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Abstract

Enterovirus 71 (EV71) is an important human pathogen which may cause severe neurological complications and
death in children. The virus caused several outbreaks in the Asia-Pacific region during the past two decades and
has been considered a significant public health problem in the post-poliovirus eradication era. Unlike poliovirus,
there is no effective vaccine or approved antivirals against EV71. To explore anti-EV71 agents therefore is of vital
importance. Several strategies have been employed to develop antivirals based on the molecular characteristics of
the virus. Among these, some small molecules that were developed against human rhinoviruses and poliovirus are
under evaluation. In this review, we discuss the recent development of such small molecules against EV71, known

virus in the future.

drug resistance and possible solutions to it, and animal models for evaluating the efficacy of these antivirals.
Although further investigation is required for clinical applications of the existing candidates, the molecular
mechanisms revealed for the inhibition of EV71 replication can be used for designing new molecules against this

Introduction

Enterovirus 71 (EV71) belongs to the genus Enterovirus of
the family Picornaviridae. Since the virus was first isolated
in California in 1969 [1], a number of EV71 outbreaks have
been reported throughout the world, from North America
and Europe to Australia and Asia. During the past two de-
cades, the virus has seriously affected the Asia-Pacific area,
becoming a public health concern in several countries
within this area [2-5]. Most commonly, EV71 causes hand-
foot-and-mouth disease (HFMD) in children, which is
considered a mild syndrome. However, some young
children infected by the virus have developed severe neuro-
logical syndromes, such as aseptic meningitis, encephalitis,
poliomyelitis-like paralysis, and even death [6]. For
example, the 1998 outbreak in Taiwan resulted in 405 cases
of severe neurological complications, pulmonary edema or
hemorrhage, and myocarditis, with 78 deaths [3]. More
recently, a large scale EV71 outbreak associated with
HEMD, neurological symdrome, and fatal cases was
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reported in China [5,7]. Until 2012, fatal cases caused by
EV71 infection were still described in Asia [8].

Similar to other human enteroviruses, such as poliovirus,
the transmission of EV71 occurs through the fecal-oral
route. The primary replication sites for the virus are
presumed to be in the tonsils and intestinal lymphoid
tissue. Therefore, the virus can be spread from the gastro-
intestinal tract of infected people for weeks. This may also
explain why most EV71 isolates were recovered from throat
swabs and stool specimens. However, clinical features have
suggested that the virus can reach the central nervous
system (CNS) of people suffering from EV71 infection
[5,9]. The two explanations for how EV71 spreads to the
CNS are that virus in the bloodstream somehow penetrates
the blood-brain barrier, or that virus reaches the CNS via a
neuronal route. Recently, a mouse study supported the
proposition that the major transmission route to the CNS
may be through retrograde axonal transport in neurons
[10].

In past decades, in an effort to eradicate polio, a dramatic
reduction of epidemics has occurred through effective vac-
cines and improvement in public hygiene. However, the
emergence of EV71 infection has recently developed into a
new threat to children, especially because there are no spe-
cific treatments or vaccines to combat this ailment. Sup-
portive therapy is still the primary management for severe
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cases of EV71 infection. Other than symptomatic treat-
ment, intravenous immunoglobulin (IVIG) is clinically used
to neutralize the virus and to nonspecifically suppress
inflammation. Nevertheless, although this treatment has
been routinely applied to severe cases of EV71 infection, its
efficacy requires further evaluation. Therefore, the develop-
ment of specific antiviral strategies against EV71 has
become an urgent issue for the protection of children from
the hazards of EV71 infection.

Biological characteristics of EV71
Like poliovirus, the prototype virus in the family Picorna-
viridae, EV71 is a small non-enveloped virus that encloses
a positive-sense, single-stranded RNA molecule of ap-
proximately 7.4 kilobases [11]. After initial infection, the
virus particle attaches itself to receptors on host cells and
releases its RNA genome into the cytoplasm. Two host
proteins, scavenger receptor B2 and human P-selectin
glycoprotein ligand-1, have been identified as cellular
receptors for EV71 [12,13]. Once the genome enters the
host cell, the viral RNA, which possesses an internal ribo-
somal entry site (IRES) and poly(A) tail, serves as mRNA
and is translated by a cap-independent mechanism [14]. A
single large polyprotein is first synthesized. The functional
viral proteins are then generated through maturation
cleavage mediated by viral proteases 2AP"™ and 3CP*™ [15].
The viral RNA genome is not only the mRNA for viral
protein translation, but it can also be the template for repli-
cation by the virus-encoded RNA-dependent RNA poly-
merase (RdARP), designated 3D. In the infected cell, viral
RNA replication occurs within a vesicular membrane struc-
ture in the cytoplasm [16,17]. Other than the 3D protein,
the viral 2C protein, which is highly conserved among
human enteroviruses, has been identified as part of the viral
replication complex within the vesicular membrane [17].
Thereafter, the progeny positive-stranded viral RNA is then
packaged by viral capsid proteins to form a new infectious
virion. Infection eventually initiates the apoptotic pathway
by its 2AP™ and 3CP™ proteins and lyses the infected cell
[18,19]. Newly produced viral particles are released from
the lysed cell.

Antivirals targeting virus entry

Blocking virus entry is an ideal antiviral strategy. For
example, to a certain extent, treating severe cases of EV71
infection with IVIG was partly dependent on its nonspecific
neutralization of the virus [20]. Correspondingly, certain
animal studies have shown that passive transfer of anti-
serum from immunized mice could provide protection
against an EV71 challenge [21,22]. According to past
research, among viral capsid proteins, neutralizing epitopes
were located on the VP1 protein [23]. VP1 was also identi-
fied as the major receptor-binding protein after EV71 infec-
tion [12,13]. Thus, development of specific antibodies
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against the neutralizing epitope on the viral capsid protein
VP1 could be a successful antiviral strategy.

The VP1 protein of poliovirus or rhinovirus has also been
shown to form a canyon structure, which is important for
receptor binding. In addition, conformational change of the
VP1 protein is the crucial step for viral particle disassembly
and release of viral RNA into the host cell. Therefore,
designing small molecules that target VP1 may interfere
with EV71 infection. Two molecules, pleconaril (Figure 1A)
and pirodavir, were found to suppress rhinovirus replication
by targeting the capsid protein [24-26]. One of the mole-
cules, pleconaril, has already been applied to treat life-
threatening enterovirus infections [27]. To verify the
specific efficacy of pleconaril against EV71, a mouse study
was performed, which resulted in significant improvement
of severe symptoms in infected 1-day-old mice [28]. How-
ever, the EV71 inhibition capacity of pleconaril could vary
for different isolates of the virus. Shia et al. reported that
pleconaril was nearly ineffective in neutralizing EV71
isolates from the outbreak in Taiwan [29].

By using the skeleton of pleconaril as a template, a
computer-assisted drug design developed a new class of
pyridyl imidazolidinones with anti-EV71 activity. Among
the pyridyl imidazolidinones, one of the compounds,
BPR0Z-194 (Figure 1A), demonstrated its effectiveness
against EV71 replication [30]. In addition to VP1-binding
small molecules, lactoferrin, which is an abundant iron-
binding glycoprotein in colostrum, was found to inhibit
EV71 by binding to VP1 [31]. Although lactoferrin has not
been approved for therapeutic purposes, it could be consi-
dered an agent for preventing virus entry.

Antivirals targeting enterovirus proteases 3C°™ and 2AP™
Maturation cleavages are critical steps for EV71 protein
synthesis. As for other human enteroviruses, 2A"° and
3CP™ are the key proteases for processing of the viral pre-
cursor polyprotein. Rupintrivir (Figure 1B) was originally
developed to inhibit human rhinovirus infection by block-
ing its 3CP" activity [32]. In recent years, this compound
was confirmed as an EV71 replication inhibitor through the
blockage of its 3CP™ activity [33-35]. In addition to rupin-
trivir, Compound 1 (Figure 1B), which has been shown to
inhibit the human rhinovirus 3C protease, may be another
candidate for EV71 treatment by suppressing EV71 3CP™
[36]. To further investigate the antagonism of 3CP™,
structure-based design could be highly practical, especially
because the X-ray crystal structure of the EV71 3CP™ has
recently been resolved [37].

2AP™, which cleaves both the viral polyprotein and
translational factor eIF4GI for shutting off host-cell
translation, is also considered an antiviral drug target for
inhibiting EV71 replication. Unfortunately, no specific
inhibitor has been developed for blocking this
chymotrypsin-related protease. Nevertheless, the X-ray
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crystal structures of 2AP™ from 2 related viruses, human
rhinovirus serotype 2 and Coxsackievirus B4, have dis-
closed the enzymatic active pocket of these proteases
[38,39]. Because of their similarities in function and
sequence, the catalytic triad EV71 2AP™ could be pre-
dicted as His-21, Asp39, and Cys-110. By combining the
information from the structures and the predicted cata-
Iytic sites, the structure-based inhibitor design is still
applicable. Moreover, antivirals targeting EV71 proteases
should not only block viral protein maturation, but they
may also assist in the protecting host proteins from pro-
tease degradation.

Antivirals targeting the enterovirus RARP complex

Because the EV71 RNA genome is replicated by its RdARP,
known as the 3D protein, targeting the 3D polymerase
could be a potent strategy for specifically inhibiting EV71
replication. Nucleoside analogues, such as ribavirin
(Figure 1C) and 2’-C-methylcystidine, have been studied
most extensively as picornavirus polymerase inhibitors
[40-43]. Furthermore, a non-nucleoside analogue, DTriP-
22, which is a piperazine-containing pyrazolo [3,4-d)]
pyrimidine derivative (Figure 1C), was identified as an
anti-EV71 agent. By selecting resistant viruses, DTriP-22
was shown to inhibit viral RNA replication by targeting
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the EV71 3D polymerase [44]. Additionally, aurintricar-
boxylic acid, which was originally reported to be an inhibi-
tor for the replicases of HCV and SARS-CoV, also exhibits
the ability to inhibit EV71 3D polymerase [45-47].

Inhibition of EV71-IRES dependent translation

Because EV71 mRNA does not have 5’ cap structure, trans-
lation is dependent on its IRES element. Numerous studies
have shown that EV71 IRES-dependent translation is highly
controlled by IRES-specific transacting factors (ITAFs) [48].
In addition to the ITAFs of EV71 IRES, far upstream ele-
ment binding protein 2 (FBP2) was reported to negatively
regulate EV71 IRES activity by competing with an ITAF
named PTB [49]. By employing proteins that destructively
affect EV71 IRES, the replication of EV71 can be sup-
pressed. This concept may provide a new strategy for anti-
EV71 development. For example, kaempferol, a type of
flavonoid, has been shown to inhibit EV71 replication and
its IRES activity by changing the composition of the ITAFs
[50].

Other small molecule antivirals targeting on EV71
replication

Enviroxime was found as an anti-viral compound against
the replication of rhinovirus and poliovirus [51]. By analy-
zing the enviroxime-resistant mutants, the target site of
enviroxime was identified on viral protein 3A [52]. The
viral protein 3A and its precursor 3AB play the key roles in
formation of enterovirus replication complex [53,54]. Deve-
lopment of anti-vrials targeting on 3A or 3AB may be a
successful strategy for inhibiting EV71 replication. For
example, AN-12-H5, which is a functionally enviroxime-
like compound, was shown to be a novel inhibitor to block
EV71 replication in vitro [55].

The potentiality of RNA interference

RNA interference is a cellular post-transcriptional process
in which gene expression is silenced in a sequence-specific
manner. Based on this concept, artificially generated small,
interfering RNAs (siRNAs) are widely applied to study gene
function. Because siRNAs can effectively downregulate
gene expression, virus sequence-specific siRNAs have been
considered to be potential therapeutic agents. Several stu-
dies have shown that virus-specific siRNAs can successfully
suppress the replication of human viruses, such as polio-
virus, HIV-1, and HCV [56-59]. This technology has also
been applied experimentally to the treatment of EV71
infection [60,61]. Scientists have employed a suckling
mouse model to evaluate siRNA against EV71 in vivo, and
an siRNA targeting the 3D region has been shown as a
potential therapeutic approach [62].
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Modulation of host immunity and interferon treatment
Innate immunity is the host’s natural defense system against
virus invasion. Production of type I interferons (IFNs), IFN-
a/p, is the initial response of innate immunity and results
in activation of IFN-stimulated gene expression to block
viral replication. IFN-a has been used to treat HCV infec-
tion, but its application for enterovirus infection has not
been established. To evaluate whether type I IFN has a
therapeutic effect against EV71 infection, a recombinant
murine IFN-a was administered to EV71-infected newborn
mice, resulting in an increased survival rate [63]. Similar to
the in vivo study, in vitro testing also demonstrated the
potency of IFN-al4 in reducing EV71 replication [64].
Although it has been shown that EV71-encoded protease
3C could degrade interferon regulatory factor-9 (IRF9)
which is involved in type I IFN downstream signaling,
combination of IFN-a and 3CP™ inhibitor, rupintrivir, for
EV71 treatment was considered as a strategy to combat the
IEN signaling inhibition [65]. By the in vitro study, the
combination treatment showed a synergistic effect against
EV71 replication [65]. According to these studies, type I
IFN could be considered a potent anti-EV71 treatment.
Nevertheless, a recent study demonstrated that EV71 2AP™
could be an IFN antagonist, because it reduces the expres-
sion level of the type I IEN receptor [66], making it
questionable whether type I IFN will be active against EV71
infection.

Resistance to antiviral treatment

Because the EV71 RNA genome is synthesized by its RARP,
which does not have proofreading activity for faithfully
replicating viral RNA, mutations in the newly synthesized
viral genome are frequently generated during replication.
Thus, EV71 variants that present antiviral resistance pheno-
types could often be selected during antiviral treatment.
For example, the elucidation of the mechanism of action of
DTriP-22 was based on the appearance of drug-resistant
mutants and whole viral genome sequencing [44]. To
address the drug resistance of EV71, the practicability of
combination treatments learned from HIV therapy is worth
further evaluation. Ideally, molecules selected for combi-
nation therapy should act through different mechanisms.
Based on two recent studies evaluating combination the-
rapy against EV71, several combinations successfully
showed a synergistic effect in inhibiting EV71, such as the
combination of IFN-a and rupintrivir and the combination
of rupintrivir and an analogue of pirodavir, BTA798
(Figure 1A) [65,67]. Therefore, combination therapy could
be a possible strategy to combat EV71.

Animal models for testing drugs against EV71

To verify the effectiveness of antivirals against EV71, animal
studies are urgently required, in addition to in vitro experi-
ments. Since Chumakov et al. established an experimental
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interaction. VP1-binding small molecules, such as pleconaril, BTA798, and BPROZ-194, can also interfere in virus entry. In cytoplasm, viral RNA can
be targeted by virus-specific siRNAs for suppressing virus replication. A single large polyprotein is first synthesized and then cleaved by viral
proteases 2A and 3C to form functional proteins. Rupintrivir and Compound 1 can inhibit 3C protease activity to prevent maturation cleveage.

to the receptor-binding capsid protein VP1 and prevent the virus-receptor

animal infection model, neonatal mice have been the most
widely used for in vivo studies [68]. For example, in vivo
studies were conducted using 1-day-old ICR mice to eva-
luate the protection of neutralizing antibodies against EV71
and to investigate CNS involvement after EV71 infection
[22,69]. However, there are technical difficulties in handling
1-day-old pups for evaluating antiviral efficacy and toxicity.
Additionally, a mouse-adapted EV71 strain was established
by serial passage in mice. The mouse-adapted virus could
infect 7-day-old ICR mice by oral inoculation and cause
lethal CNS complications [70]. This tool therefore
improved in vivo pathogenesis studies. Other than mice,
cynomolgus monkeys have been used to study the neuro-
pathogenicity of EV71 [71,72]. However, the mouse model
with the mouse-adapted strain may be a relatively low-cost
and effective solution for evaluating new antivirals.

The developments of vaccine against EV71

Based on the experience in the control of poliovirus
epidemic, vaccination should be a primary strategy to
prevent EV71 infection in children. Although there is no
commercialized effective vaccine against EV71 available
until now, several researches have disclosed the availability
for the vaccine against EV71. For example, the viral capsid
protein VP1 was initially designed as an immunogenic
candidate for subunit vaccine [73-75]. In addition to VP1
subunit vaccine, the formaldehyde-inactivated whole-virus
of EV71was also widely evaluated as a vaccine candidate
[76,77]. However, several obstacles need to be overcome in
the EV71 vaccine development. First of all, because of the
lack in adult mouse model, most of the researches applied
passive immunization strategies to verify the neutralizing
antibody generated from immunized dams in the
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protection of the newborn mice. To overcome the limita-
tion of the mouse model, the mouse-adapted strains of
EV71 or EV71-receptor-transgenic mice may be applicable
to the vaccine development. Since there are many geno-
types of EV71 isolates based on the VP1 sequences, the
selection for reference strain could be another obstacle for
vaccine production. Therefore, it is urgent to establish the
international collaboration for sharing the virology and epi-
demiological information. Nevertheless, a phase I clinical
trial in human has been conducted to evaluate the safety
and immunogenicity of a newly developed inactivated
EV71 vaccine in China [78].

Summary

Over the past 2 decades, eradication efforts have substan-
tially reduced the number of poliomyelitis cases worldwide.
Unfortunately, reemerging EV71 infection has become an-
other challenge for public health, especially in the Asia-
Pacific region. Unlike poliomyelitis, an effective EV71
vaccine is still not available to provide immunity in
children. Therefore, development of anti-EV71 agents has
become an urgent issue to relive distress in epidemic areas.
Based on the replication characteristics of picornaviruses,
several strategies have been developed for designing antivi-
rals against EV71, as summarized in Figure 2. Certain anti-
virals originally developed against human rhinoviruses have
been tested against EV71 because of the similarity in viral
replication mechanisms. Because an experimental mouse
model has been established, candidate anti-EV71 drugs can
be further evaluated to assess therapeutic efficacy.
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