell; (3) accumulations of empty viral
particles [18,19], and (4) an up-regulation of viral tran-
scription [19]. Taken together, NSP4 appears to function in
viral pathogenesis, replication, and morphogenesis, as well
as serving as an enterotoxin that induces calcium signaling
events and fluid loss [20].

An NSP4 C-terminal cleavage fragment (residues 112-
175) isolated from culture media of RV SAll-infected
(MOI = 20; Sf9 cells) or NSP4 112-175-transfected cells
show that at least a portion of NSP4 leaves the ER and
the cell [21]. Bugarcic and Taylor report the secretion of
a larger, alternately glycosylated 32 kD protein (MOI = 10,
HT?29 cells) [22], but signaling function of this larger NSP4
form was not reported. Other studies note the presence
of NSP4 at multiple locations in RV SAll-infected cells
[11,23-26]. For example, Boshuizen et al report the pres-
ence of NSP4 at the basolateral surface of polarized cells in
association with the extracellular matrix proteins, laminin-
beta 3 and fibronectin [11], while also showing evidence of
apical release [22]. In addition, NSP4 colocalizes with LC3,
an autophagic vesicle marker, tubulin, and VP5, a RV
viroplasm marker [12,27,28]. The recent identification of
integrins alpha 1 beta 1 and alpha 2 beta 1 as the NSP4
cell receptors support the previous observations that
NSP4 binds to the outside of the cell and stimulates a PLC
signaling pathway [12]. Our recent data show full-length
(FL) NSP4 is released from intact cells and binds neigh-
boring cells [29]. Taken together, these data indicate that a
pool of NSP4 interacts with several host-cell molecules
that may influence its movement from the ER to the outer
leaflet of the PM and subsequent release from the cell.

Collectively, our previous data show (a) preferential
binding of FLNSP4 and NSP4;,4 135 peptide to caveolae-
like model membranes [30,31]; (b) transport of FLNSP4
to the PM and caveolae by a Golgi-bypassing, unconven-
tional transport pathway [26]; (c) a direct interaction
cbetween the structural protein of caveolae, caveolin-1
(cav-1), and NSP4 in yeast and mammalian cells [25]; (d)
the presence of full length, endoglycosidase H (Endo-H)-
sensitive FLNSP4 in caveolae microdomains isolated from
PM fractions of infected cells [26]; (e) FLNSP4 traffics to
the PM, exposing the C-terminus to the extracellular
space and subsequently is released from the cell; and
(f) Kq analyses of FLNSP4 and cav-1 peptides showed
preferential binding to the N-terminus of cav-1, with an in-
creased affinity in the presence of cholesterol-rich
model membranes, as well as a direct interaction between
FLNSP4 and cholesterol [32].
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Cav-1 is localized in the intestine, interacts with chol-
esterol, functions to transport de novo synthesized chol-
esterol to and from the ER and caveolae, and organizes
signaling molecules, including those regulating calcium
homeostasis [33-35]. The NSP4 binding site for cav-1
maps to aa 114-135, the enterotoxic domain, using iz vivo
yeast two-hybrid (Y2H) assays, in vitro peptide binding as-
says, co-immunoprecipitation (co-IP) reactions, and laser
scanning confocal microscopy (LSCM) co-localization and
fluorescent resonance energy transfer (FRET) analyses [25].
The enterotoxic domain of NSP4 interacts with both the
N- and C-termini of cav-1 [36]. This result was surprising
as cav-1 forms a hairpin loop in the cytofacial leaflet of the
PM such that the two termini appear physically separated
in the cytosol of the cell [37-41].

The goal of this study was to resolve the details of the
NSP4-cav-1 interaction by (i) elucidating the type of
interaction between NSP4 and cav-1, (ii) mapping the
precise binding residues, and (iii) determining the extent
to which interaction with cav-1 influences enterotoxic
activity.

Results

The hydrophobic face of the NSP4 amphipathic alpha
helix (AAH) binds cav-1

To identify the face of the amphipathic helix that binds
cav-1, a 3-D structural model was generated using the
crystallographic determinants for NSP4 95-135 [42] and
visualized using PyMol (The PyMOL Molecular Graph-
ics System, Version 1.2r3pre, Schrodinger, LLC). The six
charged residues between 114 and 135 were mutated
to alanine (D114A, K115A, R119A, E125A, D132A, and
K133A) in FLNSP4-Ala6, and three hydrophobic residues
were mutated to charged residues (I113R, V124K, and
Y131D), in FLNSP4-HydroMut (Figure 1A and B, Table 1).

The interactions of these FLNSP4 mutants with cav-1
were evaluated by yeast-two-hybrid (Y2H) assays by
reacting the Gal4 activation domain fusion protein
with the NSP4:Gal4 binding domain fusion proteins.
The plasmids were co-transformed into the yeast strain
MaV203 as previously described [25]. The growth pat-
terns of the co-transformed yeast confirmed the activa-
tion of the three reporter genes of the Y2H assay and
established FLNSP4-Ala6 as positive for interacting with
cav-1. In contrast, the FLNSP4-HydroMut failed to activate
the three reporter genes indicating a lack of binding (data
not shown).

Previous Y2H assays show that the reactions are
clearer in the absence of the first two N-terminal hydro-
phobic domains of FLNSP4 [25]. Therefore, new mutants,
NSP4, NSP44je and—pyaromue that lack the first two
hydrophobic domains, were cloned into the Gateway” entry
clone, pENTR11, and inserted into the pDest32 plasmids
to produces the Gal4 binding domain fusion proteins. The
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(See figure on previous page.)

peptide binding assays are given.

Figure 1 A and B Organization of the Polar and Hydrophobic faces of the NSP4 crystal structure of the enterotoxic AAH (A and B
respectively). A shows the acidic amino acids, D114, E122, E125 and D132 depicted in a maroon color. The basic amino acids K115, R119, R129
and K133 are shown in blue. B shows the hydrophobic amino acids of the AAH of NSP4 1113, L116, V124, L127, 1130, Y131 and L134 in purple.

C PyMol representations of the hydrophobic face of NSP4-(residues 46-175) and mutants. Amino acids in purple (1113, V124 and Y131) are indicated by
arrows represent the wild type NSP4. Eight mutant clones are viewed below the wild type NSP4. The mutations, 1113R, V124D and Y131K are orange,
and amino acids that are mutated to alanines are shown as blue. To the right of each represented clone, the results of the yeast two hybrid and the

Gateway® entry clone, pECav-1 was used to insert the
cav-1 sequence into the pDest22 plasmid that produces a
fusion protein with the Gal4 activating domain for Y2H
assays [25].

The growth patterns of the co-transformed yeast were
monitored for activation of transcription from three chro-
mosomally integrated reporter genes Ura3, His3, and lacZ
(Table 2). To assess the success of the co-transformation
and transcription activation, four growth phenotypes were
determined using media lacking the following amino acids:
1) Leucine and tryptophan; 2) Leucine, tryptophan, and
histidine with 50 mM 3-Amino-1,2,4-Triazol (3-AT);
3) Leucine, tryptophan, and uracil; 4) Leucine, tryptophan,
with 5-fluoroorotic acid (5FOA). The growth patterns were
qualitatively scored and compared to the phenotypes that
are defined in the Y2H manual [43] as positive and nega-
tive interactions (data not shown).

Induction of the lacZ reporter gene was confirmed
using the quantitative chlorophenol red-beta-D-galactopyr-
anoside (CPRG) assay for beta-galactosidase activity and
reported as beta-galactosidase units (BGU). The negative
yeast control had 0.134 BGU while truncated NSP444 175
had 1.39 BGU. NSP4pydromue and NSP4446 had 0.105 and
1.822 BGU, respectively, indicating a negative and positive
interaction, respectively (Table 2).

The growth patterns of the co-transformed yeast con-
firmed the activation of the three reporter genes of the
Y2H assay. The N-terminally deleted NSP44),6 showed a
positive reaction for interacting with cav-1. In contrast,
the N-terminally deleted NSP4iyqromue failed to activate
the three reporter genes. These data suggested alteration
of the hydrophobic face of the amphipathic alpha helix
of the NSP4 enterotoxic domain (1113, V124, and Y131),
failed to bind cav-1.

NSP4,y4romut failed to associate with cav-1 by a peptide
binding/pull-down assay

To confirm the Y2H results, newly synthesized cav-1
peptides (amino acids 2-31, 76-101, and 161-178) were
bound to sepharose beads, and reacted with yeast lysates
expressing FLNSP4, FLNSP4-Ala6, or FLNSP4-HydroMut
(Figure 2A). As expected, Western blot analyses of precip-
itated lysates with sepharose beads only and precipitated
untransformed lysates did not demonstrate NSP4-specific
bands (Figure 2A, lanes 1-4, 8, and 12). In FLNSP4

containing lysates, NSP4 was pulled down by cav, 3
and showed NSP4-specific bands at 28, 26 and 20 kD
that correspond to double, single and non-glycosylated
forms of NSP4, respectively (Figure 2A, lane 5). FLNSP4-
Ala6 also bound to cav,3; but exhibited only two
bands at ~26 and 20 kD (Figure 2A, lane 6). The double
glycosylated form was not detected under these conditions.
A 26 kD, NSP4-specific band similarly was visible with
both FLNSP4 and FLNSP4-Ala6 when captured with
cavigr 178 (Figure 2A, lanes 9 and 10). In agreement with
the Y2H data, FLNSP4-HydroMut lysates failed to react
with either of the sepharose-bound peptides, cav-1,3; or
cav-1y61.17g (Figure 2A, lanes 7 and 11). These results sup-
port the hypothesis that the binding of NSP4 to cav-1 is via
a hydrophobic interaction.

To illustrate FLNSP4 and NSP44 175 yield similar re-
sults, the same cav-1 peptides were tested with NSP4y¢ 175,
NSP44146 and NSP4yygronmue and yielded identical results as
that acquired with FLNSP4, FLNSP4-Ala6, and FLNSP4-
HydroMut (data not shown). The three hydrophobic
amino acids changed in NSP4pyqronue 1113R, V124K, and
Y131D, appeared to be important for the binding to cav-1.
Peptides corresponding to both the N- and C-terminal re-
gions of cav-1 (2-31, 19-40 and 161-178) interacted with
NSP4 but cav-1 residues 76-101 failed to bind NSP4 (data
not shown) as previously reported [36].

All three NSP4,46.175sHydroMut revertants associate with
cav-1 by Y2H analyses and peptide pull-down assays

To further localize the cav-1 binding domain of the N-
terminal deletion mutant (NSP44¢ 175), each of the mu-
tant residues in NSP4tjyq;omue individually were reverted
back to the original hydrophobic amino acid [Rev1(113I),
Rev2(124 V) and Rev3(131Y), Table 1], and transformed
into yeast with cav-1 for evaluation by Y2H assays. All
three revertants showed growth patterns of the co-
transformed yeast confirming the activation of the three re-
porter genes of the Y2H assay (data not shown). Induction
of the lacZ reporter gene was confirmed using the quanti-
tative CPRG assay for beta-galactosidase activity reported
as BGU. The revertants (Revl, Rev2, Rev3) yielded 3.941,
3.042, and 3.195 BGU, respectively, which was 30 times
higher than the negative yeast control (0.134 BGU), and
over 2 times higher than NSP44 175 (1.39 BGU) (Table 2).
These data indicated all 3 revertants interacted with cav-1,
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Table 1 NSP4 constructs and primers

Page 5 of 15

Name of construct®

Amino acid changes®

Primers for site directed mutagenesis®

FLNSP4 Ala (1-175)

NSP4 Ala (46-175)

FLNSP4 HydroMut (1-175)

NSP4 HydroMut (46-175)

Rev1 (46-175)

Rev2 (46-175)

Rev3 (46-175)

Rev2 116,124,127A

Rev2 116A
Rev1,2 127A
Rev1 124,127A

D114AK115ART19A
E124AD132AK133A

D114AK115ART19A
E124AD132AK133A
IT13RV124KY131D

IT13RV124KY131D

1113 V124K Y131D

IT13RV124,Y131D

[T13RV124K Y131

IT13RLT16AV124AL127AY131D

IT13RV124,L116AY131D

1T13V124,L127AX131D

M3 V124AL127AY131D

BP3 5" TACCGCGGCCGCGGAAAAGCTTACCGACCTCA 3

BP28 5" TACTTGTTCAATTTCAGCTGTAGTCAATGCGGCAATCATTT 3'
BP29 5'AAATTGAACAAGTAGCTTTGCTTAAACGCATTTACGCTGCATTGA 3'
BP4 5" TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3'

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP4 5' TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3'

BP3 5" TACCGCGGCCGCGGAAAAGCTTACCGACCTCA 3

BP31 5" TTGTTCAATTTCACGTGTAGTCAATTTGTCACGCATTTCT 3'
BP30 5' TGAAATTGAACAAAAAGAGTTGCTTAAACGCATTGACGATAA 3'
BP4 5" TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3’

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP4 5' TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3'

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP34 5" TTGTTCAATTTCACGTGTAGTCAATTTGTCAATCATTTCT 3'

BP30 5' TGAAATTGAACAAAAAGAGTTGCTTAAACGCATTGACGATAA 3'
BP4 5" TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3'

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP31 5" TTGTTCAATTTCACGTGTAGTCAATTTGTCACGCATTTCT 3'

BP32 5" TGAAATTGAACAAGTAGAGTTGCTTAAACGCATTGACGATAA 3'
BP4 5" TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3’

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP31 5" TTGTTCAATTTCACGTGTAGTCAATTTGTCACGCATTTCT 3'
BP33 5" TGAAATTGAACAAAAAGAGTTGCTTAAACGCATTTACGATAA 3'
BP4 5' TCTAGATATCTCGAGTTACATTGCTGCAGTCACTT 3'

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP80 5" TTCAATTTCACGTGTAGTTGCTTTGTCTGC 3'

BP81 5" AAATTGAACAAGCAGAGTTGGCAAAACGCGCAGA 3'

BP4" 5" TTACATTGCTGCAGTCACTTCTCTTGGTT 3"

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP91 5" TTGTTCAATTTCACGTGTAGTTGCTTTGTCAATCATTTCT 3'

BP32 5" TGAAATTGAACAAGTAGAGTTGCTTAAACGCATTGACGATAA 3'
BP4" 5" TTACATTGCTGCAGTCACTTCTCTTGGTT 3"

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP89 5" AATGCGTTTTGCCAACTCTT 3'

BP88 5" AAGTGGAGTTGGCAAAACG 3'

BP4" 5" TTACATTGCTGCAGTCACTTCTCTTGGTT 3'

BP23 5" ATTTAACCATGGCACTACATAAAGCATCCATTCCA 3'

BP9O1 5" TTGTTCAATTTCACGTGTAGTTGCTTTGTCAATCATTTCT 3'

BP81 5" AAATTGAACAAGCAGAGTTGGCAAAACGCGCAGA 3'

BP4" 5" TTACATTGCTGCAGTCACTTCTCTTGGTT 3'

“Names of mutants of full length NSP4 or NSP4 46-175 that were cloned into the yeast two hybrid vectors, pDest32 and pDest22 and the yeast expression

vector, pYDest52.

PNative amino acids of NSP4 46-175 that were mutated or reverted back to the original amino acids.
“The names and the sequences of the oligonucleotides that were used to clone the mutant clones.
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Table 2 Phenotypes of pD32-NSP4 mutants plus pD22-caveolin-1°

CSM Leu TrpHis™ + 3AT CSM LeuTrp'Ura® CSM LeuTrp™ + 0.2% 5FOA beta-gal Phenotypes©
50 mM Units®
Negative Control +/— - - 0.134 Negative
NSP4 46-175 +/- - +/— 1.390 Positive
NSP4 Ala - - +/— 1.822 Positive
NSP4 HydroMut - +/— + 0.105 Negative
Rev1 - - +/- 3.941 Positive
Rev2 +/- - +/— 3.042 Positive
Rev3 +/— +/— - 3.195 Positive
Rev1,2 127A +/- - +/- 2.581 Positive
Rev1 124,127A - - +/— 4.044 Positive
Rev2 116A - - +/— 0.165 Negative
Rev2 116,124,127A +/— +/— +/— 0.056 Negative

#Colonies were grown on CSM LeuTrp™ and replica plated onto CSM LeuTrp His with 50 mM 3AT; CSM LeuTrp'Ura’; and CSM LeuTrp~ with 0.2% 5FOA.

PBeta-galactosidase activity was quantitatively measured by CPRG assays.

“The phenotype was determined by combining the results of growth on differential media and beta-galactosidase activity.
The negative control and mutants NSP4 clones that did not interact with caveolin-1 are in bold letters.

so a single hydrophobic residue between NSP4 124-131
was sufficient for binding.

To validate the Y2H data, cav-1 peptides (aa 2-31, 76-
101, and 161-176) were bound to sepharose beads and
tested for capturing each of the individual revertants
(Figure 2B). Western blot analyses of Revl, Rev2, and
Rev3 when reacted with sepharose beads only or un-
transformed yeast lysates (InVScl) showed no bands
(Figure 2B, lanes 1-4, 8 and 12). An NSP4-specific band
was observed at 17 kD with all three revertants when
reacted with both cav, 3; and 141.178 (lanes 5, 6, 7 and 9,
10, 11 respectively), which is the correct theoretical mo-
lecular weight of NSP4 46-175. NSP4-specific bands were
absent when the lysates were incubated with cav,4_1¢; (data
not shown). These data support the in vivo Y2H results
showing cav-1 interacted with each of the revertants.

NSP4- and cav-1-fusion proteins are present in the
co-transformed yeast

To verify the presence of the NSP4 and cav-1 GAL-4 fu-
sion proteins in the yeast that showed no binding to
cav-1 in the Y2H assay, the co-transformed lysates were
probed with either anti-NSP4;5 175 (Figure 3A and C)
or anti-cav-1,_3; (Figure 3B and D) peptide-specific anti-
bodies. Controls included untransformed MaV203 yeast
lysates. The controls failed to show an antibody-
specific band at the correct molecular weight of the
fusion proteins for both the activating domain (AD)-
NSP4 and binding domain (BD)-cav-1. However, a
non-specific band at ~28 kD was observed when blotted
with both antisera (Figure 3, lane 1). All NSP4 and cav-1
fusion proteins tested expressed at the correct molecular
weight (344 kD and 34.9 kD, respectively) and were

reactive with NSP4- (Figure 3, panels A&C) and cav-1
peptide-specific antisera (panel B&D). These data estab-
lished that the encoded sequences from both plasmids
were translated as fusion proteins in the co-transformed
yeast, even when no reactivity was detected.

Four mutations of the revertants demonstrate a key
hydrophobic residue in binding cav-1

Four additional mutants were generated from the rever-
tants, Rev2 116,124,127A; Rev2 116A; Revl,2 127A; and
Revl 124 ,127A (Tables 1 and 2, Figure 1C), individually
were co-transformed with cav-1 and were evaluated by
Y2H analyses. Revl,2 127A and Revl 124,127A revealed
positive patterns of growth for a protein:protein inter-
action while Rev2 116,124,127A and Rev2 116A demon-
strated negative growth patterns (data not shown). All four
revertant mutant clones quantitatively were tested for beta-
galactosidase activity. Rev2 116,124,127A and Rev2 116A
both demonstrated beta-gal activity of 0.056 and 0.165
BGU, respectively, which was less than or equivalent to
values of the negative control (0.134 BGU) (Table 2). In
contrast, Revl 124,127A and Revl,2 127A displayed [B-gal
activity of 4.044 and 2.581 BGU respectively, which was ap-
proximately 20-30 times higher than that of the negative
control (0.134 BGU) (Table 2). These data signify that Revl
124,127A and Revl,2 127A bound cav-1, whereas Rev2
116,124,127A and Rev2 116A lacked binding to cav-1.

In vitro cav-1 peptide binding assays of the revertants
confirm the Y2H results

Previously, we had reported that cavig 49 binds to NSP4
with a higher affinity than cav, o and cavie; 178 [32].
Therefore, we employed the cavig 4y peptide for the
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No peptide

A CNBr-activated SepharoseTM4B

Cav 2-31 Cav 161-178

24kD—
17kD—

InVSel - - - +

FLNSP4 + - - =

FLNSP4 Ala
FLNSP4 HydroMut

I
+

+ -

No peptide

6 7 8 9 10 11 12

B CNBr-activated Sepharose' * 4B
Cav 2-31

Cav 161-178

24kD—
17kD—

1 2 3 4 S
InVScl +

NSP4 Revl - + - - +
NSP4 Rev2 - + - -
NSP4 Rev3 - - - + -

10 11 12

s s o B o= e
w F = = w P

Figure 2 Binding of Caveolin-1 Peptides to NSP4 Constructs. Panel A: Transduced yeast lysates expressing full-length- NSP4,-NSP4-Ala6
and -NSP4-HydroMut (FLNSP4, FLNSP4-Ala6, and FLNSP4-HydroMut) were incubated with CNBr-activated sepharose 4B beads bound by the
N-terminal (cav-1,.37), C-terminal (cav-1461-17g), Or beads only. The beads were washed and the captured proteins separated by SDS-PAGE,

transferred to nitrocellulose, and probed using rabbit anti-NSP4;575. Controls (lanes 1-4) show the absence of non-specific binding to the sepharose
beads with all lysates tested. Lanes 5-7 show the reactivity of FLNSP4 and-NSP4 mutants with cav-15.3;. Only the FLNSP4-HydroMut failed to bind the
N-terminal caveolin-1 peptide. The same binding pattern was observed when FLNSP4 and -NSP4 mutant proteins where incubated with cav-114;1.178
(lanes 9, 10, and 11). InVSc1 alone showed no NSP4-specific bands using either peptide (lanes 8 and 12). Panel B: Western blot analyses
of CNBr-activated sepharose 4B beads that were bound by cav-15.31, Cavigi-178 Or no peptide and reacted with yeast lysates expressing Rev113l, Rev124V,
Rev131Y. The peptide-bound proteins were detected by Western blot using rabbit anti-NSP4+50.17s. Lanes 1-4 demonstrate that the NSP4 proteins failed
to bind the sepharose beads alone with all lysates tested. Lanes 5, 6, and 7 indicate that all three revertant NSP4 proteins bound to the N-terminal
peptide, Cav-1,.3;. The same binding pattern was observed with the C-terminal peptide, cav-116;1.178 (lanes 9, 10, and 11), while InVSc1 failed to bind

either peptide (lanes 8 and 12).

remainder of the binding studies. Cavyg 49 and cavig; 178
were bound to sepharose beads, reacted with the revert-
ant mutants expressed in yeast, and assessed by Western
blot. Lysates from untransformed InVScl yeast (Figure 4,
lanes 7 and 14) and all NSP4 mutant proteins incu-
bated with only sepharose beads demonstrated no re-
activity to NSP4 by Western blot (data not shown).
Further, no NSP4 specific bands were detected by Western
blot of lysates expressing Rev2 116,124,127A, Rev2 116A
or NSP4pyqromue incubated with cavig 4o or cavig.17s
(Figure 4, lanes 2, 3, 6; lanes 9, 10, 13). Only Revl,2
127A, Revl 124,127A, and RV-infected cell lysates
showed binding to cav-1 residues 19-40 and 161-178
(Figure 4, lanes 1, 4, 5, 8, 11 and 12). Rev 2 bound cavjg 49

and 141178 as a monomer (~17 Kd, Figure 4 lanes 1 and 8).
With cavyg;.178, @ NSP4 specific band at ~21 Kd (lane 8),
also was observed. Two rev2 mutants likewise bound both
cav-1 peptides (lanes 4, 5 and 11, 12), but only bound the
NSP4dimeric form. A larger dimer also was present in
lanes 5 and 12, further indicating the larger molecular
weight band is a multimeric form of NSP4. Together,
these data revealed that L116 is important for a protein-
protein interaction with cav-1.

Mutations within the amphipathic helix of NSP4 peptides
abolish diarrheagenic activity in mouse pups

Our previous study delineates the cav-1 binding site be-
tween NSP4 residues 114-135 (24). Hence, three peptides
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Figure 3 Representative Western blot analyses of yeast lysates co-transformed with NSP4 or NSP4 mutants with caveolin-1 fusion proteins.
The presence of NSP4- and cav-1 fusion proteins in the Y2H assay was shown by Western blot analyses of the yeast co-transformed with pD22cav-1
and each of the following fusion proteins: pD32NSP4 46-175 (lanes 2A and 2B), pD32NSP4-Ala6 (lanes 3A and 3B) , pD32NSP4-HydroMut (lane 4),
pD32Rev113l (lane 5), pD32Rev124V (lane 6), and pD32Rev131Y (lane 7). Lanes 8 and 9 show the FLNSP4-HydroMut and FLNSP4, respectively. Blots
were probed using (A) rabbit anti-NSP4+50.175 or (B) rabbit anti-cav-1,.31. Panel A: The non-transformed yeast (MaV203, lane 1) showed a non-specific
band at ~29 kD that was observed in all lanes. Lysates expressing FLNSP4-HydroMut (lane 8) demonstrated NSP4-specific bands at ~ 28, 24 kD.
Lysates expressing FLNSP4 showed bands at ~ 28, 24, and 20 kD (lane 9). All of the co-transformed yeast demonstrated a NSP4-fusion protein
band at ~34.4 kD (A, lanes 2-7). Panel B revealed a faint contaminating band below the 34.9 kD specific caveolin-1-fusion protein band (lanes 1-7).
Lanes 2-7 show the specific caveolin-1 fusion protein band at ~34.9 kD. Panel C: Lysates expressing FLNSP4 (lane 1) showed bands at ~ 24
and 28 kD and (lane 9). All of the co-transformed yeast demonstrated both monomeric and multimeric NSP4-specific fusion protein bands

(lanes 1). Rev2M116A, Rev2M116,124,127A, Rev1,2M127A and ReviM124,127A revealed the ~34.9 kD specific NSP4-1-fusion protein band
(lanes 2-5). Also, ReviM124,127A demonstrated a multimeric NSP4-fusion specific band similar to one observed with FLNSP4. Panel D:
Rev2M116A, Rev2M116,124,127A, Rev1,2M127A and ReviM124,127A revealed a~34.9 kD specific caveolin-1-fusion protein band (lanes 1-4).
Also, ReviM124,127A demonstrated a multimeric caveolin-1-fusion protein band.

encompassing amino acids (aa) 112-140 of NSP4 were syn-
thesized, which contained mutated residues in the hydro-
phobic (NSP4Hydr0112»140)1 acidic (NSP44jaacidic112-140)
or basic (NSP4a.pasic112-140) face of the amphipathic
alpha-helix (AAH). The sequences of each of the NSP4
mutant peptides are given in Additional file 1: Table S1.
NSP4yydro112-140  coOntains  three charged amino acids
(aall3, 124, 131) that were altered from the original hydro-
phobic residues. NSP4xacidic112-140 and NSP4pjapasic112-140
each contained three alanine residues substituted for nega-
tively charged (aall4, 125, 132) and positively charged
(aall5, 119, 133) residues, respectively.

Balb/C mouse pups (6-10 days) were administered
wild type (wt) or mutant peptides by the intraperitoneal
route and monitored for diarrhea as previously described
[3]. Prior to injection, all purified peptide samples were
tested for endotoxin by the Limulus Amebocyte Lysate

(LAL) test (Associates of Cape Cod, Inc.) to ensure that
samples were endotoxin free. A value of 0.5 EU/mL or
less was considered acceptable for use in the diarrhea
studies. Mouse pups injected with endotoxin free PBS
served as a negative control. Mouse pups were monitored
for diarrhea every 2 hours for 12 hours and then at
24 hours post injection. The severity of the diarrhea was
scored on a scale of 1 to 4 (data not shown) (5). Following
injection, both the wt-NSP4115 149 and NSP4 a1, acidic112-140
peptides caused diarrhea in 50% and 67% of the mouse
pups tested, respectively (Additional file 1: Table S1).
NSP4yiydro112-140 and NSP4pjapasic112-140 Peptides, however,
did not induce diarrhea in any of the mouse pups tested.
These preliminary results suggest that residues within
both the hydrophobic face and the basic face of the
amphipathic alpha-helix of NSP4 are also important for
enterotoxic function.
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Figure 4 Western blot analyses of caveolin. Yeast lysates expressing Rev2; Rev2 116, 124,127A; Rev2 116A; Rev1,2 127A; Rev1,2 124,127A, and
NSP4ygromur Were incubated with CNBr-activated sepharose 4B beads bound by either the N-terminal (cav-1y.40) (lanes 1-7) or C-terminal
(cav-1161.178) (lanes 8-14) peptides. Left Panel: Yeast lysates were reacted with bound cav-1 residues 19-40 and probed with rabbit anti-NSP4+ 5. 7s.
Lanes 1,4, and 5 depict the reactivity of Rev2; Rev1,2 127A; and Rev1,2 124,127A, respectively. Lanes 2, 3, 6, and 7 show a lack of reactivity with Rev2
116, 124,127A; Rev2 116A; NSP4yy qromus and InVScT respectively. Right Panel: The same binding pattern was observed when the yeast lysates were incu-
bated with cav-1441.175 (lanes 8-14). Rv-infected MDCK cell lysates (lane 15) demonstrate the specificity of the rabbit anti-NSP4, 54 1,5. Non-specific binding
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The mutant NSP4 peptides had an altered secondary
structure when compared to NSP4 115140t

To determine any alteration in structure of the mutant
peptides, which may influence function, circular dichroism
(CD) was employed. CD spectra of the mutant NSP4
(mtNSP4) peptides in aqueous buffer differed from that
of the wild-type peptide (Figure 5B-D, dark circles). The

alpha-helical content was calculated based on the molar
ellipticity values at 222 nm. The NSP4iyqromut112-140 PEP-
tide seemed most affected by the mutations made in the
AAH, as the alpha-helical content was determined to
be 19.4 +2.2% (Additional file 1: Table S1). The mu-
tations made in each of the charged faces of the AAH
had less of an effect on alpha-helix formation within the
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Figure 5 CD spectra of NSP4 peptides in aqueous buffer (e) and 50% TFE (). (A) WENSP4415.140; (B) NSP4yy dromurt12-1401 (€) NSPAaacicic112-140;
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corresponding peptides. The alpha-helical content for the
NSP4jaacidici12-140 and NSP4ujapasicii2-140 Peptides was
determined to be 23.7+0.6% and 26.2 £ 2.9%, respect-
ively (Additional file 1: Table S1).

In the presence of 50% trifluoroethanol (TFE, known
to promote a hydrophobic environment and to enhance
folding of synthetic peptides) each of the mutant NSP4
peptides increased in their alpha-helical secondary struc-
ture (2.5-3 times that in aqueous buffer) (Figure 5B-D,
open circles). As in aqueous buffer, the NSP4y1yqronuti 12-140
peptide exhibited less alpha-helical formation (57.8 + 0.6%)
than the NSP4xjacidicii2-140 and NSP4apasici12-140 Pep-
tides (73.1 £ 7.3% and 75.3 + 2.8%, respectively) Additional
file 1: Table S1. Therefore, the mutations made within the
hydrophobic face of the AAH/cav-1 binding domain of
NSP4 most negatively affected the alpha-helix folding of
the peptide. Mutation of residues within the charged faces,
however, only had a slight affect (NSP4 a1, cidic112-140) OF NO
affect (NSP4p1Basic112-140) On the alpha-helix structure of
the peptides.

Conservation of key NSP4 residues between different

RV strains

NSP4 amino acids 113-135 obtained from GenBank
of twelve RV strains that represent groups A through
E. (accession no. ABZ04174, BAA24144, ABZ04170,
BAB83830, AAA64924, AAL11029, AAB58698, AAD
50676, ABV66094, BAA13728, P08434, AND P04512)
were aligned with CLUSTAL (Figure 6). The following
observations were made: (i) all aligned sequences in-
cluded 1113 and L127 except Human RV C I113M and
L127K; (ii) all twelve strains contained L116; (iii) position
124 was V with one exception, Human RV C V124D;
(iv) L134 was conserved with the exception of EDIM
L134M and Human RV C L134l, another hydrophobic
amino acid; and the residue 131 varied from Y131, H131

113 135
SA11 simian DKETTREI EQVELLKRI YDKLT
NCDV bovine | DKLTTREI EQVELLKRI HDKLM
OSU porcine | DKLTTREI EQVELLKRI HDKLA

1
|
|
I
WA human | DKETTREI EQVELLKRI HDNLI
|
I
I
I

H2 equine DKLTTREI EQVELLKRI YDKLM
EDIM mouse | EKLTTREI EQVELLKRI YDMWW
WC3 bovine DKLTTREI EQVELLKRI HDKLM
RRV simian DKLTTREI EQVELLKRI HDMLI
Human C MTALFN- SLHDDNVKWRMSESI R
TY3 turkey | EQLTKRELEQVKLLADI YENLK
PO13 pigeon | EQLTKRELEQVKLLADI YEMLK
NC chicken | EQLTKRELEQVKLLADI YELLK

Figure 6 Rotavirus NSP4 protein alignments. NSP4 protein
sequences obtained from GenBank of twelve rotavirus strains that
represent groups A through E. [GenBank: ABZ04174, BAA24144,
ABZ04170, BAB83830, AAAG4924, AAL11029, AAB58698, AAD50676,
ABV66094, BAA13728, P08434, AND P04512] were aligned with
CLUSTALW for multiple sequence alignments [51,52].
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(NCDV, OSU, Wa, RRV), S131 (Human RV C). The high
similarity of 1113, L116, V124, L127, and L134 infer the
importance of these residues. Given the high sequence
divergence recently reported in NSP4 sequences, the con-
servation of the hydrophobic residues is all the more
remarkable [44].

Methods

Antibodies

NSP4 and cav-1 peptide-specific antibodies were gener-
ated in New Zealand white rabbits to NSP4 residues
150-175 and cav-1 residues 2-31, respectively, following
established protocols (5). Antibodies were purified against
the peptide and used as primary antibodies in Western
blots as previously described [25]. All primary antibodies
were detected by horseradish peroxidase (HRPO)-labeled
goat anti-rabbit IgG (Pierce, Rockford, II).

Mammalian cell lines and yeast strains
MDCK cells were obtained from ATCC (Rockville, MD)
and maintained in Dulbecco modified Eagle medium
(DMEM; Gibco, Grand Island, NY) supplemented with
10% fetal bovine serum (FBS), glutamine (2 mM),
penicillin-streptomycin (100 ug/ml) and non-essential
aa (1x) (Sigma, St. Louis, MO). To compare the NSP4
expressed in yeast to that expressed in RV-infected mam-
malian cells, MDCK cells were infected with RV SA114F,
lysates were collected, and subjected to Endo H digestion
as previously described [45,46]. The cell lysates also were
utilized as a positive control with the pulldown assays.
Saccharomyces cerevisiae strain MavV203 (MATa, leu2-
3,112, trp1-901, his3A200, ade2-101, galdA, gal80A,
SPAL10:URA3, GALI:lacZ, HIS3yas Gari:HIS3@LYS2,
canl’, cyh2") was used for all Y2H analyses [43,45,46]. A
collection of yeast strains that contain plasmid pairs
expressing fusion proteins with a spectrum of interaction
strengths [pPC97 (GAL4-DB, LEU2), pPC97-CYH2® and
pPC86 (GAL4-AD, TRPI)] were used as controls [43,47].
The control plasmids pDBleu and pEXP-AD507 con-
tain only the Gal4 DNA-binding domain (BD) and the
Gal4 activating-domain (AD) respectively. The S. cerevi-
siae yeast strain InVScl (MATa his3-Al, leu2, trp1-289,
ura3-52; Invitrogen) was used to express native and mu-
tant NSP4 proteins that were used in peptide binding
studies.

NSP4 cloning strategy

PCR products of NSP4 (residues 46-175), NSP4,,¢ and
NSP4iygromue constructs were directionally cloned into
the Invitrogen Gateway™ Entry vector (pENTR11, Invi-
trogen, CA), sequence verified, and cloned into the Invi-
trogen Gateway™ destination vectors, pDEST22 and
pDEST32, as previously described [25,43,48]. All plasmid
manipulations were performed according to standard
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protocols in the Escherichia coli strains DH5a as de-
scribed in the Gateway™ System manual [49].

To further refine the specific NSP4-cav-1 binding site,
seven NSP4,¢ 175 mutants were constructed and sequence
verified (Revl113l, Rev124V, Revl131lY, Rev116,124,127A,
Rev124V,116A, Rev113L124 V,127A and Rev113I,124
V,127A, Table 1 and Figure 1C). The three amino acids
mutated in NSP4pygromue (I113R, V124K and Y131D) were
individually reverted back to the original amino acid
(Rev1-1113; Rev2-V124; and Rev3-Y131; Figure 1C). The
next four mutants were derived from combinations of ala-
nine substitutions and reverting charge amino acid to the
original hydrophobic amino acids in Rev2. Alanines were
used to minimize conformational and structural disruption
of the hydrophobic face of the AAH.

Yeast two-hybrid screening

The MaV203 yeast strain was co-transformed with cav-1
and one of the NSP4 constructs (FLNSP4, FLNSP4-Ala6,
FLNSP4-HydroMut, NSP4ye.175, NSP4aj6, NSP4ydronun
Revl, Rev2, Rev3, Rev2 116,124,127A, Rev2 116A, Revl,2
127A, and Revl 124,127A) in the appropriate pD22 and
pD32 vectors by a modified lithium acetate procedure as
previously described [25,47]. Briefly, S. cerevisiae MaV203
was grown in YPAD overnight at 30°C, diluted to an
ODyggo of 0.5, and incubated at 30°C with shaking to an
ODygg of 2. The cells were washed with 4H,O, centrifuged,
and washed with 1 ml of 100 mM lithium acetate (LiAc),
centrifuged and resuspended in 100 mM LiAc. Aliquots
were centrifuged and the following solutions were added in
order: 240 pL of 50% PEG (3350 mw); 36 pL of 1 M LiAc;
25 uL of salmon sperm DNA (2 mg/ml); 50 pL of 4H,O;
and 100 ng of each plasmid DNA. The yeast were shocked
at 42°C for 45 min and then incubated at 30°C for 1 h be-
fore plating onto complete synthetic medium lacking leu-
cine and tryptophan (CSM LeuTrp’).

The transformed yeast colonies were grown at 30°C
for 3 days on CSM LeuTrp” to identify colonies contain-
ing both plasmids. The activation of transcription of
three independent reporter genes (URA, His3,lacZ) were
monitored by the observation of yeast growth patterns
on specific media. URA3 was monitored by cell growth
patterns on CSM LeuTrpUra” and CSM LeuTrp +
0.2% 5-fluoroorotic acid (FOA); 5FOA inhibits the
growth of yeast. When HIS3 was transcribed, the growth
of the co-transformed yeast was inhibited in a dose-
dependent manner by adding 3-amino-1, 2, 4-triazole
(3AT) to CSM LeuTrpHis™ [50]. MaV203 expresses a
basal level of HIS3 that was suppressed with increasing
concentrations of 3AT to allow discrimination of HIS3
activation.

Activation of the lacZ promoter was detected with a
qualitative assay using the substrate X-gal (5-bromo-4-
chloro-3-indolyl-B-D-galactopyranoside). To quantitatively
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measure beta-galactosidase activity, chlorophenol red-
beta-D-galactopyranoside (CPRG) was used for the
substrate as described in the ProQuest™ Two Hybrid
System manual [25,47].

Expression of FLNSP4, NSP4,6.175 and a panel

of NSP4 mutants

The entry vectors encoding FLNSP4, FLNSP4-Ala6,
FLNSP4-HydroMut, and NSP4,4 175 were used to shuttle
the NSP4 sequences into the inducible yeast expression
plasmid, pYES-DEST52 (Invitrogen) and transformed into
the inducible yeast strain, InVSc-1 [25]. Since our previous
data demonstrate stronger binding of NSP4 to cav-1 in
Y2H assays when the first two NSP4 N-terminal hydro-
phobic domains are deleted, we continued our experiments
with the truncated NSP4 [25] and constructed NSP4j6
and NSP44;yq;omue for use in the Y2H experiments. All add-
itional mutants (Revl, Rev2, Rev3, Rev2 116,124,127A,
Rev2 116A, Revl,2 127A, and Revl 124,127A) were con-
structed using site directed mutagenesis of NSP444 175, in-
troduced into the Gateway® entry vector, and cloned into
the inducible yeast expression plasmid, pYES-DEST52, as
above (Table 1). The transformed yeast colonies were
grown on CSM Ura™ and the encoded NSP4 proteins
were induced with YPAG medium yeast extract, peptone
(Difco), 0.01% adenine sulfate and 2% galactose (Sigma).
Cells were grown in YPAD at 30°C for 24 h, washed and
re-suspended to an ODggy of 0.5 in YPAG and incubated
at 30°C for 24 h. Yeast lysates were prepared using the
Zymo Yeast Protein Extraction kit (Zymo Research,
Orange, CA) as previously described and were utilized in
the binding assays [25]. Approximately 1 x 10° cells were
pelleted, Y-Lysis buffer and zymolase were added to the
samples and incubated at 37°C for 1 h. The yeast were cen-
trifuged at 400xg for 5 min, resuspended in PBS (pH 7.2),
containing protease inhibitors 100 uM AEBSE, 80 uM
aprotinin, 5 pM bestatin, 1.5 uM E-64, 2 uM leupep-
tin, 1 uM pepstatin A and 100 uM PMSF (Calbiochem-
Novabiochem Corp., San Diego, CA)] and quantified by
BCA (Pierce). These lysates were used in the in vitro pep-
tide binding and Western blot assays as described below.

Peptide synthesis, purification and characterization

All peptides were synthesized by fluorenylmethoxy-
carbonyl (Fmoc) solid-phase chemistry with either 1-
hydroxy-benzotriazole (HOBt), O-Benzotriazole-N,N,
N;N’-tetramethyluronium-hexafluoro-phosphate (HBTU)
and N,N-diisopropylethylamine (DIPEA), or HOBt and
N,N’-diisopropylcarbodiimide (DIPCIDI) activation using
the Model 90 Peptide Synthesizer (Advanced Chemtech/
AAPTEG; Louisville, KY) as previously reported [32]. Fol-
lowing synthesis, the peptides were cleaved from the solid
resin support and all side-chain protecting groups removed
by addition of Reagent R (90% trifluoroacetic acid (TFA),
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5% thioanisole, 3% ethanedithiol and 2% anisole). Peptides
were separated from the solid support by filtration into
cold diethyl ether in a dry ice/ethanol bath. Following three
organic precipitations, peptides were purified from or-
ganic contaminants and incomplete peptide fragments
by gravimetric gel filtration chromatography (Sephadex
G25 medium) and reverse-phase HPLC using a reverse
phase C4 Delta Pak (Waters Chromatography Division,
Milford, MA) or C18 (Beckman-Coulter, Fullerton, CA)
column. Peptide characterization was by matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry
(Laboratory for Biological Mass Spectrometry, Department
of Chemistry, Texas A&M University, College Station, TX).
Mass chromatograms revealed if the full-length peptide
was present, the mass of the peptide and the extent of con-
taminants in the eluted fraction.

All purified peptide samples were tested for endotoxin
by the Limulus Amebocyte Lysate (LAL) test (Associates
of Cape Cod, Inc.) according to the manufacturer’s proto-
col, to ensure that the samples were endotoxin free. A
value of 0.5 EU/mL or less was considered acceptable for
use in the diarrhea studies.

Diarrhea induction in mouse pups

To examine the biological relevance (enterotoxic activity)
of the mutations made in the hydrophobic face of
the amphipathic alpha-helix/enterotoxic peptide/cav-1
binding domain of NSP4, the NSP4yydromutii2-140,
NSP4ajaacidic112-1400 NSP4arapasici12-140 and  the wt-
NSP4, 15 140 peptides were tested for diarrhea induction as
previously described (5, 54) (Additional file 1: Table S1).
Briefly, each of the NSP4-specific peptides (100 nmol
in 50 ul total volume) was administered by intraperi-
toneal (IP) delivery to 6-10 day old mouse pups (5-6 pups
per peptide). Mouse pups injected with endotoxin-free
PBS served as a negative control. Mouse pups were
monitored for diarrhea every 2 hours for 12 hours
and then at 24 hours post injection. The severity of the
diarrhea was scored on a scale of 1 to 4 as previously
described (5).

Western blot assays

The co-transformed yeast colonies were grown in liquid
CSM Leu” Trp’, and yeast protein extracts were prepared
using the Zymo Yeast Protein Extraction kit (Zymo
Research, CA). The cell pellets were resuspended in
PBS (pH 7.2) containing protease inhibitors and quanti-
fied by BCA (Pierce). All lysates were separated by 12%
SDS-PAGE, electroblotted onto nitrocellulose mem-
branes, probed with NSP4 or cav-1 peptide-specific anti-
bodies, and reactive bands visualized by the addition of
HRP-conjugated IgG and Super Signal® West Pico chemi-
luminescent substrate (Pierce) followed by exposure to
Kodak X-OMAT film [51,52].
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Alignment of NSP4 amino acid sequences

To determine which amino acids in NSP4 residues
113-135 were conserved in different viral strains that
encompass RV groups A through E, an alighment was
generated of RV sequences obtained from [GenBank:
ABZ04174, BAA24144, ABZ04170, BAB83830, AAA64924,
AAL11029, AAB58698, AAD50676, ABV66094, BAA13728,
P08434, AND P04512]. The sequences were aligned using
SDSC Biology Workbench (http://workbench.sdsc.edu)
with CLUSTALW for multiple sequence alignments [51].
The percent identities with respect to SA11 were deduced
using MView 1.4 [53].

Discussion

This study demonstrated that the hydrophobic face of
the AAH of the enterotoxic domain of NSP4 is critical
for the binding to cav-1 and structure may play a role.
An NSP4 construct that disrupted the charged face of
the amphipathic helix (NSP4-Ala6) continued to bind
cav-1, but alteration of three residues (I113R, V124K,
Y131D) in the hydrophobic face disrupted cav-1 binding
(NSP4-HydroMut). When any one of the three mutated
hydrophobic amino acids was restored, NSP4 binding to
cav-1 was restored as observed with the Y2H and pep-
tide binding assays. We had not anticipated that all three
hydrophobic amino acids selected for mutation in NSP4-
HydroMut would individually restore the binding to cav-1,
but anticipated reversion of more than one of the three
mutated residues would be required to reconstitute the
binding site. All three revertants included L116 and L127
suggesting these hydrophobic residues were critical
to cav-1 binding. Further analysis of L116 and L127, using
the revertant mutants that substituted L116A and/or
L127A identified L116 as a key residue for NSP4 binding
to cav-1. The ability of L116 to bind cav-1 changes the re-
activity from binding in native NSP4 to not binding in
NSP44iyqromue to binding in the Rev 2 and finally to not
binding in Rev2 with mutated L116A (Figure 1C).

Yet, NSP4piyqromue contained L116 and failed to bind
cav-1, suggesting more than one amino acid is required to
accomplish binding. Protein-protein interactions can rely
on the recognition of linear motifs yet, binding sites fre-
quently depend on (a) exposure of the binding motif at the
surface of the protein; (b) the environment of the binding
residues; and (c) may require conformation-dependent epi-
topes for binding [54]. Given that the binding site is within
the hydrophobic face, typical protein folding patterns
would not place these residues on the protein surface, but
would protect them from the aqueous environment of the
cell. Perhaps the NSP4-cav-1 binding site was dependent
on the secondary structure of a region that included L116
that was disrupted in the NSP44jyq4romue The CD analysis
confirmed that the NSP4yyqromue peptide has a different
secondary structure than the NSP4 wild type peptide.
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Notably the identified NSP4 residue that binds cav-1
overlaps the enterotoxic peptide. To begin to understand
the functional connection between NSP4 enterotoxic ac-
tivity and cav-1 binding, diarrhea induction in neonatal
mice was evaluated with peptides corresponding to the
Wt-NSP4115 120, NSP44jaacidic112-1200 NSP4mydromuti12-140
and NSP4aiapasici12-140- The NSP4ajapasici12-140 and
NSP4iydromutii2-140 Peptides failed to induce diarrhea,
whereas when three acidic residues were altered to ala-
nines, NSP4a,acidic112-140, diarrhea was induced, simi-
lar to the wild type peptide. As the CD analysis of
NSP4ajaacidic112-140 and NSP4xjapasici12-140 indicated dis-
ruption of the AAH, the helix appeared to tolerate
changes in the charged face. Computer modeling of the
mutants using PyMol showed constraints for structure
especially with I113R (data not shown). These data sup-
port the model that the integrity of the secondary struc-
ture of the hydrophobic face of the AAH of NSP4 may be
important for the induction of diarrhea.

Despite our diarrhea data, it is unclear if cav-1 binding
in itself plays a role in diarrhea induction or if cav-1 di-
rects NSP4 to caveolae for signal induction. A previous
study highlighted the importance of the tyrosine residue
in the hydrophobic face of the AAH. A synthetic peptide
in which the tyrosine residue was mutated to a lysine
lacked diarrhea-inducing function [55]. In this study,
when tyrosine was changed to aspartic acid (D), NSP4
failed to induce diarrhea. Although Y131 is important
for the induction of diarrhea in some but not all strains
of RV [55], Y131 appears to be dispensable for cav-1
binding. Both Revl and Rev2 bind cav-1 in the absence
of Y131, and the lack of Y131 does not influence cav-1
binding of Revl,2 127A or Revl 124,127A. Our data
herein supports and further suggests that the structure
of the AAH of NSP4 may play a significant role in pro-
moting diarrhea.

A recent study revealed that the alf1 integrins are re-
ceptors for NSP4 [12]. Binding to these receptors initi-
ates cellular signaling processes (in particular, activation
of phospholipase C) that mobilize calcium and result in
diarrhea induction. While NSP4 binds the integrin re-
ceptor at residues 114-135, signaling occurs via an inter-
action between NSP4 131-140 and a separate integrin
domain [12]. NSP4 HydroMut, ;5 140 contains a mutation
at aal31, which is within the integrin signaling domain,
and does not cause diarrhea. Lack of enterotoxic func-
tion with this mutant peptide may be a result of its in-
ability to initiate integrin mediated signaling. These
results agree with previous data demonstrating that the
exogenous addition of NSP4 mobilizes [Ca***]; from ER
stores through a phospholipase C-inositol 1,4,5-triphos-
phate (PLC-IP3) pathway [6].

The data presented suggested that the integrity of the
hydrophobic face of NSP4 was critical to both cav-1
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binding and modulating diarrhea induction. Localization
of the binding site to the conserved hydrophobic residues
between RV strains and the lack of diarrhea induced by
the synthesized peptide with the corresponding mutations
in the hydrophobic face of NSP4 indicated the importance
of the cav-1 binding site of NSP4. However, the lack of
diarrhea observed with the peptide NSP441.pasic112-140 iN-
dicated that the NSP4 enterotoxin might extend into the
basic face. Additional studies are needed to dissect the
complexity of NSP4’s multiple activities and binding do-
mains, and how these domains are coordinated during a
viral infection.
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