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and oncolytic adenovirus improves antitumor
effect in cancer cells
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Abstract

Background: Combination of oncolytic adenoviruses (Ads) and chemotherapy drugs has shown promising
therapeutic results and is considered as a potential approach for cancer therapy. We previously have shown that
autophagy may generate decomposed cellular molecules that can be used as nutrition to support virus replication
in cancer cells. In this study, we evaluated a unique combination of the novel oncolytic Ad-cycE with rapamycin, an
autophagy inducer and first-line chemotherapeutic drug.

Methods: The combination of oncolytic Ad-cycE and the autophagy inducer rapamycin was assessed for enhanced
antitumor effect. We also evaluated the combined effects of rapamycin and Ad-cycE on cancer cell viability. The
interaction between Ad-cycE and rapamycin was analyzed with Calcusyn (Biosoft, Ferguson, MO).

Results: We show that rapamycin induces autophagy, enhances Ad E1A expression and increases Ad oncolytic
replication. Combination of rapamycin and Ad-cycE elicits stronger cytotoxicity than single treatment alone. The
analyzed data indicates that the Ad-cycE and rapamycin combination has a significantly synergistic antitumor effect.

Conclusions: Our study provides a new insight into vector development and demonstrates the novel roles of
autophagy in adenovirus replication. The combination of autophagy-induced chemotherapy and oncolytic
virotherapy may be a new approach to improve future cancer treatment.
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Background
Oncolytic virotherapy with E1b55K-deleted adenoviruses
(Ads) has been applied to human clinical trials in the
United States and approved for the commercial use in
China [1-5]. The selective oncolytic effects can be
achieved by a small quantity of viruses that spread to
surrounding tumor cells, therefore contributing to an in-
teresting drug platform [6,7]. Considering the viral trop-
ism, respiratory oncolytic Ads should have a high
potential for lung cancer therapy [8]. However, lung can-
cer is generally difficult to treat with oncolytic viruses,
and there are few recorded successful trials due to the
cancer’s propensity to metastasize and the irregular
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reproduction in any medium, provided the or
shape of most tumors. Therefore, developing combin-
ation strategies to target human lung cancer with im-
proved oncolytic Ads would allow for more effective
treatment.
In clinical treatments, oncolytic Ads are generally used

with the first-line chemotherapy drugs, and the combin-
ation treatments have exhibited high therapeutic effi-
ciency and improved safety [9]. However, the interaction
mechanism between chemotherapy drugs and viruses
has not been well characterized. Selecting drugs for
combination therapies based on the understanding of
the interaction between Ads and drugs definitely will
benefit the feasibility of this strategy. In our previous
study, we have shown that the treatment of the autoph-
agy inducer rapamycin increased the Ad yields and the
autophagy inhibitor 3-methyladenine (3-MA) reduced
Ad replication [10]. Our studies have also shown that
autophagy may generate decomposed cellular molecules
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as nutrition to support Ad replication. Thus, an autoph-
agy inducer may improve virus oncolytic therapy.
Autophagy is a process involving the lysosomal deg-

radation and recycling of cellular proteins and cytoplas-
mic organelles [11]. Environment stressors such as
nutrient starvation and pathogen infection induce au-
tophagy. Autophagy initiates from membrane structures
called phagophores [11-13], which engulf cellular and
cytoplasmic components, followed by elongation and re-
cruitment of microtubule-associated protein 1 light
chanin 3 (LC3) to form the characteristic double-
membrane autophagosome. Cytoplasmic form LC3-I
and lipidated form LC3-II are two forms of LC3 post-
transcriptionally produced in cells [14-16]. LC3 is imme-
diately processed into LC3-I after synthesis. During the
autophagy process, LC3-I is cleaved by cysteine protease
Atg4 to generate lipidated form LC3-II that localizes on
autophagosome membranes [13,17]. The amount of
LC3-II or the LC3-II/LC3-I ratio can be used to estimate
the degree of autophagosome formation [14,15,18].
Autophagosomes eventually fuse into lysosomes to form
autolysosomes, in which the inner components undergo
the degradation process and produce amino acids and
fatty acids for reuse in cells. Rapamycin, the inhibitor of
the mammalian target of rapamycin (mTOR) [19,20],
has been shown to induce autophagy and inhibit prolif-
eration of malignant glioma cells [21]. Autophagy is
negatively regulated by the PI3K-AKT-mTOR pathway.
Via inhibiting the negative regulation of mTOR signal-
ing, rapamycin indirectly enhances autophagy.
Using a tumor-specific promoter to regulate Ad E1A

expression is a general effort to control vector selective
replication in cancer cells and cause oncolysis. The pro-
teins encoded by the E1a region, expressed immediately
after infection, then modulate the cell cycle, recruit cel-
lular proteins, and produce viral proteins to process viral
DNA replication [22]. However, all known tumor-
specific promoters are relative weak compared with the
native promoter of the Ad E1a gene [23,24]. In addition,
Ad infection can cause strong repression of most cellular
promoters, as indicated in our published microarray
study [25]. Vectors driven by tumor-specific promoters
generally elicit low potency and do not work as effi-
ciently as dl1520, which contains the native E1a pro-
moter and is applied in current tumor treatments
[23,24]. However, the native E1a promoter does not ex-
hibit selectivity and therefore has side effects, such as
virus replication in noncancerous cells [26,27]. Obvi-
ously, the selection of promoters in vector construction
should consider the negative effects imposed by virus in-
fection on those promoters. We thus have constructed a
novel E1b-deleted oncolytic Ad-cycE, in which Ad E1a
gene is driven by the cyclin E promoter. Cyclin E is
known to regulate DNA replication and promote the S-
phase entry [28,29]. Cyclin E overexpression is fre-
quently detected in many types of cancers, including
lung cancer [30]. Recent studies also showed that
overexpression of cyclin E can trigger lung cancers in
transgenic mice [31,32]. Our previous studies revealed
that the replication of E1b55K-deleted Ads is signifi-
cantly repressed in G0-arrested normal cells [33,34], in
which the cyclin E promoter is restricted. We have also
demonstrated that the activity of cyclin E promoter in
cancer cells is further augmented after Ad infection
[33,35]. As the replication of E1b55K-deleted Ad-cycE
depends on the activation of cyclin E promoter, Ad-cycE
replication may be enhanced in cancer cells and re-
pressed in normal cells.
In this study, we applied novel tumor-specific Ad-cycE

and rapamycin in combination to enhance oncolytic ef-
fects. We show that Ad-cycE is competent to replicate
in human lung cancer cells but not in the normal lung
cells and that the combination of oncolytic Ad-cycE and
the autophagy inducer rapamycin elicits synergistic in-
hibition effects. We also reveal that rapamycin increases
Ad E1A expression and virus production. Our studies have
clearly shown that autophagy inducers as chemotherapeutic
agents are capable of increasing adenoviral replication and
oncolysis. Thus the combination of autophagy-associated
chemotherapy and oncolytic virotherapy may be a new
approach to improve future cancer treatment.
Methods
Cell lines and culture conditions
HEK 293 (ATCC no. CRL-1573), WI-38 human lung
fibroblast (ATCC no. CCL-75), MCF10A human mam-
mary epithelial (ATCC no. CRL-10317), MDA-MB-231
human breast cancer (ATCC no. HTB-26), A549 (ATCC
no. CCL-185) and H1299 (ATCC no. CRL-5803) human
lung cancer cell lines were purchased from the American
Type Culture Collection (Rockville, MD). WI-38 human
lung fibroblast cell line has the properties of primary cells
with a finite lifetime of 50 population doublings [36].
MCF10A human mammary epithelial cell line is an
immortalized but non-transformed human breast epi-
thelial cell line [37,38]. WI-38 cells were cultured in
minimal essential medium (MEM) Alpha GlutaMAX
with 0.1 mM non-essential amino acids and 1.0 mM
sodium pyruvate. MCF10A cells were cultured in DMEM/
F12K with 20 ng/ml EGF, 0.5 μg/ml Hydrocortisone, and
10 μg/ml insulin. HEK 293, A549 and MDA-MB-231 cells
were cultured in DMEM. All media were supplemented
with 5% (for MCF10A cells) or 10% (for the other cells)
fetal bovine serum (FBS) and penicillin/streptomycin
(100 U/ml). Cells were cultured in a 5% CO2 incubator
at 37°C. All cell culture reagents were obtained from
Gibco BRL (Bethesda, MD).
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Adenoviral vectors
Figure 1 depicts the structures of the adenoviruses ap-
plied in this study. Wild-type adenovirus type 5 (Adwt,
ATCC no. VR-5) was used as a replication-competent
control. AdCMV/GFP, an Ad vector with E1 deletion
carrying a green fluorescent protein (GFP), was used as
a replication-defective control [39]. Ad-cycE is a novel
E1b-deleted oncolytic vector carrying a human cyclin E
promoter driving an intact E1A expression cassette. The
endogenous E1a promoter was deleted and a human
cyclin E promoter (GenBank ID: X95406 [40]) was
inserted to replace the deleted E1a promoter in Ad-cycE.
Therefore, Ad-cycE contains a human cyclin E promoter
to control E1a open reading frames (ORF). The details
of Ad-cycE construction will be reported separately in
our preparing report. All of the vectors created and used
in this study are based on the backbone of wild-type Ad
type 5.

Cytotoxicity assay
Cells were seeded into 24-well plates at a density of 2.5 ×
104 (cells/well) and cultured under the indicated condi-
tions. After 72 hours, Cytotoxicity was assessed with
crystal violet staining [41]. Cells were fixed and stained
with 1% crystal violet followed by washing with water to
remove excess dye. The dye was solubilized with 2%
SDS and the absorbance of the solubilized stain was
measured at 590 nm using a Synergy HT Multi-Mode
Microplate Reader (Bio-Tek, Winooski, VT). The OD
values were quantitated into the cell viability % by the
formula, cell viability % = (OD value of experimental
group / OD value of control group) × 100%. Rapamycin
and viruses were diluted with corresponding culture
media. The 0 nM control group was treated with the
diluents and was calculated as 100% of cell viability in
the assay [42].
Figure 1 Structure of the Ads. The wild-type Ad (Adwt) with the
E1a and E1b genes and their endogenous promoters is shown at
the top. The left inverted terminal repeat (ITR), the promoters for E1a
gene and E1b genes (E1a-P and E1b-P) and the E1a and E1b open
reading frames are indicated. The solid lines represent Adwt regions
in these viruses, and the dashed lines represent the deleted regions.
AdGFP contains the complete deletion of E1a and E1b regions and
their promoters. Ad-cycE contains the deletion of E1b region and a
cyclin E promoter (cycE-P) was inserted to replace the deleted E1a
promoter.
Analyses of combination effects of rapamycin and Ad-cycE
In this study, an additive effect refers to a combined ef-
fect of drugs that produces the sum of their individual
effects; synergism is the combined effect of drugs which
is greater than the sum of individual effects, and antag-
onism is the combined effect of drugs which is less than
the sum of individual effects [43,44]. The combined ef-
fects of rapamycin and Ad-cycE on cell viability were an-
alyzed with the median-effect methods of Chou and
Talalay [45] using CalcuSyn software (Biosoft, Ferguson,
MO). The combination index (CI) values were used to
evaluate the interaction between the drug and virus. For
the fraction of virus affected combination index (Fa-CI)
plot analysis, a CI < 1 is defined as synergism, a CI = 1
is defined as an additive effect, and a CI > 1 is defined as
antagonism. The data were confirmed with the isobologram
method [46,47]. The diagonal curves connecting the x- and
y-axes were calculated from single treatments to represent
the additive effect for the theoretical combinations of two
treatments at the specific effective doses. If the data points
fall on the lower left of the diagonal, the combination is
regarded as synergism. If the experimental data points of
the drug combination fall on the diagonal, the combination
is regarded as an additive effect. If the data points fall on
the upper right of the diagonal, the combination is regarded
as antagonism.

Viral titration
Cells were seeded into 6-well plates at a density of 2 ×
105 (cells/well) and treated under the indicated condi-
tions. Total infected cells and culture supernatants were
collected at 48 h postinfection (p.i.) and lysed to release
virus particles with three cycles of freezing and thawing.
The viral yields were determined by the infective unit
method as described previously [48,49]. HEK 293 cells
were seeded in 96-well plates at a density of 103 (cells/well)
and then infected with 10-fold serially diluted viruses. CPE
was recorded and scored after incubation for 7 days.

Western blot analysis
Cells were harvested and lysed with CDK2 lysis buffer
(20 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2,
0.5% Nonidet P-40, 0.1% Brij 35, 5 mM sodium glycero-
phosphate, 1 mM sodium vanadate, 1 mM dithiothreitol).
The Western blot analyses were performed as described
previously [34]. 25 μg of cell lysates were electrophoresed
through 10 or 12% SDS-polyacrylamide gels and trans-
ferred onto an Immobilon-P Membrane (Millipore,
Billerica, MA). The primary antibodies used in this study
were rabbit anti-LC3 and actin (Sigma, St. Louis, MO),
mouse anti-adenovirus type 5 E1A (BD Pharmingen, San
Jose, CA), and rabbit anti-adenovirus type 5 antibody
(Abcam, Cambridge, MA). Actin was used as an inter-
nal control. The membranes were then incubated with
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anti-mouse immunoglobulin G (IgG) or anti-rabbit
IgG peroxidase-linked species-specific whole antibody
(GE Healthcare, Piscataway, NJ). Chemiluminescent
detection was performed with ECL reagents according
to the supplier’s recommendations (GE Healthcare).
The scanned band intensity was quantitated by Gel-pro
Analyzer 4.0 software (Media Cybernetics, Bethesda, MD)
according to the manufacturer’s tutorial. Densitometric
value for each band was expressed as integrated optical
density (I.O.D.) and normalized with actin. The results
were reported as the ratios of normalized band intensities
of LC3-II to LC3-I.

Statistical analyses
All above experiments, except specifically indicated,
were repeated at least three times. Quantitation results
Figure 2 Selective oncolytic replication of Ad-cycE. (A) WI-38, MCF10A
or Ad-cycE at 5 MOI. CPE was observed at 48 hr or 72 hr p.i and photograp
produced in WI-38, H1299 and A549 cells were determined at 72 hr p.i. wit
independent triplicate. * P<0.05, Student’s t-test. (C) A549 cells were co-infe
All fluorescent microscopy is taken at day 1 and day 2 p.i. with an Olympu
were reported as means ± standard deviation (S.D.). The
Pearson correlation coefficient (r) was used to evaluate
the correlations between the rapamycin concentrations
and cell viability percentages by SAS software, Version
9.3 (SAS Institute Inc., Cary, NC) [50,51]. Statistical dif-
ference of the combination experiment was assessed
with a Student's t-test. Statistical significance of differ-
ence was set at p < 0.05.

Results
Selective replication of Ad-cycE in cancer cells
Figure 1 depicts the structures of the adenoviruses
applied in this study. Adwt was used as a replication-
competent control. AdCMV/GFP, a vector with E1a and
E1b deletion carrying a green fluorescent protein (GFP),
was used as a replication-defective control. Our previous
, A549, H1299 and MDA-MB-231 cells were infected with AdGFP, Adwt,
hed with an inverted microscope Olympus CKX41. (B) Viral yields
h the infection unit method. The values represent the means ± S.D. of
cted with 5 MOI AdGFP and mock-infection, AdlacZ, Adwt or Ad-cycE.
s IX50 microscope (original magnification of ×100).



Figure 3 Effects of rapamycin on cytotoxicity and autophagy.
A549 cells were treated with 0 nM, 100 nM, and 200 nM ramamycin
(LC Laboratories, Woburn, MA) and collected at 24 hr after treatment.
(A) Cell lysates were immunoblotted for LC3 and actin. Actin was used
as a loading control. The values indicate the ratios of normalized band
intensities of LC3-II to LC3-I. (B) A549 cells were treated with 0 nM,
100 nM, 200 nM, 400 nM, 600 nM and 800 nM ramamycin. The cell
viability % was determined at 72 hr after treatment. The values of cell
viability % represent the means ± S.D. of independent quadruplicate
compared with the 0 nM-control group.
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reports indicated that the cyclin E promoter is more ac-
tive in lung cancer cells than in normal lung cells and
oncolytic E1b-deleted Ad infection further elevates the
promoter activation [33,35]. Thus, we replaced the na-
tive E1a promoter with the cyclin E promoter to gener-
ate Ad-cycE, a novel E1b-deleted oncolytic vector.
To determine the selectivity of Ad-cycE for cancer

cells, we first examined the cytotoxicity of Ad-cycE on
normal and cancer cell lines. WI-38 human lung fibro-
blast, MCF10A mammary epithelial, A549 and H1299
lung cancer and MDA-MB-231 breast cancer cells were
infected with AdGFP, Adwt or Ad-cycE at 5 MOI. Ad-
cycE replicated in A549 and H1299 human lung cancer,
and MDA-MB-231 breast cancer cells and caused cyto-
pathic effect (CPE) similar to that of Adwt (Figure 2A,
comparing panel h and i, k and l, n and o). The CPE be-
came visible at 48 hr and 72 hr p.i., showing that the
infected cells became circular and detached from the cell
monolayer. Unlike Adwt, which indistinguishably induced
CPE in noncancerous WI-38 human lung fibroblast and
MCF10A mammary epithelial cells, Ad-cycE selectively in-
duced CPE in all tested cancer cells (Figure 2A, comparing
panel b and c, e and f).
WI-38, A549 and H1299 cells were infected with Adwt

or Ad-cycE at 5 MOI and the total infected cells and
culture supernatants were collected at 72 hr to examine
the production of infectious virus particles. Figure 2B re-
vealed that in noncancerous WI-38 human lung fibro-
blast cells, the virus yield of Adwt was significantly
higher than that of Ad-cycE (P = 0.04); in H1299 human
lung cancer cells, there was no significant difference be-
tween the virus yield of Adwt and Ad-cycE (P = 0.2); in
A549 human lung cancer cells, Adwt (3.7 × 109) and
Ad-cycE (8.3 × 108) achieved a high level of virus yield,
indicating the replication property of Ad-cycE in lung
cancer cells. The aggregate data from this experiment
shows that Ad-cycE can selectively replicated in and effi-
ciently destroy cancer cells but poorly replicates in
noncancerous cells.
Previous studies indicate that replication-competent

oncolytic Ads could produce the essential Ad E1 proteins
to support the replication of replication-defective E1-
deleted Ads cotransduced in vitro or in vivo [35,52,53]. To
further verify selective replication capability of Ad-cycE in
cancer cells, A549 human lung cancer cell line with con-
stitutive cyclin E production [33] was chosen for the fol-
lowing experiment. A549 cells were infected with 5MOI
AdGFP alone, or AdGFP plus an additional Ad (AdGFP+
AdlacZ, AdGFP+Adwt or AdGFP+Ad-cycE). Figure 2C
showed that the non-replicative AdGFP maintained the
original level of infectivity at day 1 and day 2 (comparing
panel a and b). Also, with coinfection of AdGFP and non-
replicative AdlacZ, the fluorescent cell numbers did not
change (comparing panel c and d). Yet with the addition
of Adwt (comparing panel e and f) or Ad-cycE (comparing
panel g and h), we detected an increase of fluorescent cell
numbers from day 1 to day 2, suggesting that efficacy of
Ad-cycE replication in cancer cells is comparable with the
wild-type Ad.

Rapamycin induces autophagy and inhibits lung cancer
cell growth
Rapamycin has been shown to induce autophagy and in-
hibit proliferation of malignant glioma cells [21]. We in-
vestigated whether rapamycin can induce autophagy in
A549 lung cancer cells. The cells were treated with 0
nM, 100 nM, and 200 nM rapamycin for 24 hr. Western
blot was used to determine the conversion of LC3-I to
LC3-II, which is one of the representative characteristics
of autophagy activation. LC3 is immediately processed
into LC3-I after synthesis. Then the cytoplasmic form
LC3-I is cleaved by cysteine protease Atg4 to generate
lipidated form LC3-II that specifically localizes to auto-
phagosome membranes [17]. Thus the amount of LC3-II
or the LC3-II/LC3-I ratio can be applied to estimate
the abundance of autophagosomes [14,15,18]. Figure 3A
shows two forms of LC3, the upper band correspond-
ing to LC3-I and lower band corresponding to LC3-II
[14]. Compared with the 0 nM-control group (the ratio
of LC3-II/LC3-I = 0.82), the 100 nM and 200 nM rap-
amycin treatments increased the amount of LC3-II and
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caused the ratio of LC3-II/LC3-I to 2.75 and 2.88, respect-
ively, indicating the induction of autophagy. Next we
examined the effect of rapamycin on A549 cell growth.
The cells were treated with 0 nM, 100 nM, 200 nM, 400
nM, 600 nM and 800 nM rapamycin for 72 hr. The cell
viability was determined with crystal violet staining and
quantitated into cell viability percentages. The results
showed that rapamycin decreased cell viability in a dose-
dependent manner at 72 hr compared to the 0 nM-control
group (r = −0.69033, P = 0.0002) (Figure 3B).
Combination of rapamycin and Ad-cycE elicits stronger
cytotoxicity than single treatment alone
We first chose 200 nM rapamycin as the working condi-
tion and tested the combination effects of rapamycin
with different MOIs of Ad-cycE on lung cancer cell
growth. Figure 4A shows a difference between the cell
viability percentage of treatment with Ad-cycE alone
and Ad-cycE in combination with rapamycin. Our re-
sults show that Ad-cycE in combination with rapamycin
induces greater CPE in A549 lung cancer cells than
either treatment alone. The distinction can be clearly
seen in both 0.5 MOI Ad-cycE and 1 MOI Ad-cycE.
Figure 4 Effects of combination of rapamycin and Ad-cycE on A549 c
alone, 0.5 or 1 MOI Ad-cycE alone, or the combination treatment of 200 nM
quantitated into cell viability %. The values of cell viability % represent the me
group. * P<0.05, Student’s t-test. (B) CPE was photographed at a magnificatio
Statistical Student's t-tests confirmed the significant dif-
ference. Treatments with 200 nM rapamycin or 1 MOI
Ad-cycE both resulted in the cell viability of about 50%
(53.9% for rapamycin and 52% for Ad-cycE. Combin-
ation of Ad-cycE and rapamycin decreased cell viability
to 23.6% (P = 0.00000011). We repeated the experiment
with even lower dose of Ad-cycE (0.5 MOI), which only
is able to induce slight CPE. 0.5MOI Ad-cycE only
caused 73.9% of the cell viability (P = 0.0052), but com-
bination with 200 nM rapamycin caused 39.4% of the
cell viability (P = 0.0000000002). The cell morphology
was photographed with an inverted microscope on day 2
(Figure 4B). These results suggest that rapamycin in
combination with Ad-cycE elicits greater cytotoxicity on
A549 cells even with a low MOI of Ad-cycE.
Rapamycin increases Ad E1A expression and oncolytic
replication
The stronger antitumor effect in the combination treat-
ment may be generated from the sum of the effect of
two individual treatments or even a synergistic effect
(one treatment may increase the efficacy of the other).
To understand the mechanism by which rapamycin in
ells. A549 cells were non-treated or treated with 200 nM rapamycin
rapamycin and 0.5 or 1 MOI Ad-cycE. (A) The results were

ans ± S.D. of independent triplicate compared with the mock-control
n of x100 at 48 hr p.i.
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combination with Ad-cycE caused stronger antitumor ef-
fects, we first examined the production of virus particles,
comparing virus alone with the combination groups.
Rapamycin treatment led to a 4.25-fold increase in virus
yield compared to the virus alone group (Figure 5A). This
suggests that rapamycin increases the production of Ad-
cycE in A549 cells, resulting in stronger antitumor effects
than either drug or virus alone. Next we examined the
E1A expression to determine the mechanism by which
rapamycin may contribute to the increased production of
Ad vectors. E1A is the crucial protein which is expressed
immediately after infection and initiates the virus replica-
tion cycle [22]. Ad E1A protein expression was examined
at 18 hours and identified as multiple bands at 35–46 kDa
generated from the alternative splicing of E1A transcripts
[54]. As shown in Figure 5B, rapamycin stimulates ele-
vated E1A expression in the combination group when
compared to Ad-cycE alone. Taken together, the results
suggest that rapamycin increases oncolytic replication of
Ad-cycE in A549 cells and enhances E1A expression.

Combination of rapamycin and Ad-cycE elicits synergistic
antitumor effects
To determine whether combination of rapamycin and Ad-
cycE conducts synergistic antitumor effects, we evaluated
Figure 5 Effects of rapamycin on the oncolytic replication of
Ad-cycE. A549 cells were non-treated or treated with 200 nM
rapamycin alone, 0.5 MOI Ad-cycE alone, combination treatment of
200 nM rapamycin and 0.5 MOI Ad-cycE. (A) Viral yields were
determined at 48 hr p.i. with the infection unit method. The values
represent the means ± S.D. of independent triplicate. (B) Cell lysates
harvested at 18 hr p.i. were immunoblotted for Ad E1A and actin.
Actin was used as a loading control.
the combination treatments with Calcusyn (Biosoft,
Ferguson, MO). The combination experiment was per-
formed by adopting the constant ratio drug combination
design proposed by Chou and Talalay [45]. A549 human
lung cancer cells were treated with rapamycin alone (from
100 nM to 700 nM), Ad-cycE alone (from 0.5 MOI to 3.5
MOI) or a combination of rapamycin (nM) with Ad-cycE
(MOI) at the constant ratio of 200:1 for 96 h. Concordant
with the results shown in Figure 4, combination of
rapamycin and Ad-cycE caused a greater cytotoxicity than
either treatment alone (Figure 6A). We then evaluated
these quantitated data by fraction affected versus combi-
nation index (Fa-Cl) with CalcuSyn software (Biosoft,
Ferguson, MO) (Figure 6B). The X-marks represent the
combination index (CI) values of the combination treat-
ment groups. The CI values are 0.326, 0.512, 0.506, 0.642,
and 0.689 for 100 nM rapamycin plus 0.5 MOI Ad-cycE,
200 nM rapamycin plus 1 MOI Ad-cycE, 300 nM
rapamycin plus 1.5 MOI Ad-cycE, 600 nM rapamycin plus
3 MOI Ad-cycE, and 700 nM rapamycin plus 3.5 MOI
Ad-cycE, respectively. The middle curve line represents
the simulated combination index values of the combi-
nation treatment groups surrounded by two lines of alge-
braic estimations of the 95% confidence intervals. All
experimental CI values at the tested ratio were signifi-
cantly < 1 and between the two confidence lines, indicat-
ing synergism of combination treatments.
Since rapamycin and Ad treatments have entirely inde-

pendent modes of action, the conservative isobologram
method [45,55] was also applied here to confirm the
above Fa-Cl results. The effective concentration EC50,
EC75 and EC90 refer to the concentration of a drug or
the combination of the two drugs that induces 50%, 75%
and 90% inhibition of cell viability [44]. Figure 6C
showed the conservative isobologram plots of EC50,
EC75 and EC90, separately. In the conservative isobo-
logram plot, the curve connecting each axis indicates
the simulated additive effect for EC50, EC75 and EC90, re-
spectively. The experimental EC50, EC75 and EC90 doses
of the combination treatment groups are displayed as
the single point indicated by the arrow. The point values
of the EC50, EC75 and EC90 for the combination treat-
ments all fall below their diagonal lines for simulated
additive effects, indicating that significantly lower doses
of rapamycin and Ad-cycE are therapeutically effective
when combined. For example, in EC50 isobologram, from
the simulated curve of the additive effect it shows that
to reach 50% inhibition of cell viability requires at least
800 nM rapamycin or 1 MOI Ad-cycE. However, with
the combination of rapamycin and Ad-cycE it takes a
relatively low dose (50 nM rapamycin plus 0.25 MOI
Ad-cycE) to achieve the same efficacy, suggesting com-
bination treatment elicits a greater effect (synergism)
than an additive effect. These results in Figure 6A, B



Figure 6 Analysis by Calcusyn (Biosoft, Ferguson, MO) of the interaction between rapamycin and Ad-cycE on A549 cells. Cells were
treated with rapamycin alone, Ad-cycE alone or combination of both for 96 hr. (A) The results were quantitated into cell viability %. The values of
cell viability % represent the means ± S.D. of independent triplicate compared with the mock-control group. (B) The quantitated cell viability
data were analyzed by CalcuSyn software. The X-marks represent the combination index (CI) values of the combination treatment groups. The
middle curve line represents the simulated combination index values of the combination treatment groups surrounded by two lines of algebraic
estimations of the 95% confidence intervals. (C) The effective concentration EC50, EC75 and EC90 refer to the concentration of a drug or
combination of drugs that induces 50%, 75% and 90% inhibition of cell viability. In the conservative isobologram plot, the three curves of the
expected EC50, EC75 and EC90 additive effect lines for the combination treatments are labeled; the individual points of EC50, EC75 and EC90 for the
combination treatments were indicted by arrows and located below their additive interaction lines, respectively.
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and C have all demonstrated that the combination of
rapamycin with Ad-cycE elicits a synergistic antitumor
effect in A549 human lung cancer cells at the tested
concentration ratio.
In addition, we examined the combination effect of

rapamycin and Ad-cycE on MDA-MB-231 human breast
cancer cell line, which has been reported as a non-
permissive cancer cell line for oncolytic Ads replica-
tion [33]. As we observed in A549 cells, the combi-
nation of rapamycin and Ad-cycE induced a greater
cytotoxicity than either treatment alone in MDA-MB-
231 cells (Figure 7A) and the therapeutic effect was sig-
nificantly enhanced by the synergism of combination
treatments (Figure 7B).
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To determine whether the findings with rapamycin
and oncolytic Ad-cycE may apply to wild-type Ad, we
tested the same conditions with the combination of
rapamycin and Adwt. Consistent to the results shown in
Figures 6 and 7, combination of rapamycin and Adwt
also caused a greater cytotoxicity than either treatment
alone (Figure 8A). Fa-Cl plot showed that all CI values
at the tested concentration ratio were significantly < 1
and between the two confidence lines, suggesting the
synergism of rapamycin and Adwt (Figure 8B). Our data
indicated that the synergism is not only observed in the
combination of rapamycin and oncolytic Ad-cycE but
also in that of rapamycin and Adwt, suggesting the po-
tential of applying rapamycin to the strategy of combin-
ation treatment with the other oncolytic Ads.

Discussion
Oncolytic virotherapy has shown promising therapeutic
results and is considered a potential approach for cancer
therapy [56]. The matchless advantage of this approach
is that selective oncolytic effects are initiated by a small
Figure 7 Effects of combination of rapamycin and Ad-cycE on MDA-M
alone or combination of both for 96 hr. The results were quantitated into c
of independent triplicate compared with the mock-control group. (B) The
the fraction affected versus combination index (Fa-CI) plot, all experimenta
confidence lines.
amount of viruses that spread to the surrounding re-
gions until all cancer cells are destroyed [6]. However,
due to the current limitations, virus replication and dif-
fusion are restricted in animal studies and clinical trials
when the objectives carry tumors with large masses
[49,57,58]. Viruses have difficulty penetrating massive
tumors; this may be a reason for disappointing thera-
peutic outcomes. Developing new strategies to increase
virus propagation in tumors is important in improving
the efficiency of oncolytic virotherapy.
In our previous study we have shown that autophagy

may generate decomposed cellular molecules as nutri-
ents to support virus replication [10]. Therefore we ap-
plied the autophagy inducer rapamycin to develop a
combination strategy with oncolytic Ad-cycE. First,
rapamycin-caused autophagy can generate more nutri-
ents that can be used for building the viral particles
[10,59]. Second, autophagy may increase virus particle
release from dead cells that may benefit viral spread in
tumors [60]. Third, rapamycin has been applied to trans-
plant recipients as an immunosuppressant to prevent
B-231 cells. (A) Cells were treated with rapamycin alone, Ad-cycE
ell viability %. The values of cell viability % represent the means ± S.D.
quantitated cell viability data were analyzed by CalcuSyn software. In
l CI values at the tested ratio were significantly < 1 and within the



Figure 8 Effects of combination of rapamycin and wild-type Ad on A549 cells. (A) Cells were treated with rapamycin alone, Adwt alone or
combination of both for 72 hr. The results were quantitated into cell viability %. The values of cell viability % represent the means ± S.D. of
independent triplicate compared with the mock-control group. (B) The quantitated cell viability data were analyzed by CalcuSyn software. In the
fraction affected versus combination index (Fa-CI) plot, all experimental CI values at the tested ratio were significantly < 1 and within the
confidence lines.
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organ rejection [61]. The immunosuppressive properties of
rapamycin mainly result from the inhibition of leukocyte
activity and cytokine expression. Thus, rapamycin as an
immunosuppressant may help virus to decrease host
antiviral responses and improve virus distribution in
tumors. Finally, autophagy-induced cell death has been
applied as the new target in chemotherapy [62]. Thus the
antitumor effects can be enhanced by both rapamycin-
caused autophagy and virus-mediated oncolysis.
We demonstrated that Ad-cycE selectively replicated

in cancer cells. Ad-cycE in combination with autophagy-
inducer rapamycin further induced synergistic antitumor
effects. Rapamycin may also improve oncolytic therapy
mediated by other viruses. Studies have shown that an
autophagy mechanism is required for hepatitis B virus
replication [63], the initiation of hepatitis C virus repli-
cation [64] and the promotion of viral replication of the
RNA viruses such as poliovirus and rhinovirus [65]. The
new role of autophagy to help the virions of adenovirus
type 2 (Ad2) to traffic in cells has also been discovered
in a recent study [59]. After the virus has been internal-
ized into cells, high level of autophagosomes induced by
autophagy are reported to fuse with the early endosomes
containing virions and form amphisomes, creating an
environment favoring the release of virions into cytosol.
Here, we specifically observed that the autophagy in-
ducer rapamycin increased the E1A expression and led
to higher Ad-cycE production. In agreement with our
finding, Zeng and Carlin (2013) reported that starvation-
induced autophagy enhanced the E1A expression and
the viral progeny production of Ad2 in human airway
epithelial cells [59]. E1A is the crucial protein expressed
immediately after infection and regulates the expression
of multiple cellular and viral genes to initiate the virus
replication cycle [22]. Therefore, we reasoned that
autophagy is not only able to generate nutrients for
building viral particles, but is also able to increase the
E1A expression of Ads, leading to higher virus production
and the enhanced combination therapeutic effects.
mTOR pathway has been considered as a determinant

regulator in the cellular metabolism [66]. The mTOR in-
hibitor rapamycin has been reported to elicit diverse and
paradoxical effects on the cellular metabolism. Some
studies suggested that rapamycin decreases glucose
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metabolism [67-69] and mitochondrial oxidative func-
tions in mammalian cells [70,71], whereas some others
suggested that rapamycin increases glycolysis and oxida-
tive phosphorylation in the targeted cells [72,73]. Fang
et al. (2013) pointed out that although detrimental meta-
bolic changes were observed at early stages of rapamycin
treatment in mice, the prolonged rapamycin treatment
leaded to beneficial metabolic alterations, including in-
creased insulin sensitivity, improved lipid profile and
metabolism [74]. Apparently, the discrepancy of those
metabolic alternations by rapamycin likely depends on
the natures of signaling pathways activated in the cell
lines and the duration of treatment [73,74]. Under this
circumstance, the relation between the metabolic alter-
ations induced by mTOR inhibition and the adenoviral
replication still remains unclear. Some DNA viruses such
as adenovirus and human cytomegalovirus stimulate
metabolic alternations such as glycolysis in the host cells
to generate energy and essential elements for viral repli-
cation [75-77]. Besides autophagy, the property of
rapamycin to induce metabolic changes may be also uti-
lized by adenovirus to create a beneficial environment
for the viral replication.
Based on our previous work with the chemical CDK2 in-

hibitor roscovitine [39], we noticed that some chemothera-
peutic agents with the kinase inhibition properties may
inhibit oncolytic Ad replication and thus impair the out-
come of oncolytic virotherapy in the combination therapy.
It is important to select the chemotherapeutic agents with-
out negative effects on oncolytic viruses when conducting
the combination therapy. mTOR regulates several essential
signal transduction pathways including the control of cell-
cycle progression [66]. As an mTOR inhibitor, one of the
key functions of rapamycin is to inhibit cell-cycle progres-
sion [78]. Rapamycin is reported to decrease cyclin D1
expression [79], reduce the kinase activity of cyclin D1/
CDK4 and cyclin E/CDK2 complexes [80], and block the
elimination of the CDK inhibitor p27 [81], leading to cell
cycle arrest in G1-S-phase [78]. The mechanism(s) by
which oncolytic adenoviruses overcome the cell cycle ar-
rest by rapamycin-induced mTOR inhibition requires the
further study. Considering the possible negative effects of
rapamycin on cell cyclins and cell-cycle progression,
autophagy is likely to conduct a very important role for
the rapamycin-enhanced virus replication in this study.

Conclusions
Our studies suggest a novel strategy involving targeting
cyclin E overexpression in cancer cells and the properties
of autophagy to enhance adenoviral oncolysis that could
have a significant impact on clinical outcomes in cancer
therapy. The combination of Ad-cycE and rapamycin can
be further tested in vivo to evaluate the efficacy and effi-
ciency for the clinical setting. Our findings also provide
important information for future adenoviral vector de-
velopment and the combination study for improving
oncolytic virotherapy.
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